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Abstract 
People tend to believe their perceptions are veridical representations of the world, but also 
commonly report perceiving what they want to see or hear, a phenomenon known as motivated 
perception. It remains unclear whether this phenomenon reflects an actual change in what people 
perceive or merely a bias in their responding. We manipulated the percept participants wanted to 
see as they performed a visual categorization task for reward. Even though the reward 
maximizing strategy was to perform the task accurately, this manipulation biased participants’ 
perceptual judgments. Motivation increased activity in voxels within visual cortex selective for 
the motivationally relevant category, indicating a bias in participants’ neural representation of 
the presented image. Using a drift diffusion model, we decomposed motivated seeing into 
response and perceptual components. Response bias was associated with anticipatory activity in 
the nucleus accumbens, whereas perceptual bias tracked category-selective neural activity. Our 
results highlight the role of the reward circuitry in biasing perceptual processes and provide a 
computational description of how the drive for reward can lead to inaccurate representations of 
the world. 
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People tend to think of their perception as a veridical representation of the external world, but 
this view has long been challenged by psychological research1,2. Instead, people often report 
percepts that they are motivated to perceive, a phenomenon we term motivated perception. In 
one classic example in the visual domain, Dartmouth and Princeton students watched the same 
football game. Fans of each team subsequently reported seeing the other team commit more 
fouls3. Likewise, participants presented with ambiguous line drawings were more likely to report 
seeing the interpretation associated with desirable outcomes4.  

One interpretation of these findings is that motivational factors, such as desires and 
wants, exert top-down influence over perceptual processing, such that people become biased 
towards seeing what they want to see5. We refer to the bias in perceptual processing as a 
perceptual bias. Alternatively, these effects could instead reflect a response bias: a bias not in 
what participants see, but merely in what they report seeing6,7.  Although these two 
interpretations appear at odds with each other, they are not mutually exclusive; motivation could 
simultaneously both bias perception and responses. Computational models offer a promising 
analytical approach by which we can dissociate these two sources of bias and identify their 
independent contributions to perceptual judgments.  

Drift diffusion models assume that perceptual judgments arise from the accumulation of 
noisy sensory evidence towards one of two decision thresholds8,9. When the level of evidence 
exceeds the threshold associated with a particular percept, the corresponding response is made. 
Within this framework, a response bias can be modeled as a bias in the starting point of evidence 
accumulation. This reduces the amount of evidence needed to make a response, but assumes no 
effect on perceptual processing. On the other hand, a perceptual bias can be modeled as a bias in 
the rate of evidence accumulation. This in turn reflects sensory information accumulating faster 
for one percept than another, implying that perceptual processes are biased towards seeing that 
percept. The extent to which each bias influences behavior can then be estimated from empirical 
data. 	
 Neuroimaging offers a second, complementary approach through which to dissociate 
response and perceptual biases. The neural mechanisms underlying motivational effects on 
perceptual judgments are not well understood, but separate literatures on the neuroscience of 
motivation and perception suggest distinct neural processes that could be related to different 
components of bias. In particular, both fMRI and electrophysiology studies have identified the 
nucleus accumbens (NAcc) as a key structure in mediating motivational processes10,11. One 
putative role of the NAcc is that it biases response selection in favor of actions associated with 
higher reward12–14. This suggests that it could play a role in response biases by increasing the 
readiness to make motivationally desirable judgments.  

On the other hand, previous work suggests that perceptual judgments are determined by 
comparing the activity of neurons selective to different perceptual features15,16. For example, 
monkeys in a direction-of-motion task were more likely to categorize a cloud of dots as moving 
upward when activity was higher in sensory neurons preferring upward motion than in sensory 
neurons preferring downward motion17. Similarly, Heekeren and colleagues demonstrated in 
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humans that perceptual judgments on a face-scene categorization task were computed by 
comparing activity in areas in the ventral temporal cortex selective to each category18. 
Motivation could potentially bias this comparison process by driving attention towards the 
features associated with a motivationally desirable percept19. This enhances the neural response 
to those features, thus giving rise to a perceptual bias. 
 The goal of the present study was two-fold: (i) to decompose motivational influences on 
perceptual judgments into a response bias and a perceptual bias and (ii) to examine the 
neurocomputational mechanisms underlying motivational biases on perceptual judgments. 
Human participants were presented with visually ambiguous images created by morphing a face 
image and a scene image together, and were rewarded for correctly categorizing whether the face 
or scene was of higher intensity. We manipulated participants’ motivation by instructing them on 
each trial that they would win or lose extra money if the upcoming stimulus was of a particular 
category. Crucially, participants would gain or lose this additional money based only on the 
actual category of the stimulus, not what they reported seeing. As such, even though participants 
were motivated to see one category over the other, they would earn the most money on the task if 
they reported the stimulus category accurately.   

We estimated the magnitude of response and perceptual biases exhibited by our 
participants by fitting a drift diffusion model to choice and reaction time data. Using fMRI, we 
searched for distinct neural processes associated with each bias. Furthermore, as the perception 
of faces and scenes is associated with distinct patterns of activity in the ventral occipito-temporal 
cortex18,20,21, we used multivoxel pattern analysis to measure the level of face- and scene-selective 
activity as a correlate of perception. If the motivation to see one category increases the level of 
neural activity selective for that category, it would provide additional evidence that motivation 
modulates perceptual processing. By combining the neural measures with computational 
modeling, our approach provides a mechanistic account of motivational influences on perceptual 
judgments.  
 

Results 
Thirty participants were scanned using fMRI while they performed a categorization task with 
visually ambiguous images comprising a mixture of a face and a scene (Fig. 1A). For each 
image, participants were rewarded for correctly indicating which category was of higher 
intensity (i.e. “more face” or “more scene”). To motivate participants to see one category over 
another, we informed them that they would be performing the task with a teammate or an 
opponent. This other “player” would bet on whether the upcoming image would be one with 
more face or more scene. Participants were told that neither the teammate nor opponent had seen 
the upcoming image and their bets provided no informational value. Participants won a monetary 
bonus if the teammate’s bet was correct, and lost money if the teammate’s bet was wrong 
(Cooperation Condition). In contrast, participants lost money if the opponent’s bet was correct, 
and won a bonus if the opponent’s bet was wrong (Competition Condition). The Competition 
Condition allowed us to assess the effect of motivation above and beyond that of semantic 
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priming due to having seen the words “Face” and “Scene”. The outcome of each bet was 
determined by the objective face-scene proportion of the presented image, and not by 
participants’ subjective categorizations. To earn the most money, participants should ignore the 
bets and make their categorizations accurately (Fig. 1B).  
 

 
Figure 1. Experimental Design. A. Motivated Visual Categorization Task. Participants were presented 
with composite face/scene images. In the Cooperation Condition, a teammate first makes a bet on whether 
the face or scene will be of higher intensity (i.e. “more face” or “more scene”). Participants are then 
presented with the composite image, and have to categorize whether it comprises mostly face or mostly 
scene. They then rated how confident they were in their categorization. In the Competition Condition, an 
opponent makes the bet instead. Participants performed 2 blocks of each condition, each with 40 trials. 
All bets were pseudo-randomly generated such that both the teammate and the opponent made correct 
bets on 50% of the trials.  The order of the blocks was interleaved and counterbalanced across 
participants. B. Payoff structure. Participants won an extra 40 cents if the teammate’s bet was correct, but 
lost 40 cents if the teammate’s bet was wrong. Conversely, they lost 40 cents if the opponent’s bet was 
correct, but won 40 cents if the opponent’s bet was wrong. Participants earned 10 cents for each correct 
categorization. As the outcome of the bets was determined by the objective face-scene ratio of the 
presented image and not by participants’ subjective categorizations, the reward maximizing strategy was 
to ignore the bets and perform the categorizations accurately. 
 
 
Motivation biases visual categorization 
For each condition, we estimated the psychometric function describing the relationship between 
participants’ categorizations and the relative proportions of face and scene in an image. Not 
surprisingly, as the proportion of scene in an image increases, participants were more likely to 
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categorize the image as having more scene (b = 2.19, SE = 0.13, z = 16.9, p < 0.001; statistical 
significance was assessed using a generalized linear mixed effects model, see Methods). 

To examine the effect of motivation, we estimated separate psychometric functions 
depending on the teammate or opponent’s bet (Fig. 2A). In the Cooperation Condition, 
participants were more likely to report seeing more scene when the teammate bet on scene than 
when the teammate bet on face (b = 0.33, SE = 0.13, z = 2.52, p = 0.012). That is to say, 
participants were more likely to report seeing the category that the bet motivated them to see. 

The bias in participants' perceptual judgments could also be due to semantic priming. For 
example, when the teammate bet that the upcoming image would have more face, participants 
might be more likely to report seeing more face because they were semantically primed by 
having just seen the word “face”, and not because they were motivated to see more face. The 
Competition Condition allows us to directly test this competing account.  

In the Competition Condition, participants were motivated to see the category that was 
inconsistent with the opponent’s bet. For example, if the opponent bet that the upcoming image 
would have more scene, participants would be motivated to see more face. If the bias in 
participants’ judgments resulted from semantic priming, participants would instead be more 
likely to report seeing the category consistent with the opponent’s bet. Consistent with a 
motivational account, participants were less likely to categorize an image as having more scene 
when the opponent bet scene than when the opponent bet face (b = -0.47, SE = 0.11, z = -4.11, p 
= 0.012).  

To quantify the magnitude of a motivational bias across the two conditions, we computed 
the Condition x Bet interaction on participants’ categorizations. This interaction was highly 
significant (b = 0.81, SE = 0.24, z = 3.35, p < 0.001), such that participants were more likely to 
make categorizations consistent with the teammate’s bet and inconsistent with opponent’s bet. 
Taken together, these results indicate that participants’ categorizations were biased by what they 
were motivated to see. 

Although the majority of participants exhibited motivational bias, the degree of bias 
varied across individuals. We estimated each participant’s motivational bias by extracting the 
random slopes of the Condition x Bet interaction (Fig. 2B). Participants who exhibited stronger 
motivational bias also made fewer correct categorizations, indicating that the motivational bias 
impaired performance on the task and led to decreased earnings (robust regression: b = -0.31, SE 
= 0.09, F(1, 28) = 10.5, p = 0.003, Fig. 2C). All behavioral findings replicated in a separate 
group of 28 participants who performed the task without undergoing fMRI (Fig. S1). 

Across both conditions, reaction times were faster when participants categorized an 
image as the category they were motivated to see (Motivation Consistent trials) than when they 
categorized the image as the other category (Motivation Inconsistent trials; b = -0.05 SE = 0.02, 
t(27) = -2.80, p = 0.009; Fig. S2A). Participants were marginally less confident on Motivation 
Consistent trials than on Motivation Inconsistent trials (b = -0.08, SE = 0.04, t(28) = -2.04, p = 
0.051; Fig. S2B).  
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Figure 2. Motivation biases visual categorization. A. Participants were more likely to categorize the 
ambiguous image as what they wanted to see. Cooperation Condition: Participants’ psychometric 
function was shifted left when the teammate bet on more scene (blue) relative to when the teammate bet 
on more face (red), indicating that less scene evidence is needed to categorize an image as having more 
scene. Competition Condition: Participants’ psychometric function was shifted right when the opponent 
bet on more scene (blue) relative to when the opponent bet on more face (red), indicating that more scene 
evidence is needed to categorize an image as having more scene. Statistical significance was assessed 
using a generalized linear mixed-effects model (see Methods). Error bars indicate S.E.M. B. Magnitude of 
bias in each participant, defined as the random slope of the Bet x Condition interaction. We performed a 
median split and defined the participants with stronger motivational bias as “High Bias” participants, and 
participants with weaker motivational bias as “Low Bias” participants. C.  Participants with greater 
motivational bias performed worse on the task and received lower earnings. Statistical significance was 
assessed using a robust regression analysis that down-weights the influences of outliers. See Fig. S1 for 
replication with an independent group of participants. 
 
 
Motivation biases both starting point and drift rate 
Having established that participants’ categorizations were biased by what they wanted to see, we 
proceeded to examine how motivation biased the decision process. To this end, we fit a drift 
diffusion model (DDM) to participants’ choice and reaction time (RT) data. The DDM is a 
model of the cognitive processes involved in two-choice decisions9, and assumes that choice 
results from the accumulation of noisy sensory evidence towards one of two decision bounds. 
The starting point of the accumulation process is determined by a free parameter, z, and the 
decision boundary is determined by a free parameter, a. The rate of evidence accumulation is 
determined by the drift rate, v, which depends on the sensory information on each trial. In the 
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case of our task, an image with a high scene proportion would be associated with a highly 
positive v, while an image with a high face proportion would be associated with a highly 
negative v. When the accumulation process reaches one of the bounds (top boundary for scene, 
bottom boundary for face), a response is initiated. 

From a DDM perspective, our participants’ motivational bias could reflect either or both 
of two mechanisms (Fig. 3A). First, a shift in the starting point, z, could decrease the distance 
between the starting point and the decision bound of the motivationally consistent category. This 
reduces the amount of evidence needed to make the motivationally consistent response, thus 
creating a response bias. Second, a bias in the drift rate, v, could favor evidence accumulation in 
favor of the motivationally consistent category. This results in sensory evidence accumulating 
faster for the motivationally consistent category, thus creating a perceptual bias. 

To examine if either or both of these processes explained the bias observed in our task, 
we fit three different DDMs to participants’ data22 (see Methods): i. a model in which the starting 
point varied (z-model), ii. one in which the drift rate varied (v-model), iii. and one in which both 
the starting point and drift rate varied depending on the motivationally consistent category (z & v 
model). We compared the models based on the deviance information criterion (DIC23, a common 
metric of model comparison for hierarchical models that penalizes for model complexity, with 
lower values indicating better fit).  The z & v model provided the best fit to participants’ data 
(DIC: z & v: 10880; z: 10889; v: 10901), suggesting that motivation biased both the starting 
point and rate of information accumulation. 

Next, we examined how z and v were affected by motivation. We extracted the posterior 
distributions of z and v estimated by the z & v model, separately for trials in which participants 
were motivated to see more scene (zscene and vscene) and more face (zface and vface).  These 
distributions reflect our best guess for each parameter given participants’ data. As seen in Figure 
3B, the mean estimate of z was higher (i.e. closer to the scene boundary) when participants were 
motivated to see a scene, compared to a face (p = 0.013, statistical significance was assessed by 
comparing the posterior distribution of the difference between zscene and z face against 0; Fig. 3C). 
This indicates that motivation biased the starting point of evidence accumulation. Similarly, the 
mean estimate of v was higher (i.e. more biased towards scenes) when participants were 
motivated to see a scene, compared to a face (p < 0.001; Fig. 3D, 3E), indicating that evidence 
accumulation was also biased in favor of the motivationally consistent category. 

Interestingly, the estimates of v were positive regardless of which category participants 
were motivated to see (Fig. 3D), indicating that evidence accumulation was generally biased 
towards scenes. This scene bias was also evident in participants’ categorizations, such that an 
image with a 50:50 face-scene proportion was more likely to be judged as having more scene (M 
= 0.60, SE = 0.03, t(29) = 2.82, p = 0.008, Fig. S3). We discuss a potential explanation for this 
overall scene bias in Fig. S3. 
 Finally, the model also provides an account of why participants were faster when making 
motivation consistent categorizations (e.g., responding scene when motivated to see a scene, Fig. 
S2A). With both a biased starting point and drift rate, it takes less time for evidence 
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accumulation to reach the decision bound of the motivation consistent category. Figure S4 shows 
each participant’s reaction time distribution and the corresponding model predicted reaction 
times. 

 

 
Figure 3. Modeling Results. A. Schematic diagram of the drift diffusion model. t0  and t1: non-decision 
time related to stimulus encoding and response execution; a: decision boundary, z: starting point, v: drift 
rate. On each trial, choice depends on the accumulation of noisy sensory evidence towards one of two 
decision bounds. Motivation biases categorizations by modulating both the starting point and the drift 
rate. Blue: Motivated to see more scene; Red: Motivated to see more face. B. Posterior distribution of z 
estimated by the z & v model. z was higher when participants were motivated to see more scene than 
when participants were motivated to see more face. C. Posterior distribution of the bias in starting point. 
Dashed line indicates 0 (no bias) while the solid line indicates the 5th percentile of the distribution. More 
than 95% of the distribution was greater than 0, indicating the zscene was credibly higher than zface. D. 
Posterior distribution of v estimated by the z & v model. v was higher when participants were motivated to 
see more scene than when participants were motivated to see more face. E. Posterior distribution of the 
bias in drift rate. More than 95% of the distribution was greater than 0, indicating that vscene was credibly 
higher than vface. * p < 0.05; *** p < 0.001.  
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Motivation consistent categorizations are associated with activity in the salience network 
and dorsal attention network 
To identify the brain areas associated with motivational biases in perceptual judgments, we first 
performed a whole-brain contrast to identify voxels that responded differently on Motivation 
Consistent trials than on Motivation Inconsistent trials. This contrast revealed activations in two 
network of brain regions: i. the salience network, which includes the nucleus accumbens (NAcc), 
insula, dorsal anterior cingulate (dACC), and ii. the dorsal attention network, including the 
intraparietal sulcus (IPS) and frontal eye-fields (FEF) (Fig. 4, 
https://neurovault.org/collections/EAAXGDRJ/images/62743/) 
 

 
Figure 4. Neural correlates of motivational bias. Activity in the salience and dorsal attention networks 
was higher when participants made motivation consistent categorizations than when participants made 
motivation inconsistent categorizations. NAcc: nucleus accumbens, dACC: dorsal anterior cingulate 
cortex, IPS: intraparietal sulcus, FEF: Frontal eye fields.  Correction for multiple comparisons was 
performed using threshold-free-cluster-enhancement (TFCE) with an alpha of 0.0524. Shown in blue is a 
NAcc ROI defined using the Harvard-Oxford Cortical Structural Atlas.  
 
 
NAcc activity is associated with motivational bias across participants and trials 
Having identified candidate brain regions underlying participants’ motivational bias, we 
proceeded to examine the role of each brain region. Regions of interest (ROI) for the NAcc, 
insula, dACC, IPS and FEF were defined using publicly available atlases (see Fig. 4 for NAcc 
ROI). For each participant and each ROI, we extracted the average z-statistic from the 
Motivation Consistent > Motivation Inconsistent contrast. We took the average z-statistic as a 
measure of the extent to which a participant’s BOLD response is higher on Motivation 
Consistent trials than on Motivation Inconsistent trials.  
 Reproducing the results from the whole-brain contrast, NAcc response was higher on 
Motivation Consistent trials than on Motivation Inconsistent trials (t(29) = 2.10, p = 0.044). To 
explore the relationship between the NAcc response and biased categorizations, we performed a 
median split on participants based on the magnitude of their motivational bias, and separately 
examined the NAcc response in High Bias participants and Low Bias participants. While there 
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was a significant NAcc response in High Bias participants (t(14) = 2.86, p = 0.013), the NAcc 
response in Low Bias participants was not different from zero (t(14) = -0.17, p = 0.870). NAcc 
response on Motivation Consistent trials was greater for High Bias participants than Low Bias 
participants (t(28) = 2.46, p = 0.020, Fig. 5A). Notably, this result was not observed in the other 
ROIs (Fig. S5).   

We next examined this relationship at the single trial level. We used a mixed logistic 
regression model to predict whether participants would categorize an image as scene or a face, 
based on (1) the objective proportion of scene in an image, (2) the category participants were 
motivated to see, and (3) NAcc activity on that trial (Fig. 5B). For High Bias participants, we 
found a significant interaction between NAcc activity and the motivation consistent category 
(b = 0.28, SE = 0.13, z = 2.07, p = 0.039). Specifically, NAcc activity was more positively 
associated with categorizing an image as containing more scene when participants were 
motivated to see a scene, versus a face. The same interaction was not observed in Low Bias 
participants (b = -0.11, SE = 0.13, z = 0.933, p = 0.351). Similar results were also observed in the 
dACC, FEF and IPS (Fig. S5).  

Taken together, both group-level and within-participant level results suggest that greater 
activity in the NAcc was associated with a stronger motivational bias in behavior.  
 
NAcc response is associated with response bias  
We next sought to relate NAcc activity to response and perceptual biases more specifically. For 
each participant, we computed response bias as the difference between the model estimates of 
the starting point when the participant was motivated to see a scene and when the participant was 
motivated to see a face (zbias = zscene – zface, Fig. 3C). Similarly, we computed perceptual bias as 
the difference between the model estimates of the drift rate when the participant was motivated 
to see a scene and when the participant was motivated to see a face (vbias = vscene – vface, Fig. 3E). 
A linear regression analysis indicated the NAcc response was associated with participants’ 
response bias (β = 0.48, SE = 0.17, t(27) = 2.88, p = 0.008) but not their perceptual bias (β = 
0.09, SE = 0.17, t(27) = 0.54, p = 0.60,  Fig. 5C).  

NAcc activity can lead to a response bias by increasing the readiness to make a particular 
response. This account would predict that the increase in NAcc activity was preparatory in nature 
and would precede the onset of the image. To test this prediction, we examined the average 
activity in the NAcc as a trial unfolded, separately for trials on which participants made 
motivation consistent categorizations (Motivation Consistent trials) and for trials on which 
participants made motivation inconsistent categorizations (Motivation Inconsistent trials).  

For High Bias participants, the start of a trial (i.e. “Waiting for Teammate/Waiting for 
Opponent” screen) was associated with an increase in NAcc activity. NAcc activity remains 
elevated on Motivation Consistent trials, but not Motivation Inconsistent trials. In particular, a 
significant difference in the NAcc timecourses emerged prior to the image appearing on screen 
(Fig. 5D). For Low Bias participants, NAcc activity did not differ between Motivation Consistent 
and Motivation Inconsistent trials at any time-point (Fig. S6).   
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These results indicate that NAcc activation precedes image onset, and that sustained 
NAcc activation was associated with increased likelihood of making motivation consistent 
category judgments. They also provide evidence against the alternative account that NAcc 
activation reflects the reward participants experience upon seeing the category they were 
motivated to see. The NAcc activation preceded image onset, suggesting that, instead, NAcc 
activity predisposes participants to categorize an image as the category they were motivated to 
see.  

 

 
Figure 5. NAcc activity is associated with response bias A.  NAcc response to Motivation Consistent 
trials was higher in High Bias participants than Low Bias participants. B. Interaction between trial-by-
trial NAcc activity and motivation-consistent category on participant’s choice. Single dots denote 
individual choices made by participants. Colored lines indicate probability of making a scene 
categorization as predicted by a linear mixed effects model. For High Bias participants, NAcc activity 
was more positively associated with making a scene categorization when participants were motivated to 
see a scene (Blue line) than when participants were motivated to see a face (Red line). There was no 
relationship between NAcc activity and choice in Low Bias participants. C. Linear regression analysis 
predicting participants’ NAcc response from the model estimates of their starting point bias (zbias) and 
drift bias (vbias). The regression coefficient for zbias was significant but that for vbias was not. D. NAcc 
timecourse of High Bias participants time-locked to image onset, corrected for hemodynamic lag by 
shifting the BOLD data by 4 seconds. The trial starts with the “Waiting for Teammate/Opponent” screen 
at -6s. The teammate or opponent makes a bet at -4s, which remains on the screen for 4s. The image is 
presented at 0s and stays on screen for 4s. NAcc activity was significantly different between Motivation 
Consistent trials and Motivation Inconsistent trials from 2s before image onset until image offset. Solid 
lines: Motivation Consistent trials. Dashed lines: Motivation Inconsistent trials. *: p < 0.05, **: p < 0.01.  
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Face and scene selective neural activity is associated with perceptual bias  
 Face and scene selective activity in the ventral occipito-temporal cortex provided a proxy 
measure of participants’ perception. We thus examined whether motivation affected perception 
by assessing if the motivation to see faces or scenes modulated this activity. We applied 
multivariate pattern analysis to the BOLD data to quantify the level of face and scene selective 
activity on each trial. Specifically, we trained a logistic regression classifier to estimate the 
probability that participants were seeing a scene rather than a face based on the pattern of activity 
in the ventral occipito-temporal cortex (see Methods).  

As the proportion of scene in an image increased, the classifier predicted that the 
participants were seeing a scene with higher probability, indicating that the classifier tracked the 
amount of scene in the presented image (b = 0.121, SE = 0.005, t(4756) = 25.8, p = < 0.001). 
There was a significant Bet x Condition interaction on classifier probability, such that the 
classifier was more likely to predict that participants were seeing a scene when they were 
motivated to see a scene than when they were motivated to see a face (b = 0.04, SE = 0.02, 
t(4756) = 2.05, p = 0.040; Fig. S7), indicating that the motivation to see a category increased the 
level of sensory evidence for that category in the visual pathway. In other words, motivation not 
only biased participants’ categorization of an image, it also biased their neural representation of 
the image. 

Next, we examined how the bias in category-selective activity relates to the bias in 
participants’ categorical judgments. When we analyzed High and Low Bias participants 
separately, we found that motivation biased the classifier probability of High Bias participants 
(b = 0.07, SE = 0.03, t(2378) = 2.96, p = 0.003), but not Low Bias participants (b = -0.002, SE = 
0.03, t(2373) = -0.06, p = 0.953; Fig. 6A). We then extracted the random slopes of the Bet x 
Condition interaction on classifier probability to obtain a measure of the extent to which 
motivation biased face and scene selective activity in each participant. The bias in participant’s 
face and scene selective activity correlated strongly with their behavioral bias (r = 0.69, p < 
0.001, Fig. 6B). 

 We then sought to relate the bias in face and scene selective activity to response and 
perceptual biases more specifically. A linear regression analysis indicated the bias in face and 
scene selective activity was associated with participants’ perceptual bias (β = 0.47, SE = 0.16, 
t(27) = 2.98, p = 0.006), but not their response bias (β = 0.25, SE = 0.16, t(27) = 1.58, p = 0.127; 
Fig. 6C).  

Together with our earlier analyses on NAcc activity, these results suggest distinct neural 
contributions to participants’ biased categorizations. While the NAcc was associated with a 
response bias, the modulation of face and scene selective activity in visual areas was associated 
with a perceptual bias. By combining computational modeling with neuroimaging, we identified 
two dissociable neurocomputational components underlying motivational biases in perceptual 
judgments.  
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Figure 6. Motivation biases face and scene selective neural activity during visual categorization. A. 
Classifier probability that the presented image was a scene rather than a face based on the BOLD 
response in the ventral visual stream, separately for participants with high and low behavioral bias. Blue 
dots: teammate or opponent betting that the next image will be more scene; Red dots: teammate or 
opponent betting that the next image will be more face. For High Bias participants, scene probability was 
higher when participants were motivated to see a scene (i.e. teammate bets scene or opponent bets face) 
than when participants were motivated to see a face (i.e. teammate bets face or opponent bets scene). 
There was no effect of motivation in Low Bias participants. B. The effect of motivation on classifier 
probability (Neural Bias) was correlated with the extent to which a participant was biased in his or her 
categorizations (Motivational Bias). C. Regression coefficients of the response bias (βz) and perceptual 
bias (βv) when both were entered into the same model to predict participants’ neural bias. Only the 
perceptual bias was significantly associated with participants’ neural bias.  
 
 
Discussion 
This study combines computational modeling of behavior and fMRI to examine whether and 
why people exhibit biases towards seeing what they want to see. In a novel behavioral paradigm, 
we demonstrated that people indeed make biased perceptual judgments, more often labeling 
ambiguous images as corresponding to a reward-associated category.  This motivational bias was 
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maladaptive, in that participants who exhibited a stronger motivational bias earned less money in 
the experiment. Evidence from computational modeling suggests that the motivational bias could 
be attributed to both a response bias and a bias in perceptual processing. Each bias was 
associated with a distinct neural correlate. While the response bias was associated with 
anticipatory activity in the nucleus accumbens (NAcc), the bias in perceptual processing was 
associated with the modulation of category-selective neural activity in the ventral visual stream. 
These results provide evidence for two distinct contributions to motivational biases in perceptual 
judgments, and shed light on the neurocomputational mechanisms underlying each bias. 

The claim that perceptual processes are influenced by motivational factors can be traced 
back to the “New Look” movement in psychology, which argued that the perception of external 
stimuli is subject to the constant influence of a perceiver’s internal goals and states25,26. Recent 
evidence supporting this view includes studies demonstrating that perceptually ambiguous 
stimuli are more likely to be seen as the percept associated with favorable outcomes4,27, desirable 
objects are judged nearer than undesirable ones28, and desirable food items are judged as larger 
by dieters than non-dieters29. Whether these results reflect a bias in subjective reports or a bias in 
perception remains a topic of intense debate (see open peer commentary for 7). In particular, 
since these studies rely primarily on subjective reports, and participants often have an incentive 
to report seeing what they want to see, there is reason to suspect that subjective reports might not 
reflect one’s underlying perceptual experience.  

Our work advances this debate in several ways. Unlike earlier work that assesses whether 
motivation biases perception, we provide a neurocomputational account of how motivation 
biases perception. In both our modeling and neural analyses, we identify and quantify 
independent contributions of participants’ response and perceptual biases. We demonstrated that 
motivation biases perceptual judgments even when participants were incentivized to accurately 
report their perceptual experience. Instead of relying solely on participants’ subjective reports, 
we also measured participants’ neural representation of the presented stimulus. We quantified 
face and scene-selective activity in the ventral occipito-temporal cortex as a measure of 
participants’ perceptual experience18,20,21, and demonstrated that this activity was indeed biased 
by what participants were motivated to see.  

Participants’ response bias was associated with activity in the nucleus accumbens 
(NAcc). This is consistent with behavioral neuroscience work suggesting that dopaminergic 
projections to the NAcc biases animals towards responses associated with greater reward12,14. 
Both human neuroimaging and animal physiology studies have also shown that the NAcc is 
activated in anticipation of reward11,13. Our results suggest a functional role for this anticipatory 
activity. In particular, they suggest that the NAcc increases participants’ readiness to respond in a 
motivation consistent manner. When the motivation consistent response is aligned with task 
demands (e.g., pressing a lever for reward), this preparatory response facilitates faster responding 
for reward30. However, when the motivation consistent response conflicts with task demands, as 
was the case in our task, the preparatory response is maladaptive and impairs performance on the 
task (see also 31).  
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On the other hand, participants’ perceptual bias was associated with activity in areas 
involved in the neural representation of faces and scenes20. Perceptual judgments are thought to 
be computed by comparing the activity of neurons selective to different perceptual features17,18. 
Within this framework, the nervous system “reads out” the activity of face-selective and scene-
selective neurons as sensory evidence for faces and scenes respectively. A perceptual judgment 
can then be determined by comparing the activity of face-selective and scene-selective neurons. 
Our results indicate that motivation can bias this comparison by enhancing the activity of the 
neurons selective to the category participants were motivated to see. This enhancement could in 
turn reflect the biased processing of incoming sensory information, with the biasing signal 
originating from frontoparietal attention regions32. 

Indeed, we found that the intraparietal sulcus (IPS) and frontal eye fields (FEF) were 
more active when participants made motivationally consistent judgments. The IPS and FEF are 
part of the dorsal attention network associated with the top-down control of attention33,34. Their 
involvement in our task suggest that the bias in perceptual processing might be in part mediated 
by dynamic changes in the focus of attention35. In addition to the frontoparietal activations, the 
dorsal anterior cingulate cortex (dACC) and insula were also more active on Motivation 
Consistent trials. The dACC and insula are part of a salience network involved in the detection of 
motivationally salient stimuli36,37. In particular, the dACC has been recently implicated in 
determining what stimulus feature to attend to in a perceptual decision-making task38. The 
increased activity in the salience network on Motivation Consistent trials might be responsible 
for the selection of motivationally relevant features for enhanced processing. However, this 
interpretation is speculative, and future studies will be needed to clarify the role of each region in 
biasing perceptual judgments. 

At a broader level, this work provides a novel bridge between social psychology and 
cognitive neuroscience. Using tools and analytical techniques from cognitive neuroscience, we 
examine the neurocomputational mechanisms underlying an age-old phenomenon of interest in 
social psychology. In doing so, we offer a fresh perspective on a classic debate. Our results also 
add to the rich literature on perceptual decision-making in cognitive neuroscience, in particular 
by dissociating motivation from optimal task performance. Previous studies have examined the 
effects of asymmetric rewards on perceptual decision-making39–42. In these studies, correctly 
categorizing a stimulus as one category was associated with a larger reward. As the reward was 
contingent on participants’ responses, biasing responses towards the category associated with 
larger reward would result in greater cumulative reward over the course of the experiment. These 
studies generally find that participants exhibit a response bias towards the category associated 
with larger reward, which has been interpreted as an optimal shift in choice strategy to maximize 
reward on the task39,43.  

By contrast, in our task, the additional reward associated with the motivationally 
consistent category was independent of participants’ responses. For example, if the teammate bet 
that the next image would have more face, participants would receive the bonus if the upcoming 
image indeed had more face, regardless of how they responded on the trial. In this case, a bias 
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towards the motivationally consistent category would lower participants’ earnings by hurting 
their accuracy on the categorization task. Thus, the biases observed in our task cannot be 
explained by existing normative models of judgment and decision-making that assume 
organisms adjust their choice strategies to maximize expected reward. Instead, they highlight a 
motivational component to perceptual judgments – wanting an outcome to be true can impinge 
on one’s perceptual judgment, even when doing so could lead to lower rewards in the long run. 
Our results suggest that this bias reflects not only a response bias, but also a perceptual bias.  
 Desires and wants exert a powerful influence over how people make sense of the world. 
Recent studies have examined the neural mechanisms underlying motivational biases across a 
variety of human reasoning and evaluative processes44, including how the brain learns more from 
positive outcomes than negative ones45, forms overly positive evaluations about the self46, and 
generates unrealistically optimistic expectations about future events47. Here, we demonstrate that 
motivation biases human cognition as early as visual perception, and provide a 
neurocomputational account of this effect. The current work extends our understanding of 
motivational biases and provides a starting point to explore how motivation acts on different 
neural systems at different stages of information processing to influence human cognition.  
 
Methods 
Participants. Thirty-three participants were recruited from the Stanford community, and 
provided written, informed consent prior to the start of the study. All experimental procedures 
were approved by the Stanford Institutional Review Board. Participants were paid between $30-
$50 depending on their performance on the task. Data from three participants were discarded 
because of excessive head motion (> 3mm) during one or more scanning sessions, yielding an 
effective sample size of thirty participants (17 male, 13 female, ages 18-43, mean age = 22.3).  
 
Stimuli. For each participant, seven sets (one for the practice task and six for the experimental 
task) of composite stimuli were created. Each stimulus set consists of 40 grey-scale images, each 
comprising a mixture of a face image and a scene image in varying proportions (1 x 100% scene, 
3 x 65% scene, 5 x 60% scene, 7 x 55% scene, 8 x 50% scene, 7 x 45% scene, 5 x 40% scene, 3 
x 35% scene, 1 x 0% scene). Scene images comprised of half indoor scenes and half outdoor 
scenes, while face images comprised of half male faces and half female faces. All faces were 
frontal photographs posing a neutral expression, and were taken from the Chicago Face 
Database48. Stimuli were presented using MATLAB software (MathWorks) and the 
Psychophysics Toolbox49.  
 
Practice Task. Participants first performed 40 practice trials in which they were presented with 
composite Face/Scene images (see Stimuli). Each image was presented for four seconds, during 
which participants had to judge whether the image contained a greater proportion of face (“more 
face”) or a greater proportion of scene (“more scene”). Participants earned 10 cents for each 
correct categorization. They then indicated how confident they were in their classification on a 1 
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to 5 scale. If they did not respond within four seconds, the trial timed out and they would not 
earn a bonus on that trial. After a variable inter-trial interval (ITI, 2s-4s), they moved on to the 
next trial. We collected participants’ anatomical scans while they performed the practice task.  
 
Experimental Task. The experimental task consists of four fMRI runs, each approximately 8 
minutes long. Participants performed two runs of the Cooperation condition and two runs of the 
Competition condition (interleaved order, counterbalanced across participants, Fig. 1A). Each 
run consisted of 40 trials. In the Cooperation condition, participants were told that they would 
perform a visual categorization task with a teammate. At the start of each trial, their teammate 
would make a bet on the image type of the upcoming image (“more face” or “more scene”, 
presented for 4 seconds). Participants were then presented with a composite image created by 
averaging a face image and a scene image in different proportions (see Stimuli). If the 
teammate’s bet was correct, both the teammate and participants would earn 40 cents. If the 
teammate’s bet was wrong, both the teammate and participants would lose 40 cents.  

Participants then had four seconds to make a categorization on whether the image 
contained “more face” or “more scene” (see also Practice Task). Participants earned 10 cents for 
each correct categorization. They then indicated how confident they were in their classification 
on a 1 to 5 scale. If they did not respond within four seconds, the trial timed out and they would 
not earn a bonus on that trial (though the bet would still be implemented). After a variable ITI 
(2s-4s), they moved on to the next trial. In the Competition condition, participants performed the 
task with an opponent.  The trial structure was identical to the Cooperation condition, except that 
if the opponent’s bet was correct, the opponent would earn 40 cents while participants lose 40 
cents. If the opponent’s bet was wrong, the opponent loses 40 cents while participants earn 40 
cents. As such, participants were motivated to see the image type their teammate bet on, and to 
see the image type opposite of what their opponent bet on.  

Crucially, the outcome of the bets was contingent on whether the image objectively 
contained more face or more scene, and was not contingent on participants’ subjective 
categorization. Hence, the reward maximizing strategy was to ignore the bets and categorize the 
images as accurately as possible (Fig. 1B). Bets by both the teammate and the opponent were 
pseudo-randomized such that they were accurate on exactly 50% of the trials. As such, 
participants’ earnings in the experiment depended solely on their performance on the 
categorization task. We computed participants’ performance as the average number of correct 
categorizations. 
 
Localizer Task. To identify BOLD activation associated with viewing faces or scenes, we had 
participants perform a localizer task at the end of the experiment. Participants viewed 5 blocks of 
15 Faces and 5 blocks of 15 Scenes (blocks were interleaved, and order was counterbalanced 
across participants). In Face blocks, participants were sequentially presented with face images, 
and had to indicate whether each face was male or female. In Scene blocks, participants were 
sequentially presented with scene images, and had to indicate whether each scene was indoors or 
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outdoors. Each image was presented for 2 seconds, with a 2-second ITI. Participants took a self-
timed break between blocks. The localizer task was split into 2 scans.  
 
fMRI data acquisition and preprocessing. MRI data were collected using a 3T General 
Electric MRI scanner. Functional images were acquired in interleaved order using a T2*-
weighted echo planar imaging (EPI) pulse sequence (46 transverse slices, TR=2s, TE=25ms, flip 
angle=77°, voxel size 2.9 mm3). Anatomical images were acquired at the start of the session with 
a T1-weighted pulse sequence (TR = 7.2ms, TE = 2.8ms, flip angle=12°, voxel size 1 mm3). 
Image volumes were preprocessed using FSL/FEAT v.5.98 (FMRIB software library, FMRIB, 
Oxford, UK). Preprocessing included motion correction, slice-timing correction and removal of 
low-frequency drifts using a temporal high-pass filter (100ms cutoff). For multivoxel 
classification analyses, we trained and tested our classifier in each participant’s native space. For 
all other analyses, functional volumes were first registered to participants’ anatomical image 
(Boundary-Based Registration) and then to a template brain in Montreal Neurological Institute 
(MNI) space (affine transformation with 12 degrees of freedom). 
 
Psychometric functions. We modeled participants’ behavioral data using generalized linear 
mixed effects models (GLMM), which allows for the modeling of all of the data in one step 
rather than fitting a separate model for each participant50. The models included random intercepts 
and random slopes for the effects of Condition (Cooperation/Competition), Bet (Scene/Face) and 
Condition x Bet interaction to account for the random variability across participants. Models 
were estimated using the glmer function in the lme4 package in R51, with p-values computed 
from t-tests with Satterthwaite approximation for the degrees of freedom as implemented in the 
lmerTest package52. The estimates of the random slope of the interaction term reflected the extent 
to which each participant’s categorizations were biased by the motivation manipulation. We 
performed a median split on the magnitude of the random slopes to divide participants into those 
with a high motivational bias and those with a low motivational bias.  
 
Robust Regression Analysis. To examine the relationship between motivational bias and task 
performance, we fit a linear model by robust regression. Model fitting was performed using the 
rlm function from the “MASS” package in R. Robust regression is an alternative to linear 
regression that is less sensitive to outliers53. Statistical significance of the regression coefficient 
was assessed by performing a robust F test. 
 
Drift Diffusion Model. The drift diffusion model assumes that decisions are made by 
accumulating evidence over time until it crosses one of two decision bounds9 (Fig. 3A). The 
starting point and rate of evidence accumulation were determined by free parameters z and v 
respectively. As v depends on the amount of sensory evidence, we assumed a different v for each 
level of percentage scene. This value was then averaged across the different levels of percentage 
scene, weighted by the proportion of trials at each percentage scene, to compute an overall v. The 
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distance between the two boundaries depended on free parameter a, while time not related to 
decision process (e.g., stimulus encoding, motor response) was modeled by the free parameter t.  

Model parameters were estimated from participants’ categorizations and RT distributions 
using hierarchical Bayesian estimation as implemented by the HDDM toolbox22. Parameters for 
individual participants were assumed to be randomly drawn from a group-level distribution. In 
the fitting procedure, each participant’s parameters both contributed to and were constrained by 
the estimates of group-level parameters. Markov chain Monte Carlo (MCMC) sampling methods 
were used to estimate the joint posterior distribution of all model parameters (100,000 samples; 
burn-in = 10,000 samples; thinning = 2). We estimated both group-level parameters as well as 
parameters for each individual participants, which allowed us to examine biases in both the 
entire sample and in each individual participant. To account for outliers generated by a process 
other than that assumed by the model (e.g., lapses in attention, accidental button press), we 
estimated a mixture model where 5% of trials were assumed to be distributed according to a 
uniform distribution. 

In the z & v model, we fitted separate values for z and v depending on the category 
participants were motivated to see. The bias in starting point, or z bias, was computed as the 
difference in z when participants were motivated to see scene and when they were motivated to 
see face. The bias in drift rate, or v bias, was computed as the difference in v when participants 
were motivated to see scene and when they were motivated to see face. Bayesian hypothesis 
testing was used to assess if the estimate of z bias and v bias were credibly different from zero. 
For each parameter, we assessed if more than 95% of the probability mass of the group mean 
posterior was greater than 0 (Fig. 3C and E).  To examine if either of the biases were sufficient 
for explaining the data, we fit two additional comparison models in which only z (z model) or 
only v (v model) varied by motivation. We then compared the three models using deviance 
information criterion (DIC), which is a measure of model performance that appropriately 
penalizes for model complexity in hierarchical models23. 
 
GLM. We implemented a linear model (GLM 1) to contrast BOLD activity on Motivation 
Consistent trials and that on Motivation Inconsistent trials. A Motivation Consistent trial was 
defined as a trial on which participant categorized an image as the category they were motivated 
to see. This contrast would thus identify voxels in the brain which were significantly more active 
when participants reported seeing what they wanted to see, versus what they did not want to see. 
Stimulus onset, reaction time and head movement parameters were included as nuisance 
regressors. With the exception of head movement parameters, all regressors were convolved with 
a hemodynamic response function. The GLM was estimated throughout the whole brain using 
FSL/FEAT v.5.98 available as part of the FMRIB software library (FMRIB). Correction for 
multiple comparisons was performed using threshold free cluster enhancement (TFCE) with an 
alpha of 0.05, as implemented by the randomise tool in FSL52. 

We implemented a second linear model (GLM 2) in which the onset of each trial was 
modeled as a separate regressor. This model allowed us estimate a separate statistical map for 
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each trial (i.e. single trial activation patterns). We then used these maps for the trial-by-trial ROI 
analyses, and as inputs to the multivoxel pattern analyses (see below). As was the case in GLM 
1, reaction time and head movement parameters were included as nuisance regressors. 
 
Region of interest analyses. We defined independent regions of interest (ROI) from publicly 
available atlases. The nucleus accumbens and insula ROIs were defined using the Harvard-
Oxford subcortical structural atlas, while the dorsal anterior cingulate cortex (dACC), frontal-
eye-fields (FEF) and intraparietal sulcus (IPS) were taken from an atlas defined using resting-
state connectivity54. All ROIs can be downloaded from the following NeuroVault collection: 
https://neurovault.org/collections/EAAXGDRJ/. 

For each ROI, we extracted the average z-statistic of the Motivation Consistent > 
Motivation Inconsistent contrast (GLM 1). This average z-statistic reflects the extent to which an 
ROI is more reliably active on Motivation Consistent trials than on Motivation Inconsistent 
trials. To examine if the ROI response to Motivation Consistent trials depended on participants’ 
behavioral bias, we computed the average z-statistic separately for participants who exhibited 
high behavioral bias (i.e. above median) and for participants who exhibited a low behavioral bias 
(i.e. below median). We then assessed if the two means were significantly different from each 
other using a two-sample t-test (two-tailed).  

To examine the trial-by-trial relationship between ROI activity and participants’ 
categorizations, we extracted the mean z-statistic from the single trial activation maps (GLM2) 
for each ROI. We then fit a generalized linear mixed effects model to predict participants’ 
categorizations from mean ROI z-statistic, the motivation consistent category and the percentage 
scene in the image on each trial. The model included random intercepts and random slopes for 
each of the predictor variables to account for the random variability across participants, and was 
fitted separately for High Bias and Low Bias participants.  
 
Timecourse analyses. For each participant, we extracted and z-scored the mean timecourse in 
the NAcc ROI from each run. Each timecourse was shifted by 2 TRs (4 seconds) to correct for 
hemodynamic lag. We extracted the data from 8 seconds before stimulus onset to 8 seconds after 
stimulus onset to obtain the timecourse of a single trial, and computed the average timecourse of 
activity separately for Motivation Consistent trials and Motivation Inconsistent trials. At each 
time point, we assessed if activity was different between motivation consistent trials and 
motivation inconsistent trials using a two-tailed paired sample t-test. This analysis was done 
separately for High Bias and Low Bias participants.  
 
Multivoxel pattern analyses. Multivoxel pattern analyses were performed using tools available 
as part of the nilearn Python module55. An L1-regularized logistic regression model (C = 1) was 
trained on BOLD data from the localizer task to classify the image category participants were 
seeing on each localizer trial. Analysis was restricted to voxels in a ventral visual stream mask 
consisting of the bilateral occipital lobe and ventral temporal cortex. The ventral occipito-
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temporal regions of the brain are thought to be important in perceiving object categories such as 
faces and scenes20. The mask was created in MNI space using anatomical masks defined by the 
Harvard-Oxford Cortical Structural Atlas. The mask was then transformed into each participant’s 
native space using FSL’s FLIRT implementation, and classification was performed in 
participants’ native space.  

The trained model was then applied to the single trial activation patterns in the 
experimental task (GLM 2). On each trial, the classifier returned the probability that the 
participant was seeing a scene rather than a face based on activity in the ventral visual stream 
mask. We then modeled classifier probability on each trial using a linear mixed effects model 
with the percentage scene of an image, the task Condition (Cooperation/Competition), the 
teammate or opponent’s Bet (Face/Scene) and the interaction between Condition and Bet as 
predictor variables. The models included random intercepts and random slopes for each of the 
predictor variables to account for the random variability across participants. The estimate of the 
random slope of the interaction term of a participant reflected the extent to which classifier 
probability was biased by the motivation manipulation for that particular participant. This 
estimate was taken as a measure of neural bias, that is, the extent to which category-selective 
activity in the ventral visual stream for that particular participant was modulated by motivation.  
 
Relating model parameters to behavior and neural measures. We used linear regression to 
examine the relationship between model parameters and neural activity. We entered participant-
level estimates of the starting point bias (z bias) and the drift bias (v bias) as predictor variables 
in regression models. The first model was used to predict participants’ NAcc response to the 
Motivation Consistent – Motivation Inconsistent contrast (GLM 1), and assessed the extent to 
which each bias was associated with NAcc activity. The second model was used to predict 
participants’ neural bias, and assessed the extent to which each bias contributed to the 
modulation of category-selective activity in the ventral visual stream.  
 
Data and code availability. Behavioral data of both the reported experiment as well as the in-
lab replication are available at: https://github.com/ycleong/MotivatedPerception. Custom code 
for modeling and neuroimaging analyses are available at the same repository. Unthresholded p-
map of the Motivation Consistent – Motivation Inconsistent contrast is available at: 
https://neurovault.org/collections/EAAXGDRJ/images/62743/. Raw neuroimaging data available 
on request. 
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