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Abstract1

We developed pymfinder, a new software to analyze multiple aspects of the so-called network2

motifs—distinct n-node patterns of interaction—for any directed, undirected, unipartite or3

bipartite network. Unlike existing software for the study of network motifs, pymfinder4

allows the computation of node- and link-specific motif profiles as well as the analysis of5

weighted motifs. Beyond the overall characterization of networks, the tools presented in this6

work therefore allow for the comparison of the “roles” of either nodes or links of a network.7

Examples include the study of the roles of different species and/or their trophic/mutualistic8

interactions in ecological networks or the roles of specific proteins and/or their activa-9

tion/inhibition relationships in protein-protein interaction networks. Here, we show how10

to apply the main tools from pymfinder using a predator-prey interaction network from a11

marine food web. pymfinder is open source software that can be freely and anonymously12

downloaded from https://github.com/stoufferlab/pymfinder, distributed under the13

MIT License (2018).14
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Introduction15

The use of network theory has proven insightful in multiple fields, from the study of the16

spread of disease epidemics (1) to the characterization of neuronal networks (2). In ecology,17

this approach has been crucial to understanding the ways different species interact with18

each other, and the network perspective has justly become a central topic in community19

ecology (3). Over recent years, multiple methods for studying the topology of ecological20

networks have been successfully developed. Examples include models to generate realistic21

ecological communities (4) or tools for studying different network metrics such as com-22

partmentalization (5), nestedness (6) or intervality (7). Following these advances, one of23

the most versatile ways to understand the structure of complex ecological networks is via24

the so-called network motifs—i.e. the analysis of small subgraphs representing the distinct25

patterns of interaction involving any set of n species. These subgraphs have been referred26

to as the ‘building blocks’ of complex networks (8).27

The study of network motifs has been applied to multiple ecological systems over the28

recent years, including those composed of trophic (9) and mutualistic interactions (10).29

Non-ecological examples include in protein-protein interaction networks (11) and transcrip-30

tional regulation networks (12). There are typically two main approaches that are taken31

involving network motifs. First, counting the number of appearances of any given n-node32

pattern of interactions provides an overall perspective of the structure of a network. This33

has been done in different ecological studies, including the characterization of food webs34

(13), plant-pollination (14) and host-parasitoid networks (15). Second, other ecological35

studies have focused on the role of different species (16) and interactions (17), defining36

their position within the network based on which network motifs they form a part of.37

Following this work on network motifs, multiple tools for the counting of network mo-38

tifs have been developed over the last decades (18, 19, 20). Most of the methodological39

work has focused on providing tools to efficiently quantify the overall structure of directed40

and undirected unipartite networks—i.e. graphs consisting of one set of interacting nodes.41

Unfortunately, to our knowledge, we are still lacking general-purpose software to also an-42

alyze bipartite networks—i.e. graphs consisting of two interacting sets of non-overlapping43

nodes—as well as to quantify the node- and link-specific motif profiles in both unipartite44
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and bipartite networks. In addition, there is no tool to date that allows the user to include45

information regarding the interaction strengths of a network within the analysis of motifs.46

In response, we present pymfinder, software for motif analysis of network structure plus of47

the nodes and links of any type of network—i.e. directed/undirected, bipartite/unipartite,48

and weighted/binary networks.49

pymfinder is an open-source and versatile tool for the study of network motifs and the50

result of long-standing research involving the study of ecological networks. For example,51

pymfinder was used to shed light on the ecological mechanisms underlying food-web struc-52

ture (9), which, together with Bascompte 2005 (21) and Camacho et. al. (22), was one53

of the first studies to put network motifs into a purely ecological context. Building on54

these foundational studies, network motifs and pymfinder were shown to provide a useful55

way to characterize species’ roles, showing them to be evolutionary conserved across com-56

munities (16). Similarly, the roles of links involving parasite species were characterized57

through the study of network motifs, generating an understanding of how different types58

of feeding links are distributed within a food web (17). The same software has also been59

used to study bipartite networks. For instance, a study on host-parasitoid networks showed60

how species’ roles seem to be conserved over spatial scales as well as consistent over time61

(15). Perhaps more importantly, the software presented here has also been a central piece62

of very recent research. For example, the tools in pymfinder were used to relate species’63

roles to multiple ecological traits in five marine food webs, showing that feeding environ-64

ment is particularly strongly related to such roles (23). Likewise, the variability of species’65

roles in plant-pollinator communities in the Arctic has recently shown to be related to the66

variability in community composition (24). Finally, the description of species’ roles has67

also been key to comparing entire networks by means of aligning species to each other,68

resulting in the identification of common backbones shared across food webs form different69

ecosystems (25). Overall, the tools included in pymfinder are and have been instrumental70

to the development of a diverse set of projects over the years, and we believe that they71

have the potential to be valuable for many others. This article describes the main structure72

of pymfinder and showcases some of its principal applications using a detailed ecological73

dataset as the backdrop.74
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Design and implementation75

General description76

pymfinder is a Python library that combines Python methods for network-motif analysis.77

Some of the engine underneath is a modified version of mfinder—a software tool for network-78

motif detection developed by Kashtan et. al. (8, 18). Originally, mfinder was written in C79

and made available solely as an executable, and we use it within pymfinder for its underlying80

efficiency. The mfinder code has been both included and modified here with the explicit81

consent of Nadav Kashtan, the author of mfinder 1.2.82

As input, pymfinder accepts any type of network. That is, the analyses can be performed83

for both unipartite and bipartite networks. The format in which the networks are passed84

to the different functions of the package is either as text files, Python arrays or pymfinder-85

objects. Text files must describe the set of links comprising the networks, where each link86

appears as a separate line in the files. For example, a given line “A B w” would describe87

a single link A → B between nodes A and B, where w represents the strength or weight88

associated to such link (see Appendix). Similarly, Python arrays need to represent the list89

of interactions forming the networks. Notice that the direction of the links is important.90

Therefore, in bipartite networks, nodes of each group need to consistently be placed on91

the same side of the interactions—e.g. in a plant-pollinator networks the direction of the92

interactions in the input must all go from a plant to a pollinator (or vice-versa). Importantly,93

undirected networks can also be analyzed by pymfinder ; however, any links between two94

nodes A and B in such networks need to be characterized by the two parallel links A B and95

B A. The output of pymfinder, is a high-level data type (‘class’) that contains different96

descriptors of the motif composition of the network under study (see Appendix).97

Structure of the package98

At their core, all of the analyses performed by pymfinder are based around the identification99

of all the different n-node patterns of interaction found within a given network. To do this,100

pymfinder will always start by enumerating the unique motifs/subgraphs that make up the101
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overall structure of the network under study. This analysis can be performed for multiple102

motif sizes. This is especially important for bipartite networks, where three-node motifs are103

minimally informative and one needs to explore bigger motifs (15). Notice, however, that104

increasing the number of nodes can be computationally challenging for unipartite networks105

since the number of unique motifs quickly increases with their size—i.e. there are 13 unique106

three-node motifs, 199 unique four-node motifs and 9364 unique five-node motifs.107

For the sake of simplicity, we will focus most of the description of the methods presented108

here on the analysis of three-node network motifs. For any given network, this analysis is109

a three-step process. First, pymfinder loops through all the rows i of the adjacency matrix110

A associated with the network. For each non-zero element aij found in row Ai, it then111

searches for any connected element ajk = 1, akj = 1, aik = 1, and/or aki = 1, revealing the112

existence of any motif comprised of the nodes i, j, and k. If i, j and k define a motif and113

this motif has not already been identified, the corresponding motif and the position of each114

node within the motif is recorded.115

Based on this initial motif enumeration, pymfinder can perform three subsequent analyses:116

(i) the analysis of the overall network structure, (ii) the nodes and links’ participation in117

the different motifs, and (iii) the nodes and links’ role in each of the motifs.118

Motif structure119

The most basic application of pymfinder is the analysis of the overall motif structure of a120

given network. In particular, such analysis generates a description of the distribution of121

distinct n-node patterns of interaction found within the network (up to 8-node motifs). The122

application also includes the possibility of estimating the null motif composition expected123

for such network (see Appendix). To generate this null composition, pymfinder uses an124

MCMC algorithm to perform a randomization of the network while preserving the in-125

and out-degree of the nodes and each node’s number of single and double links (26, 27).126

Comparing the observed motif frequency to the random expectation, the application can127

be used to determine which interaction patterns are over- or under-represented relative to128

this null model (9). To do so, pymfinder calculates the mean and standard deviation of the129

null expectation as well as the z-scores for its comparison with the actual observations.130
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An additional feature of pymfinder is the possibility of incorporating information regard-131

ing the link strength into the analysis of the motif structure. This is notable in particular132

since there is no software available to explore the way the interaction strengths are dis-133

tributed within networks across motifs. To do so, pymfinder will account for each motif134

within a given weighted network as a function of the strength of the links forming them (Fig.135

1). Note that the algorithm allows the user to choose how the weight of a motif is defined.136

Specifically, given a motif formed by the set of links with strengths {l} = {l1, l2, ..., lL},137

pymfinder will calculate the weight of such motif as f({l}), where f is the function defined138

by the user. By default, pymfinder uses the arithmetic mean as the function f . Similar139

to unweighted networks, analysis of the motif structure of a weighted network returns the140

average and standard deviation of the weight of each motif, as well as the median and the141

first and third quartiles.142

Motif participation143

The study of network motifs can also be used as a way to classify nodes based on which144

patterns of interactions they are part of. For any given network, this application deter-145

mines the frequency of appearance of every node across each of the different motifs (Fig.146

1b), defining their participation across these distinct patterns of interactions. This a useful147

perspective for motif analysis because it provides a node-based description of the networks148

that can be used to understand the nature of specific nodes (e.g. different species in eco-149

logical networks or different proteins in protein-protein interaction networks) as well as150

decomposes the overall structure of the network at a finer resolution (21). Similarly, the151

same analysis can also be performed for the links forming the network. That is, pymfinder152

can quantify the frequency with which every link forms part of each distinct motif. As for153

the analysis of the overall structure of the networks, the motif participation of both nodes154

and links can also be calculated for any given motif size up to 8 nodes for weighted and155

unweighted networks. Again, pymfinder will account for each motif within a given weighted156

network as a function of the strength of the links forming it (Fig. 1), and the algorithm157

allows the user to choose this function just as described above for motif structure.158
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Motif-role profiles159

Within any given motif, nodes can play multiple roles. For example, in the two-node motif160

A → B, there are two distinct positions A and B, which define two different roles—e.g. a161

predator and a prey in a food web. In contrast, for the two-node motif A ↔ B, A and B162

occupy indistinguishable positions; therefore, there is a single distinct role. The same idea163

can be extended to all n-node motifs. For example, there are 30 distinct node positions and164

24 distinct link positions across the 13 unique three-nodes motifs. These distinct positions165

within the different motifs are important because the number of times that a node appears166

in each of them can be used as a way to define its structural role in a community (16).167

That is, we can characterize a node’s structural role based on the number of times that it168

occupies each distinct position of the n-node motifs. pymfinder provides a way to determine169

such n-node motif-role profiles for both the nodes (Fig. 1c) and the links (Fig. 1d) of a170

given network. Notice, however, that this function can only be run for two- and three-nodes171

motifs in unipartite networks, and two- to six-nodes motifs in bipartite networks.172

The analysis of node and link motif-role profiles can also incorporate information regard-173

ing the strengths of interactions between nodes. As before, consider a motif m formed by174

the set of nodes {i} and the set of links with strengths {l}. For any node j in {i}, pymfinder175

calculates the contribution cjm of motif m to any of the positions of j’s motif-role profile176

as:177

cjm =
f({lj})∑
i f({li})

f({l}) (1)

where {li} is the set of strengths of all links in m involving node i, and f is a function defined178

by the user. By default, pymfinder again uses the arithmetic mean as f for weighted motif-179

role profiles. Notice that the contribution cim = 1 when ignoring the weights, or f is the180

arithmetic mean and all weights are equal to the motif size. When analyzing the motif-role181

profile of a link k forming such motif, the contribution ckm is assumed to be exactly equal182

to its link strength lk.183
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Basic tests184

To ensure the reliable functioning of pymfinder, we included a set of basic tests in the185

package. All these basic tests are based around the idea of analyzing the structure of186

artificial networks containing only a single motif of each type for a given motif size—up187

to five-node motifs for bipartite networks and three-node motifs for unipartite networks.188

In addition, those networks are also set up so that any given node or link is only involved189

in a single motif and role. Using these single-motif networks, we tested the functions of190

pymfinder by ensuring that the analysis of such artificial networks does not result in the191

misrepresentation of any motif, node, link or role.192

Results/Discussion193

The tools provided by pymfinder can be used in a large variety of systems and do not194

depend on the nature or providence of the networks. To illustrate the capabilities and195

potential of the software, we outline the study of a food web from a marine ecosystem196

as a representative study system (28). This specific network describes the predator-prey197

interactions between approximately 250 of the species found across an extensive area of the198

Caribbean Sea.199

We first analyzed the overall three-species motif structure of the network and compared200

it to the random expectation (Fig. 2b). For this example, we used the z-score values to201

draw this comparison, which assume normality of the motif distribution. Notice, however,202

that pymfinder also returns the mean number of motif counts in the randomized networks,203

which allows for other types of statistical analyses. We found that the observed motif204

distribution is generally significantly different from the random expectation, showing either205

over- or under-representation relative to the results of the null model used here. This is206

evidence of a non-random organization of ecological communities (21, 29), which speaks to207

the eco-evolutionary mechanisms shaping the ways in which different species interact with208

each other. We then studied the distribution of link weights across motifs to test whether or209

not different motifs are generally made of different interaction strengths. For this particular210

example, we log-transformed the link weights to be approximately normally distributed as211
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well as scaled them so that the weakest and strongest links had a weight of zero and one,212

respectively. In general, we found that interaction strengths are distributed in a similar213

manner across the different motifs of the network under study (Fig. 2c). Notice that these214

results are subject to the logarithmic transformation applied to the weight data, which is215

generally very skewed (28).216

Following the analysis of the overall motif structure, we examined the motif participation217

of the different nodes and links that make up this food web. We found that some nodes218

(e.g., sea cucumbers and algae) share almost identical motif-participation profiles while219

others (e.g., filefish and sea cucumbers) have very distinct profiles (Fig. 3a). This shows220

how motifs can be a valuable and insightful way to classify and compare the species across221

communities. Perhaps more importantly, we observed how the information regarding the222

interaction strengths forming the motifs changed those motif-participation profiles (Fig.223

3b). Therefore, adding interaction strengths allowed us to distinguish between the roles224

of species with similar unweighted profiles. This is important because it suggests that,225

from a node-specific perspective, interaction strengths are not equally distributed across226

motifs. The uneven distribution of interaction strengths has important implications for the227

relationship between network structure and species–interaction strengths and the stability228

of food webs(30, 31). We also looked at the motif-participation profiles of the links (Fig.229

3c). We found that those profiles could also be an indicator of the observed differences on230

the way interaction strengths are distributed across motifs, as suggested by previous work231

(17).232

Finally, we studied the motif-role profiles of the species of the marine network. This233

analysis is similar to the motif participation analysis of nodes and links; however, it provides234

a finer resolution to the role that different species or links might play in the community.235

Using the proportion of times that the different species are in each of the 30 unique positions236

of the three-species network motifs, we performed an analysis of multivariate homogeneity of237

group dispersions to compare the roles of the species in the network (32). To do this, we first238

calculated the euclidean distance between the roles of every pair of species in the network,239

generating a dissimilarity matrix of all species. We then performed a basic clustering240

analysis of the species-role dissimilarity matrix to find the most distinct groups of roles (Fig.241
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4). Finally, we used the function betadisper from the R package vegan (33) to perform the242

Principal Coordinates Analysis (PCoA) of the data. We found four characteristic groups of243

species presenting very distinct motif-role profiles. Notice that the same analysis can also be244

done for the motif-role profile of every link in the network. This is useful because it shows245

the diversity of structural roles in this community and underlines how those profiles could246

be used to compare species, links or networks within and across ecosystems, environments247

and biomes (34, 25).248

Availability and Future Directions249

pymfinder is open source software that can be freely and anonymously downloaded from250

https://github.com/stoufferlab/pymfinder. The documentation of the package is at-251

tached as supplementary material and the data used to test the software can be found252

within the github repository. pymfinder has been tested to run on any platform that253

supports Python. pymfinder will require you to have the Python modules Numpy and Se-254

tuptools installed in your machine. Data used to present the software has been previously255

published by Bascompte et. al. (28). We are currently working on additional software that256

uses the weighted motif-role profiles of nodes to efficiently align bipartite networks multiple257

times.258
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and null models: analyzing bipartite ecological networks. The Open Ecology Journal,283

2(1), 2009.284

[11] Esti Yeger-Lotem, Shmuel Sattath, Nadav Kashtan, Shalev Itzkovitz, Ron Milo, Ron Y285

Pinter, Uri Alon, and Hanah Margalit. Network motifs in integrated cellular networks286

of transcription–regulation and protein–protein interaction. Proceedings of the National287

Academy of Sciences of the United States of America, 101(16):5934–5939, 2004.288

[12] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs in the289

transcriptional regulation network of escherichia coli. Nature genetics, 31(1):64, 2002.290

[13] Janis Klaise and Samuel Johnson. The origin of motif families in food webs. Scientific291

Reports, 7(1):16197, 2017.292
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Figure 1: Main components of network-motif analysis. (a) A simple network that could
represent a simple ecological community—where nodes would characterize species and the
arrows would indicate the interactions between them—-or a protein-protein interaction
network—where nodes would represent different proteins and the arrows indicate either
activation or inhibition. (b) All three-node motifs found in the network from (a); from this
classification, we can compute the overall network structure and the number appearances of
every node in each motif. (c) The characterization of every node’s motif-role profile. This
characterization is based on the number of appearances of every node in each of the unique
motif node-positions. (d) The characterization of every link’s motif-role profile, which is
based on the number of appearances of every link in each of the unique motif link-positions.
Notice that we excluded any motif or role that was not represented in the network.
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Figure 2: Analysis of the overall motif structure of the marine food web under study. The
first panel (a) shows all the possible three-species motif structures. In this case, any arrow
indicates the direction of energy flow from a prey to its predator. The second panel (b)
presents the z-scores obtained from comparison between the empirical motif frequency and
the random expectation. The dotted lines indicate the thresholds for significant over- and
under-representation (z = 1.97 and z = −1.97, respectively). The third panel (c) shows the
median weight found for each motif. The error bars represent the first and third quartiles.
Note that the motif id given on the x-axis corresponds to the indexing in (a), and that the
interaction strengths have been transformed to approximately be normally distributed and
strictly positive.
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Figure 3: Analysis of the species’ motif participation in the marine food web under study.
The first panel (a) shows the motif-participation profiles of three representative species
from the web; here, every point describes the proportion of times that these species are
found in any of the possible motifs. For simplicity, we excluded the seven motifs in which
these species never appear. The second panel (b) presents the motif-role profiles for the
same three species when adding information regarding the interaction strengths. In this
case, every point represents the relative weight associated with the motifs in which each
species participates. The third panel (c) shows the motif-participation profiles for the links
involving the same three species.
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Figure 4: Principal coordinate analysis of the dissimilarity matrix containing the pairwise
distances between all nodes’ motif-role profiles in the marine food web under study. Every
point represents a different species and each color corresponds to a group characterizing
a distinct role. The species in the legend are those corresponding to the medoids of each
group. The ellipses are the one-standard-deviation ellipses about the group medians.
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