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 46	
Abstract 47	
	48	
Environmental	change	can	lead	decision	makers	to	shift	rapidly	among	different	49	
behavioral	regimes.	These	behavioral	shifts	can	be	accompanied	by	rapid	changes	in	50	
the	firing	pattern	of	neural	networks.	However,	it	is	unknown	what	the	populations	51	
of	neurons	that	participate	in	such	"network	reset"	phenomena	are	representing.	52	
Here	we	examined	1)	whether	and	where	rapid	changes	in	multivariate	activity	53	
patterns	are	observable	with	fMRI	during	periods	of	rapid	behavioral	change,	and	2)	54	
what	types	of	representations	give	rise	to	these	phenomena.	We	did	so	by	55	
examining	fluctuations	in	multi-voxel	patterns	of	BOLD	activity	from	human	56	
subjects	making	sequential	inferences	about	the	state	of	a	partially	observable	and	57	
discontinuously	changing	variable.	We	found	that,	within	the	context	of	this	58	
sequential	inference	task,	the	multivariate	patterns	of	activity	in	a	number	of	59	
cortical	regions	contain	representations	that	change	more	rapidly	during	periods	of	60	
uncertainty	following	a	change	in	behavioral	context.	In	motor	cortex,	this	61	
phenomenon	was	indicative	of	discontinuous	change	in	behavioral	outputs,	whereas	62	
in	visual	regions	the	same	basic	phenomenon	was	evoked	by	tracking	of	salient	63	
environmental	changes.	In	most	other	cortical	regions,	including	dorsolateral	64	
prefrontal	and	anterior	cingulate	cortex,	the	phenomenon	was	most	consistent	with	65	
directly	encoding	the	degree	of	uncertainty.	However,	in	a	few	other	regions,	66	
including	orbitofrontal	cortex,	the	phenomenon	was	best	explained	by	67	
representations	of	a	shifting	context	that	evolve	more	rapidly	during	periods	of	68	
rapid	learning.	These	representations	may	provide	a	dynamic	substrate	for	learning	69	
that	facilitates	rapid	disengagement	from	learned	responses	during	periods	of	70	
change.		71	
	72	
Introduction	73	
	74	

Neural	populations	in	rodent	prefrontal	cortex	can	undergo	abrupt	changes	75	
in	firing	concomitant	with	changes	in	performance	in	rule-based	tasks		(Durstewitz	76	
et	al.,	2010;	Powell	and	Redish,	2016).	Similar	phenomena	have	been	observed	in	77	
the	multi-voxel	patterns	in	human	fMRI	data	preceding	changes	in	task	strategy,	78	
leading	to	the	notion	that	such	changes	might	correspond	to	an	“aha	moment”	at	79	
which	the	brain	reorganizes	to	produce	a	new	task	set	(Schuck	et	al.,	2015).	In	80	
rodent	learning	tasks	that	involve	discontinuously	changing	reward	contingencies,	81	
abrupt	changes	in	firing	of	neurons	in	medial	frontal	cortex	are	observed	more	82	
frequently	during	periods	of	uncertainty,	during	which	animals	appear	to	be	83	
searching	for	the	best	behavioral	policy	(Karlsson	et	al.,	2012).	It	is	unclear	to	what	84	
extent	such	phenomena	are	specific	to	medial	frontal	populations,	or	to	what	extent	85	
they	might	have	an	analog	in	human	learning.	Furthermore,	while	these	“network	86	
resets”	during	periods	of	uncertainty	are	thought	to	play	a	role	in	behavioral	87	
flexibility	in	changing	environments	(Tervo	et	al.,	2014)	the	exact	computational	88	
role	of	abrupt	changes	in	such	neural	representations	remains	unknown.		89	
	 A	number	of	different	computational	factors	could	explain	previously	90	
observed	network	reset	phenomena.	First,	and	most	simply,	such	abrupt	changes	91	
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would	be	expected	in	a	neural	representation	of	the	current	behavioral	policy,	92	
which	in	some	cases	may	be	directly	related	to	the	motor	program.	Successful	93	
execution	of	learning	requires	maintenance	and	updating	of	a	behavioral	policy,	94	
which	would	tend	to	change	more	rapidly	during	periods	of	uncertainty.		95	
	 Alternatively,	reset	phenomena	might	result	from	representation	of	higher-96	
order	computational	variables	used	to	appropriately	calibrate	the	rate	of	learning.	97	
Recent	work	has	highlighted	a	number	of	computational	variables	that	are	98	
important	for	successful	learning	in	the	presence	of	discontinuous	environmental	99	
changes	(change	points).	In	particular,	humans	tend	to	increase	rates	of	learning	100	
according	to	the	probability	with	which	a	given	outcome	reflects	a	change	point	in	101	
the	behavioral	contingency	(change-point	probability)	and	according	to	the	relative	102	
imprecision	of	their	estimate	of	the	current	contingency	(relative	uncertainty)	103	
(Nassar	et	al.,	2010;	2012).	These	computational	variables	both	increase	following	104	
change-points,	albeit	with	different	dynamics,	to	mediate	rapid	incorporation	of	105	
new	information	during	and	after	periods	of	environmental	change.	Change-point	106	
probability	and	relative	uncertainty	correlate	with	BOLD	responses	across	a	wide	107	
swath	of	brain	regions	including	some	that	jointly	reflect	both	variables	and	some	108	
that	uniquely	reflect	either	change-point	probability	or	uncertainty	(McGuire	et	al.,	109	
2014).	In	principle,	neural	representations	of	either	computational	factor	might	110	
involve	patterns	of	activation	that	mimic	“network	reset”	phenomena,	yet	this	111	
possibility	has	never	been	tested	directly.		112	
	 Another	signal	that	might	give	rise	to	reset-like	dynamics	is	a	continuously	113	
evolving	latent	state	representation.	Latent	states,	which	represent	the	relevant	114	
behavioral	context	in	cases	where	it	is	not	directly	observable,	can	improve	learning	115	
in	the	face	of	abstract	stimulus	categories	or	repeated	episodes	by	efficiently	116	
partitioning	learning	across	distinct	behaviorally	relevant	contexts	(Gershman	and	117	
Niv,	2010).	While	previous	work	has	focused	primarily	on	the	advantage	of	such	118	
representations	for	rapid	reinstatement	of	previously	learned	behaviors	(Gershman	119	
et	al.,	2010;	Wilson	et	al.,	2014),	another	advantage	of	such	representations	is	that	120	
they	could	facilitate	rapid	disengagement	from	established	behaviors	that	are	no	121	
longer	relevant.	By	appropriately	partitioning	data	collected	over	time	in	a	changing	122	
environment,	such	a	mechanism	could	aid	learning	even	if	previously	encountered	123	
environmental	states	to	not	recur.	To	accomplish	this,	such	a	latent	state	124	
representation	would	need	to	evolve	faster	after	a	period	of	environmental	change	125	
in	order	to	effectively	disengage	from	the	previous	behavioral	context	(Prescott	126	
Adams	and	MacKay,	2007;	Wilson	et	al.,	2010).	While	previous	work	has	suggested	127	
that	orbitofrontal	cortex	(OFC)	might	represent	latent	task	states	(Wilson	et	al.,	128	
2014;	Schuck	et	al.,	2016),	it	is	unclear	whether	such	representations	transition	129	
dynamically	during	periods	of	rapid	learning	as	would	be	necessary	to	efficiently	130	
mediate	disengagement	of	learned	responses	that	are	rendered	irrelevant	by	131	
environmental	change.		132	
	 Here	we	examined	whether	and	where	uncertainty-linked	network	resets	are	133	
observable	in	human	fMRI	data,	and	evaluated	the	most	likely	computational	134	
explanation	for	these	phenomena	in	individual	brain	regions.	We	did	so	using	a	135	
multistep	approach.	First,	we	identified	signals	that	change	rapidly	from	trial	to	trial	136	
during	periods	of	uncertainty	and	rapid	learning	and	potentially	correspond	to	137	
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network	resets	(Karlsson	et	al.,	2012).	Second,	we	generalized	this	notion	of	138	
representational	change	across	pairs	of	non-consecutive	trials	using	139	
representational	similarity	analysis	(RSA)	(Nili	et	al.,	2014).	Third,	we	formalized	a	140	
set	of	candidate	computational	explanations	for	network-reset	phenomena	and	141	
allowed	these	explanations	to	compete	to	explain	multivariate	brain	activity	(Kragel	142	
et	al.,	2018).		143	
	 We	observed	rapid	changes	in	multivariate	activity	patterns	across	144	
widespread	cortical	regions	during	periods	of	uncertainty	and	rapid	learning.	Using	145	
RSA,	we	showed	that	patterns	in	motor	regions	were	best	described	as	reflecting	146	
behavioral	policy,	patterns	of	activation	in	occipital	regions	were	best	described	as	147	
registering	the	occurrence	of	change-points,	and	patterns	across	much	of	the	rest	of	148	
the	cortex	appeared	to	reflect	uncertainty.	However,	patterns	of	activation	in	a	small	149	
number	of	regions	including	OFC	were	most	consistent	with	dynamic	latent	state	150	
representations,	suggesting	a	possible	role	for	the	OFC	in	translating	learning	151	
signals	into	state	changes	that	effectively	disengage	from	behaviors	learned	in	152	
contexts	that	are	no	longer	relevant.			153	
	154	
	155	
Results	156	
	 To	examine	how	neural	signals	change	during	periods	of	uncertainty	we	re-157	
analyzed	data	from	a	previously	published	study	that	included	recordings	of	fMRI	158	
BOLD	signal	and	behavioral	responses	of	human	participants	in	a	predictive	159	
inference	task	(McGuire	et	al.,	2014).	Participants	played	a	video	game	in	which	they	160	
tried	to	get	as	many	coins	as	possible	(redeemable	for	money)	by	catching	bags	of	161	
coins	dropped	from	a	hidden	helicopter	in	the	sky.	Thus,	on	each	task	trial,	162	
participants	estimated	the	state	of	an	unobservable	variable	(the	position	of	a	163	
helicopter)	based	on	the	history	of	an	observable	variable	(the	position	of	bags	164	
dropped	from	that	helicopter)	(McGuire	et	al.,	2014).	The	task	included	abrupt	165	
change	points	at	which	the	position	of	the	helicopter	was	resampled	from	a	uniform	166	
distribution,	which	forced	participants	to	rapidly	revise	beliefs	about	the	helicopter	167	
location	in	order	to	maintain	successful	task	performance.	Here	we	refer	to	periods	168	
of	consistent	helicopter	position	as	contexts	(Fig	1a),	such	that	the	task	could	be	169	
described	as	requiring	dynamic	belief	updating	both	within	(Fig	1a;	vertical)	and	170	
across	(Fig	1a;	horizontal)	contexts.		171	
	172	
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	173	
Figure	1:	Trialwise	neural	dissimilarity	is	increased	after	change-points	during	periods	of	174	
rapid	learning	for	multiple	brain	regions.	A)	Participants	were	asked	to	move	a	bucket	(pink	175	
rectangle)	on	each	trial	to	the	location	most	likely	to	deliver	a	reward	(in	the	form	of	a	bag	containing	176	
coins).	On	each	trial	(stacked	vertically)	the	participant	would	observe	an	outcome	(bag	location;	177	
gray	circle)	that	they	could	use	to	update	their	bucket	placement	for	the	subsequent	trial	(orange	178	
arrow).	Most	contiguous	trials	were	generated	from	the	same	context,	which	was	defined	by	a	fixed	179	
outcome	distribution,	however	at	occasional	change	points,	the	context	(mean	outcome	location)	180	
shifted	abruptly	and	unpredictably.	B)	An	example	sequence	of	outcomes	(gray	circles)	and	181	
corresponding	participant	bucket	placements	(pink	line)	is	plotted	across	trials.	Participant	bucket	182	
placements	were	well	described	by	a	normative	learning	model	(green	line)	that	adjusts	learning	rate	183	
according	to	change-point	probability	and	relative	uncertainty,	which	(C)	are	updated	according	to	184	
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the	model	on	each	trial	and	evolve	over	time.	D)	Trial-wise	measures	of	neural	dissimilarity	were	185	
computed	on	each	trial	as	one	minus	the	correlation	coefficient	between	contiguous	trial	activations	186	
within	a	searchlight	and	regressed	onto	learning	rates	from	the	normative	learning	model	to	identify	187	
brain	regions	with	BOLD	activations	that	evolved	more	rapidly	during	periods	of	rapid	learning.	E)	A	188	
diverse	array	of	brain	regions	including	occipital	regions,	dorsomedial	prefrontal	cortex,	189	
orbitofrontal	cortex,	and	temporal	regions	displayed	neural	changes	that	were	positively	related	to	190	
learning	(green	clusters).	All	images	are	thresholded	at	p	=	0.001	uncorrected.		191	
	192	
	193	
	 As	we	described	in	our	previous	report,	adjustments	in	the	rate	at	which	194	
participants	revised	beliefs	in	response	to	new	information	were	well	described	by	a	195	
normative	learning	model	that	adjusted	learning	according	to	two	computational	196	
variables:	change-point	probability	and	relative	uncertainty	(Fig	1b,	compare	pink	197	
and	green	lines;	(McGuire	et	al.,	2014;	Nassar	et	al.,	2016)).	Change-point	198	
probability	reflects	the	Bayesian	posterior	probability	that	the	helicopter	has	199	
relocated	on	the	current	trial,	and	is	largest	on	trials	with	large	spatial	prediction	200	
errors	(Fig	1c,	blue	line).	Relative	uncertainty	captures	the	degree	to	which	201	
uncertainty	about	the	true	helicopter	location	should	drive	learning,	is	greatest	on	202	
the	trial	after	a	spike	in	change-point	probability,	and	decays	as	a	function	of	trials	203	
thereafter	(Fig	1c,	yellow	line).	Both	of	these	factors	affect	the	sensitivity	of	ongoing	204	
beliefs	to	new	information	(e.g.,	bag	locations),	which	can	be	expressed	in	terms	of	a	205	
dynamic	learning	rate	(Fig	1c,	green).	We	sought	to	identify	relationships	between	206	
the	sensitivity	of	behavior	to	incoming	information	(i.e.,	learning	rate)	and	the	207	
sensitivity	of	neural	representations	to	the	same	information.		208	

The	trial-to-trial	dissimilarity	in	multivariate	voxel	activation	patterns	was	209	
related	to	the	dynamic	learning	rates	prescribed	by	the	normative	model	(Fig	1d).	210	
Trial	wise	neural	dissimilarity	was	computed	for	each	pair	of	sequentially	adjacent	211	
trials	using	a	whole	brain	searchlight	procedure	and	regressed	onto	an	explanatory	212	
matrix	that	included	model-based	estimates	of	dynamic	learning	rates.	A	213	
constellation	of	regions	showed	patterns	of	activation	that	changed	more	rapidly	214	
during	periods	of	rapid	learning	after	change	points	(Fig	1e).	These	regions	included	215	
OFC,	but	also	clusters	in	dorsomedial	frontal	cortex	(DMFC),	occipital	cortex,	and	the	216	
temporal	lobe.	Thus,	with	a	simple	measure	of	representational	change,	we	217	
identified	neural	signals	whose	representations	updated	more	rapidly	during	218	
periods	of	learning	in	multiple	brain	regions	(cf.	(Karlsson	et	al.,	2012)).		219	

We	next	exploited	representational	similarity	analysis	(RSA)	to	extend	and	220	
generalize	the	analysis	above	by	incorporating	information	about	the	pairwise	221	
dissimilarity	for	all	pairs	of	trials,	not	merely	adjacent	trial	pairs.	We	hypothesized	222	
that	the	dissimilarity	in	neural	representation	for	any	pair	of	trials	would	depend	on	223	
the	cumulative	amount	of	learning	expected	to	occur	between	them	under	the	224	
normative	model	(see	Methods).	The	hypothesized	pattern	of	dissimilarity	across	225	
trials	is	equivalent	to	what	we	would	expect	from	a	latent	state	representation	that	226	
shifted	rapidly	at	abrupt	context	transitions	and	concomitant	periods	of	rapid	227	
learning,	but	remained	relatively	stable	in	periods	when	the	statistics	of	the	228	
environment	were	stationary	(Fig	2a).	The	pattern	of	dissimilarities	predicted	229	
across	adjacent	trials	using	this	strategy	is	exactly	equivalent	to	the	learning	rates	230	
that	served	as	the	explanatory	variable	in	the	previous	analysis	(Fig	2b),	but	this	231	
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generalization	also	makes	predictions	about	the	pattern	of	dissimilarities	that	would	232	
be	observed	across	non-adjacent	trials	(Fig	2c).	We	used	a	searchlight	to	identify	233	
brain	regions	in	which	the	neural	dissimilarity	matrix	was	positively	associated	with	234	
this	hypothetical	“shifting	state	representation”	hypothesis	matrix	while	controlling	235	
for	fixed	autocorrelation	in	the	similarity	structure	(see	Methods).	A	significant	236	
association	was	observed	in	a	set	of	regions	that	overlapped	with	the	results	from	237	
the	trial-wise	dissimilarity	analysis,	including	clusters	in	OFC,	DMFC,	occipital,	and	238	
temporal	regions	(Fig	2d).	As	might	be	expected	by	the	increased	power	owing	to	239	
the	non-adjacent	trial	comparisons	afforded	by	RSA	analysis,	we	also	identified	240	
additional	regions	that	were	not	clearly	indicated	by	our	previous	analysis	including	241	
a	number	of	visual	regions,	left	motor	cortex,	and	bilateral	hippocampus	(Fig	2d).		242	
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	243	
	244	
		245	
Figure	2:	Representational	similarity	analysis	reveals	additional	brain	regions	with	246	
representations	that	evolve	more	rapidly	during	periods	of	learning.	A)	In	principle,	rapid	247	
changes	in	neural	representation	coincident	with	learning	might	reflect	a	dynamic	state	248	
representation	that	transitions	rapidly	at	changes	in	context	(see	Fig	1a)	and	evolves	more	slowly	as	249	
subjects	develop	accurate	representations	of	the	context.	B)	This	would	lead	to	greater	trialwise	250	
dissimilarity	immediately	after	change	points	in	task	context	(blue	line	indicates	simulated	trialwise	251	
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dissimilarity,	red	dashed	lines	indicate	change	points),	but	also	to	(C)	unique	patterns	of	dissimilarity	252	
across	non-adjacent	trials.	D)	A	searchlight	representational	similarity	analysis	to	identify	such	253	
patterns	revealed	a	constellation	of	regions	(red)	that	overlapped	substantially	with	that	identified	in	254	
the	trialwise	similarity	analysis	(orange;	conjunction	depicted	in	yellow),	and	also	included	255	
additional	regions	such	as	left	motor	cortex,	visual	cortex,	and	hippocampus.	All	images	are	256	
thresholded	at	p	=	0.001	uncorrected.		257	

	258	
	 We	next	sought	to	arbitrate	among	multiple	possible	causes	for	the	varying	259	
rates	of	representational	change.	The	rapid	evolution	of	neural	representations	after	260	
change	points	might	reflect	different	underlying	computations	in	different	brain	261	
regions.	Our	analysis	focused	on	four	candidate	computations	that	could	all	262	
theoretically	drive	network	reset-like	phenomena.		263	
	 First,	we	considered	the	possibility	that	a	brain	region	might	reflect	the	264	
behavioral	policy	of	the	participant.	In	our	experimental	task,	the	behavioral	policy	265	
was	reported	directly	by	positioning	a	bucket	at	the	predicted	location	(using	a	266	
joystick)	on	each	trial.	For	a	given	helicopter	position,	participants	tended	to	place	267	
the	bucket	in	a	similar	location,	but	changes	in	helicopter	location	corresponded	to	268	
large	changes	in	the	bucket	placement,	which	would	correspond	to	abrupt	269	
transitions	in	a	representation	of	behavioral	policy	after	change	points	(Fig	3a).	270	
Occasionally,	a	new	helicopter	position	was	similar	to	one	that	had	previously	been	271	
encountered,	such	that	a	similar	behavioral	policy	might	be	employed	in	two	272	
temporally	separated	contexts	(Fig	3a;	contexts	1&3).		273	
	 A	second	possible	explanation	for	rapid	representational	change	after	change	274	
points	is	that	the	representations	could	reflect	the	current	level	of	change-point	275	
probability	or	relative	uncertainty.	Change-point	probability	changes	most	276	
dramatically	at	a	change	in	the	context	(Fig	1c),	leading	to	predicted	trialwise	neural	277	
dissimilarity	time	courses	that	do	the	same	(Fig	3b).	The	level	of	relative	uncertainty	278	
changes	most	rapidly	immediately	after	change-points	(Figure	1c),	and	a	neural	279	
representation	of	relative	uncertainty	should	do	the	same	(Fig	3c).	However,	either	280	
of	these	representations	should	return	to	a	fixed	pattern	for	all	epochs	across	the	281	
experimental	session	that	share	the	same	level	of	change-point	probability	or	282	
relative	uncertainty,	irrespective	of	the	current	helicopter	position	(Fig	3b-c).		283	
	284	
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Figure	3:	Dissociable	explanations	for	task-driven	changes	in	trialwise	dissimilarity.	Left:	290	
Context	changes	could	affect	different	sorts	of	representations	that	are	thought	to	be	involved	in	task	291	
performance.	A	change	in	context	could	elicit	a	large	representational	change	(arrows)	in	the	292	
behavioral	policy	(A),	an	internal	assessment	of	change-point	probability	(B),	the	current	level	of	293	
relative	uncertainty	(C),	or	a	latent	state	that	shifts	in	proportion	to	learning	(D).	Middle:	Each	of	294	
these	representations	would	predict	increased	trialwise	dissimilarity	after	change	points	(top,	red	295	
dotted	lines	indicate	change	points).	However,	dissimilarity	matrices	constructed	across	all	trials	296	
(adjacent	and	non-adjacent)	reveal	unique	representational	profiles	for	each	source	of	change-point	297	
related	dissimilarity	(bottom).	Right:	Patterns	of	voxel	activations	across	trials	revealed	an	298	
anatomical	dissociation	between	representations	of	behavioral	policy	(A;	left	motor	cortex),	change-299	
point	probability	(B;	occipital	cortex),	relative	uncertainty	(C;	widespread),	and	shifting	latent	states	300	
(D;	orbitofrontal	cortex).	301	
	302	
	 A	final	computational	explanation	for	rapid	representational	changes	after	303	
change	points	is	that	such	a	signal	may	reflect	a	latent	state	that	is	used	to	partition	304	
learning	across	distinct	contexts	(Wilson	et	al.,	2014).	For	example,	each	new	305	
helicopter	position	could	be	reasonably	thought	of	as	a	new	temporal	context,	306	
during	which	learning	from	prior	contexts	should	be	discounted	to	minimize	307	
interference	(Fig	1a).	Since	the	helicopter	position	cannot	be	resolved	exactly,	such	308	
a	context	representation	would	be	expected	to	evolve	over	time	in	proportion	to	the	309	
rate	of	learning	about	the	current	context.	As	described	in	Figure	2,	this	would	lead	310	
to	latent	state	representations	that	change	rapidly	at	change	points	and	immediately	311	
afterwards	and	change	only	minimally	during	periods	of	prolonged	stability	(Fig	312	
3d).	Unlike	the	other	computational	factors	discussed	above,	a	latent	state	313	
representation	would	not	necessarily	exhibit	any	systematic	similarity	relation	314	
between	one	context	and	another	–	as	our	task	did	not	include	situations	in	which	315	
the	helicopter	returned	exactly	to	a	previously	occupied	position.	Such	a	latent	state	316	
signal	might	provide	an	evolving	substrate	to	which	outcomes	could	be	linked	in	317	
order	to	achieve	rational	adjustments	of	learning.	318	
	 Each	of	these	representations	would	yield	more	rapid	changes	in	neural	319	
patterns	after	change	points	in	our	task,	and	indeed,	they	make	very	similar	320	
predictions	for	how	neural	dissimilarity	metrics	between	adjacent	trials	should	321	
evolve	over	time	(Fig	3	middle	column,	top	plots).	Predictions	of	trial-to-trial	322	
dissimilarity	made	for	the	four	candidate	computations	were	highly	correlated	(all	323	
average	pairwise	Pearson	correlations	[r]	were	greater	than	0.45,	with	predictions	324	
for	shifting	latent	representations	particularly	highly	correlated	with	those	for	325	
relative	uncertainty	[r	=	0.80]	and	behavioral	policy	[r	=	0.74]),	suggesting	that	the	326	
representations	of	these	computations	could	not	be	distinguished	based	on	327	
adjacent-trial	dissimilarity	alone.		328	

However,	the	four	candidate	representations	differed	drastically	in	their	329	
predictions	about	the	dissimilarity	for	non-adjacent	pairs	of	trials.	We	constructed	330	
hypothesis	matrices	for	each	candidate	representation	by	considering	the	expected	331	
difference	in	the	computation	of	interest	across	all	possible	pairs	of	trials.	These	332	
hypothesis	matrices	highlight	qualitative	features	of	each	candidate	computation;	333	
behavioral	policy	frequently	undergoes	abrupt	shifts	but	often	takes	on	a	similar	334	
value	to	a	previous	state,	change-point	probability	highlights	differences	between	335	
change	point	and	non-change	point	trials,	relative	uncertainty	highlights	the	336	
differences	between	high	relative	uncertainty	and	other	trials,	and	shifting	latent	337	
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states	capture	differences	largely	near	the	diagonal	(Fig	3,	middle	column,	bottom).	338	
Consistent	with	these	qualitative	differences,	correlations	between	the	hypothesis	339	
matrices	for	the	different	candidate	representations	were	relatively	low	(all	340	
pairwise	r	<	0.16),	suggesting	that	the	candidate	representations	could	be	efficiently	341	
distinguished	when	considering	the	entire	pairwise	dissimilarity	matrix.		342	
	 We	exploited	these	distinct	predictions	using	a	representational	similarity	343	
analysis	approach	that	allowed	alternative	explanations	of	representational	change	344	
to	compete	to	explain	the	observed	neural	dissimilarity	matrix.	Neural	dissimilarity	345	
was	computed	for	each	pair	of	trials	as	one	minus	the	spatial	correlation	of	trial-346	
activations	across	voxels	in	a	searchlight	and	regressed	onto	an	explanatory	matrix	347	
that	included	the	hypothesis	matrices	for	all	four	candidate	representations,	along	348	
with	a	number	of	other	explanatory	terms	designed	to	account	for	factors	changing	349	
throughout	the	task	and	simple	sources	of	variability	such	as	autocorrelation	(see	350	
Methods).		351	
	 Representational	similarity	analysis	supported	distinct	explanations	for	352	
representational	change	in	different	anatomical	regions.	Behavioral	policy	provided	353	
a	good	description	of	BOLD	activity	patterns	in	left	motor	cortex	(contralateral	to	354	
the	hand	used	to	move	the	joystick	and	execute	the	behavioral	policy)	and	visual	355	
cortex	(Figure	3a,	right;	Table	1).	Representations	of	change-point	probability	were	356	
prominent	in	occipital	cortex	and	precuneus	(Figure	3b;	Table	1).	Representations	357	
of	relative	uncertainty	were	widespread	across	the	brain	and	included	DMFC,	358	
dorsolateral	prefrontal	cortex,	bilateral	parietal	cortices,	insula,	as	well	as	some	359	
occipital	and	temporal	regions	(Figure	3c,	right).	Patterns	of	activation	consistent	360	
with	a	latent	state	that	shifts	according	to	assessment	of	the	current	context	were	361	
prominent	in	OFC	and	temporal	cortex	(Fig	3d,	right;	Table	1).		362	
	 The	relationship	between	the	neural	dissimilarity	in	OFC	and	the	363	
dissimilarity	structure	predicted	by	a	shifting	latent	state	signal	was	robust	to	364	
specific	analysis	choices.	Patterns	of	activation	in	right	and	left	OFC	clusters	were	365	
positively	related	to	shifting	latent	state	predictions	in	the	context	of	our	366	
representational	similarity	regression	analysis	when	using	alternative	pre-367	
processing	strategies	such	as	omitting	smoothing	(Table	2)	or	including	a	spatial	368	
pre-whitening	procedure	(Table	3),	both	of	which	emphasize	the	high	frequency	369	
components	of	the	spatial	pattern	(Walther	et	al.,	2016).	The	observed	effects	were	370	
not	driven	by	relationships	between	additional	explanatory	variables	included	in	371	
the	regression	model,	as	exclusion	of	other	explanatory	variables	yielded	very	372	
similar	relationships	(Table	4).	It	is	noteworthy	that	this	was	not	true	of	all	clusters	373	
that	survived	whole-brain	correction	in	our	representational	similarity	regression	374	
analysis;	clusters	identified	in	left	superior	parietal	lobule	and	right	occipital	cortex	375	
were	not	related	to	the	shifting	latent	state	predictions	in	isolation	(Table	4).	376	
Furthermore,	the	relationship	between	shifting	latent	state	predictions	and	OFC	377	
patterns	of	activation	was	also	robust	to	our	assumptions	about	the	exact	timing	of	378	
learning;	a	time	shifted	version	of	the	shifting	latent	state	hypothesis	matrix	that	379	
assumed	learning	occurred	immediately	upon	observing	a	trial	outcome	could	also	380	
describe	similarity	patterns	observed	in	right	and	left	OFC	(Table	5).		381	

In	summary,	while	we	found	a	number	of	regions	that	showed	rapidly	382	
changing	representations	during	periods	of	uncertainty	following	a	context	change,	383	
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these	reset-like	phenomena	were	due	to	dissociable	computational	explanations.	384	
While	a	few	regions	were	implicated	in	representing	behavioral	policy	or	change-385	
point	probability,	most	of	these	regions	reflected	relative	uncertainty,	and	a	smaller	386	
subset	of	regions	including	OFC	were	consistent	with	representing	a	latent	state	that	387	
is	adjusted	according	to	changes	in	context.	388	

	389	
Discussion	390	
	391	
Neural	representations	in	rodent	medial	frontal	cortex	rapidly	change	during	392	
periods	of	uncertainty	(Karlsson	et	al.,	2012).	Here	we	demonstrate,	in	the	context	393	
of	a	dynamic	learning	task,	that	such	rapid	representational	changes	are	present	in	394	
the	BOLD	signal	in	widespread	cortical	and	subcortical	regions.	Furthermore,	we	395	
showed	that	these	rapid	representational	changes	are	consistent	with	several	396	
different	computational	explanations,	which	could	be	teased	apart	by	considering	397	
the	similarity	structure	of	non-adjacent	trials	through	representational	similarity	398	
analysis.		399	

Our	analyses	revealed	distinct	explanations	for	rapid	representational	400	
changes	in	different	brain	regions.	Focal	representations	of	behavioral	policy	and	401	
change-point	probability	were	identified	in	motor	and	visual	cortex	respectively,	402	
while	widespread	representations	of	relative	uncertainty	were	observed	throughout	403	
the	brain.	In	addition,	a	small	number	of	brain	areas	including	the	OFC	had	patterns	404	
of	activation	consistent	with	a	form	of	shifting	latent	state	representation	that	could	405	
speed	disengagement	from	well-learned	responses	in	a	changing	context.	406	

Perhaps	most	straightforwardly,	our	analysis	revealed	that	left	motor	cortex	407	
contained	representations	consistent	with	behavioral	policy.	In	our	task,	this	policy	408	
was	completely	concordant	with	the	physical	movement	necessary	to	implement	409	
the	behavioral	policy.	Thus,	we	interpret	these	results	as	a	consequence	of	our	410	
experimental	design,	which	required	subjects	to	provide	an	analog	behavioral	411	
output	of	their	behavioral	policy	with	their	right	hand	on	each	task	trial.		Thus,	this	412	
result	was	likely	driven,	at	least	in	part,	by	a	univariate	effect	of	movement	413	
magnitude	in	the	contralateral	motor	cortex.				414	
	 Two	other	computations	that	we	identified	using	this	approach,	change-point	415	
probability	and	relative	uncertainty,	had	been	the	focus	of	a	previous	paper	using	416	
this	same	dataset	(McGuire	et	al.,	2014).	In	the	case	of	change-point	probability,	417	
both	univariate	and	RSA	analyses	revealed	occipital	cortex	and	precuneus	as	the	418	
locus	of	neural	representation	(see	Figure	2c	and	(McGuire	et	al.,	2014)).	However,	419	
relative	uncertainty	representations	identified	using	RSA	were	considerably	more	420	
widespread	than	those	identified	through	univariate	activations	(see	Figure	2c	and	421	
(McGuire	et	al.,	2014)).	This	broader	set	of	areas	included	some	regions	that	were	422	
activated	in	the	univariate	analysis	(e.g.,	DMFC),	some	that	were	deactivated	in	the	423	
univariate	analysis	(e.g.,	ventromedial	prefrontal	cortex),	and	some	that	were	not	424	
identified	in	univariate	analyses	at	all	(e.g.,	temporal	cortex).	The	near-ubiquitous	425	
cortical	representation	of	relative	uncertainty	revealed	by	RSA	is	somewhat	426	
analogous	to	the	widespread	representations	of	reward	prediction	errors	that	have	427	
been	identified	using	multivariate	fMRI	analysis	methods	(Vickery	et	al.,	2011).	428	
Interestingly,	both	reward	prediction	errors	and	relative	uncertainty	have	been	429	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2018. ; https://doi.org/10.1101/364638doi: bioRxiv preprint 

https://doi.org/10.1101/364638
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

suggested	to	be	signaled	through	brainstem	neuromodulatory	systems	that	could	430	
potentially	have	widespread	effects	throughout	the	brain	(Schultz,	1997;	Yu	and	431	
Dayan,	2005;	Doya,	2008;	Nassar	et	al.,	2012).		432	
	 In	addition	to	providing	a	more	sensitive	tool	to	identify	well-specified	433	
computational	variables,	RSA	also	allowed	us	to	look	for	patterns	of	activity	that	434	
could	not	easily	be	detected	in	univariate	analyses.	In	particular,	it	allowed	us	to	435	
look	for	neural	representations	of	a	dynamically	shifting	state	representation,	436	
without	making	strong	assumptions	about	what	the	signal	would	look	like	at	any	437	
given	moment.	It	has	been	proposed	that	state	representations	provided	by	the	OFC	438	
might	serve	to	hasten	learning	in	environments	that	include	a	small	number	of	439	
repeated	contexts	(Gershman	and	Niv,	2010;	Wilson	et	al.,	2014;	Schuck	et	al.,	440	
2016).	Here	we	hypothesized	that	shifts	in	the	same	state	representations	might	441	
implement	the	rapid	learning	that	should	and	does	follow	change-points	in	outcome	442	
contingencies	(Prescott	Adams	and	MacKay,	2007;	Nassar	et	al.,	2010;	Wilson	et	al.,	443	
2010).	Such	an	implementation	could	make	use	of	existing	computational	elements	444	
to	efficiently	partition	learned	associations	that	pertain	to	distinct	and	unrelated	445	
contexts,	effectively	creating	the	product	partitions	necessary	for	optimal	inference	446	
amid	change-points	(Prescott	Adams	and	MacKay,	2007).	447	
	 In	line	with	this	idea,	we	identified	signals	in	orbitofrontal	cortex	consistent	448	
with	a	shifting	state	signal	that	changed	more	rapidly	during	periods	of	learning.	A	449	
neural	population	that	encoded	such	a	signal	would	be	well	positioned	to	transform	450	
a	direct	representation	of	dynamic	learning	rate,	such	as	have	been	identified	in	451	
cortical	regions	(Behrens	et	al.,	2007;	Krugel	et	al.,	2009;	McGuire	et	al.,	2014)	and	452	
thought	to	be	broadcast	through	noradrenergic	neuromodulation	(Yu	and	Dayan,	453	
2005;	Nassar	et	al.,	2012;	Browning	et	al.,	2015),	into	a	proportional	change	in	454	
associative	strength.	Using	a	learning	signal	to	control	the	rate	of	contextual	shift	455	
could	enable	a	simple	associative	neural	network	to	accomplish	the	type	of	adaptive	456	
learning	that	has	previously	been	modeled	as	a	delta-rule	update	with	a	varying	457	
learning	rate.	In	such	a	case,	increases	in	apparent	learning	would	be	implemented	458	
through	changes	in	the	substrate	for	learning,	or	the	active	latent	state,	rather	than	459	
by	adjusting	associative	strength	per	se.		460	
	 Representations	of	latent	state	that	transition	dynamically	from	one	context	461	
to	the	next	are	similar	in	spirit	to	the	concept	of	event	segmentation	in	episodic	462	
memory	(Ezzyat	and	Davachi,	2010).	Segmenting	events	is	useful	in	that	it	can	allow	463	
memories	that	are	embedded	within	the	same	event	but	separated	in	time	to	share	464	
associations,	while	memories	that	may	be	closer	in	time	but	embedded	in	separate	465	
events	are	maintained	separately,	preventing	interference	(Reynolds	et	al.,	2007).	466	
One	mechanism	through	which	segmentation	could	be	achieved	involves	dynamic	467	
adjustment	of	the	time-constant	in	slowly	fluctuating	temporal	context	signals	to	468	
effectively	“reset”	context	at	event	boundaries	(Howard	and	Kahana,	2002;	Howard	469	
et	al.,	2010;	Manning	et	al.,	2011).	Our	data	suggest	a	link	between	this	aspect	of	470	
episodic	encoding	and	the	dynamic	adjustments	of	learning	that	have	been	observed	471	
at	context	boundaries	(Behrens	et	al.,	2007;	Nassar	et	al.,	2010;	McGuire	et	al.,	472	
2014).	However,	aspects	of	our	findings	also	raise	questions	about	the	extent	of	this	473	
link.	While	our	results	could	be	interpreted	as	supporting	roles	for	OFC	and	474	
temporal	lobe	in	segmenting	contexts,	we	did	not	observe	the	same	phenomenon	in	475	
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the	hippocampus,	which	is	thought	to	play	a	key	role	in	event	segmentation	(Ezzyat	476	
and	Davachi,	2014;	Hsieh	et	al.,	2014;	Shapiro,	2014).	Instead,	we	found	that	477	
representations	in	hippocampus,	like	many	other	brain	regions,	were	best	explained	478	
as	representing	uncertainty	itself.	One	potentially	relevant	detail	is	that	previous	479	
contexts	were	not	systematically	re-visited	in	our	task,	reducing	demands	for	480	
episodic	retrieval.	An	interesting	avenue	for	future	work	would	be	to	examine	how	481	
the	representations	we	identified	respond	when	the	context	abruptly	returns	to	a	482	
previously	encountered	state,	such	as	might	require	a	form	of	mental	time	travel	for	483	
successful	performance	(Manning	et	al.,	2011).		484	

Our	results,	especially	regarding	the	OFC,	demonstrate	the	utility	of	485	
analyzing	the	representational	similarity	of	multi-voxel	patterns	of	activity	in	486	
concert	with	computational	modeling.	Such	an	approach	allowed	us	to	identify	487	
neural	representations	consistent	with	a	specific	computational	role	for	OFC,	which	488	
in	principle	could	not	have	been	isolated	in	our	task	with	univariate	activation	or	489	
multivariate	classification	analyses.	490	
	 In	summary,	we	show	that	shifts	in	the	statistics	of	the	environment	during	a	491	
dynamic	learning	task	induced	both	elevated	learning	and	changes	in	neural	492	
representation.	These	changes	in	neural	representation	were	attributed	to	specific	493	
computations	using	RSA.	Our	results	identified	widespread	representations	of	494	
relative	uncertainty	throughout	the	brain,	together	with	more	focal	representations	495	
of	change-point	probability	and	behavioral	policy.	In	addition,	a	small	number	of	496	
brain	areas	including	the	OFC	had	patterns	of	activation	consistent	with	a	shifting	497	
latent	state	representation	that	could	speed	unlearning	of	irrelevant	information	in	498	
a	changing	context.		499	
	500	
	501	
Methods	502	
	503	
	504	
Behavioral	task	and	analysis	505	
	506	
For	details	of	the	behavioral	task	and	data	analysis,	see	our	previous	report	507	
(McGuire	et	al.,	2014).		Briefly,	32	human	subjects	performed	a	computerized	508	
predictive	inference	task	in	an	MRI	scanner	while	undergoing	functional	509	
neuroimaging.	Each	trial	required	the	subject	to	move	a	bucket	across	the	horizontal	510	
axis	of	a	screen	(starting	from	a	"home	position"	at	the	right-hand	edge,	using	a	511	
joystick	controlled	by	the	right	hand)	to	a	location	that	they	believed	most	likely	to	512	
be	underneath	a	helicopter	that	was	occluded	by	clouds	and	thus	not	directly	513	
observable.	On	each	trial,	the	helicopter	would	drop	a	bag	that	contained	either	high	514	
value	or	neutral	items.	Bag	locations	were	normally	distributed	and	centered	on	the	515	
helicopter	location	(incentivizing	bucket	placement	under	the	inferred	helicopter	516	
location).	On	the	majority	of	trials	(90%)	the	helicopter	would	remain	in	the	same	517	
location	as	in	the	previous	trial,	but	occasionally	(10%)	the	helicopter	would	518	
relocate	to	a	new	position	along	the	horizontal	axis	of	the	screen	(selected	randomly	519	
and	uniformly).		520	
	521	
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MRI	data	acquisition	and	preprocessing	522	
	 T1-weighted	MPRAGE	structural	images	(0.9375	X	0.9375	X	1mm	voxels,	192	523	
X	256	matrix,	160	axial	slices,	TI=1100ms,	TR=1630ms,	TE=3.11ms,	flip	angle=15°),		524	
T2*-weighted	EPI	functional	data	(3mm	isotropic	voxels,	64	X	64	matrix,	42	axial	525	
slices	tilted	30°	from	the	AC-PC	plane,	TR=2500ms,	TE=25ms,	flip	angle=75°),	and	526	
fieldmap	images	(TR=1000ms,	TE=2.69	and	5.27ms,	flip	angle=60°)	were	acquired	527	
on	a	3T	Siemens	Trio	with	a	32	channel	head	coil.	Functional	data	were	acquired	in	528	
4	runs,	each	of	which	lasted	9	minutes	and	25	seconds	(226	images).		529	
	 Data	were	preprocessed	using	AFNI	(Cox,	1996;	2012)	and	FSL	(Jenkinson	et	530	
al.,	2002;	Smith	et	al.,	2004;	Jenkinson	et	al.,	2012)	in	the	following	steps:	1)	slice	531	
timing	correction	(AFNI’s	3dTshift),	2)	motion	correction	(FSL’s	MCFLIRT),	3)	532	
fieldmap-based	geometric	undistortion,	alignment	with	structural	images,	and	533	
registration	to	the	MNI	template	(FSL’s	FLIRT	and	FNIRT),	4)	spatial	smoothing	with	534	
a	6mm	FWHM	Gaussian	kernel	(FSL’s	fslmaths),	5)	outlier	attenuation	(AFNI’s	535	
3dDespike),	and	intensity-scaling	by	a	single	grand-mean	value	in	each	run	(FSL’s	536	
fslmaths).	The	resulting	functional	time	series	was	deconvolved	to	estimate	trial	537	
activations	at	the	time	of	the	bag	drop	using	the	least	squares-separate	method	538	
(Mumford	et	al.,	2012)	implemented	in	Matlab.	539	
	 	540	
Multivariate	fMRI	analysis	541	

Multivariate	analyses	were	conducted	in	spherical	searchlights	(radius	=	3	542	
voxels)	across	the	entire	brain.	Within	each	searchlight,	the	neural	dissimilarity	543	
between	each	pair	of	trials	was	computed	as	one	minus	the	spatial	Pearson	544	
correlation	between	the	voxel-wise	activations	for	those	trials.		545	

Trial-to-trial	dissimilarity	scores	were	extracted	by	extracting	the	i=j-1	546	
diagonal	elements	from	the	dissimilarity	matrix,	which	corresponded	to	the	547	
dissimilarity	between	adjacent	trials	(see	Figure	1d).	The	dissimilarity	scores	were	548	
regressed	onto	an	explanatory	matrix	containing	an	intercept,	and	dynamic	learning	549	
rates	prescribed	by	a	normative	learning	model,	yielding	one	coefficient	of	interest	550	
per	subject,	per	searchlight.	Dynamic	learning	rates	were	estimated	as	the	sum	of	551	
change-point	probability	and	relative	uncertainty	minus	their	product	(see	Figure	552	
1c;	(Nassar	et	al.,	2016)).	These	latent	variables	were	estimated	with	a	parameter-553	
free	normative	model	that	took	subject	prediction	errors	as	an	input	according	to	554	
the	following	set	of	recursive	equations:		555	

	556	
𝜎!! =  Ω!𝜎!! + 1− Ω! 𝜎!!𝜏! + Ω! 1− Ω! (𝛿!(1− 𝜏!))!	

	557	

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  𝜏!!! =  
𝜎!!

𝜎!!+𝜎!!
	

	558	

𝐶ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = Ω!!! =
𝐻
𝑤

𝐻
𝑤 +𝒩 𝛿!!!  0 , 𝜎!!

1− 𝜏!!!
1− 𝐻
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	560	
where	𝜎!!	is	the	total	variance	in	beliefs	about	the	helicopter	location	(the	generative	561	
mean),	𝜎!!	is	the	variance	in	the	distribution	of	outcomes	(bag	drops)	around	that	562	
mean,	𝛿! is	the	prediction	error,	and	H	is	the	hazard	rate	and	w	is	the	width	of	the	563	
screen.	For	a	full	derivation	of	the	model	and	terms	see	(Nassar	et	al.,	2010)	and	for	564	
a	complete	description	of	the	method	for	estimating	latent	variables	see	(Nassar	et	565	
al.,	2016).	566	

In	general,	change-point	probability	and	relative	uncertainty	were	both	567	
increased	after	change-points,	albeit	with	different	latencies,	leading	to	learning	568	
rates	that	decay	slowly	as	a	function	of	time	within	context.	Learning	rates	569	
quantifying	sensitivity	to	information	provided	on	trial	j	were	aligned	with	the	trial-570	
to-trial	dissimilarity	between	trials	j	and	j+1.	Thus,	our	analysis	targeted	patterns	of	571	
activity	whose	degree	of	change	between	trials	j	and	j+1	reflected	normative	572	
learning	predicted	to	occur	from	the	outcome	presented	on	trial	j.	The	first	3	trials	573	
from	each	block	were	removed	from	analysis	as	they	occurred	at	the	onset	of	fMRI	574	
acquisition.		575	

Trial-to-trial	dissimilarity	analysis	described	above	could	be	thought	of	as	a	576	
special	case	of	the	general	idea	that	the	similarity	between	each	pair	of	trials	might	577	
be	inversely	related	to	the	learning	done	between	them.	Because	this	pattern	of	578	
similarity	is	what	might	be	expected	to	emerge	from	a	representation	of	the	latent	579	
task	state,	which	transitions	abruptly	from	one	context	to	the	next	and	remains	580	
relatively	stable	after	many	trials	in	a	well	learned	context,	we	will	refer	to	it	as	the	581	
shifting	latent	state	dissimilarity	matrix.		The	hypothesis	matrix	for	shifting	latent	582	
states	was	generated	by	computing	the	extent	to	which	the	inference	on	trial	i	would	583	
factor	into	the	inference	on	trial	j,	assuming	normative	learning:	584	
	585	

𝐻!,! =  1− 1− 𝛼!

!!!

!!!

	

where	H	is	the	shifting	latent	state	dissimilarity	matrix	and	α	is	the	learning	rate	586	
prescribed	by	a	normative	model	(Nassar	et	al.,	2010),	such	that	more	prescribed	587	
learning	between	two	trials	corresponded	to	higher	values	of	α,	a	smaller	product	588	
term,	and	thus	a	greater	dissimilarity.	The	i=j-1	diagonal	of	this	matrix	is	1-(1-αt),	or	589	
just	αt, and	thus	equivalent	to	the	vector	of	trial-to-trial	dissimilarities	described	590	
above.	However,	the	shifting	latent	state	hypothesis	matrix	also	includes	591	
information	about	other	elements	in	the	matrix,	potentially	offering	a	more	592	
powerful	construct	to	ask	a	similar	question.	We	examined	whether	this	similarity	593	
structure	was	reflected	in	the	neural	dissimilarity	between	trials	in	each	spherical	594	
searchlight.	The	lower	triangle	of	the	neural	dissimilarity	matrix	was	regressed	onto	595	
a	hypothesis	matrix	that	included	an	intercept,	the	shifting	latent	state	hypothesis	596	
matrix	(lower	triangle),	and	15	dummy	variables	designed	to	remove	the	influence	597	
of	autocorrelation	on	the	coefficient	of	interest.	These	autocorrelation	terms	were	598	
derived	from	15	off-diagonal	binary	matrices	in	which	a	single	off	diagonal	(i	=	j-1;	i	599	
=	j-2;	i	=	j-3…	i	=	j-15)	was	set	to	one.	These	matrices	were	constructed	to	account	600	
for	any	variance	in	the	neural	dissimilarity	matrices	that	could	be	explained	by	a	601	
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fixed	signal	autocorrelation.	To	be	sure	that	autocorrelation	could	not	affect	our	602	
analysis	of	interest,	we	also	set	all	elements	of	the	shifting	latent	state	similarity	603	
matrix	that	fell	outside	of	this	range	(trials	separated	by	more	than	fifteen	trials)	to	604	
the	maximum	dissimilarity	value.		605	
	 To	better	understand	the	computations	that	give	rise	to	rapid	changes	in	606	
neural	patterns	during	periods	of	learning	after	a	helicopter	relocation,	we	607	
constructed	an	exhaustive	set	of	hypothesis	matrices	and	conducted	a	608	
representational	similarity	analysis	in	which	these	representations	could	compete	609	
to	explain	structure	in	neural	dissimilarity	matrices.	This	analysis	required	610	
generating	hypothesis	matrices	for	various	factors	that	could	relate	to	task	611	
uncertainty,	learning,	or	explain	nuisance	variance	in	the	dissimilarity	matrices.	612	
Hypothesis	matrices	were	generated	for	three	additional	explanatory	variables	of	613	
interest:	1)	subject	prediction	(behavioral	policy),	2)	relative	uncertainty,	3)	change-614	
point	probability.	We	also	included	six	additional	nuisance	variables:	4)	the	bag	615	
drop’s	location,	5)	signed	prediction	error	(ie,	the	distance	between	the	prediction	616	
and	the	bag	drop),	6)	high	CPP	[to	account	for	patterns	of	activity	that	may	617	
asymmetrically	encode	CPP],	7)	high	RU	[to	account	for	patterns	of	activity	that	may	618	
asymmetrically	encode	RU],	8)	outcome	reward	value,	and	9)	task	block.	For	factors	619	
1-5	and	8,	element	(i,j)	of	the	hypothesis	matrix	corresponded	to	the	absolute	620	
difference	in	that	factor	on	trials	i	and	j.	For	factor	9,	dissimilarity	values	were	set	to	621	
0	for	trials	in	the	same	block	and	1	for	trials	in	different	blocks.	Dissimilarity	622	
matrices	for	factors	6	&	7	were	computed	as	one	minus	the	multiplicative	623	
interaction	of	the	model	variable	(6=change-point	probability,	7=relative	624	
uncertainty)	on	trials	i	and	j,	such	that	similarity	was	only	hypothesized	when	the	625	
model-derived	term	took	on	a	high	value	on	both	trials.	These	terms	allowed	the	626	
model	to	capture	asymmetric	representations	of	the	two	factors	governing	learning	627	
in	our	model,	such	as	a	representation	that	converged	for	values	of	high	relative	628	
uncertainty	but	did	not	show	any	consistent	pattern	of	activation	when	relative	629	
uncertainty	was	low.		630	
	 The	lower	triangle	of	the	neural	dissimilarity	matrix	was	extracted	and	631	
regressed	onto	an	explanatory	matrix	consisting	of	an	intercept	and	the	lower	632	
triangle	of	all	hypothesis/nuisance	matrices	(including	the	shifting	latent	state	and	633	
nuisance	autocorrelation	terms),	yielding	one	coefficient	per	variable,	per	subject,	634	
per	searchlight	(Chikazoe	et	al.,	2014;	Kragel	et	al.,	2018).	Group	level	analyses	were	635	
conducted	by	computing	t-statistics	across	subjects	for	each	variable	and	636	
searchlight.	Cluster-based	permutation	testing	using	cluster	mass	with	a	cluster	637	
forming	threshold	of	p<0.001	and	an	alpha	of	0.01	was	used	to	identify	significant	638	
activations	(Nichols	and	Holmes,	2002).		639	
	640	
	641	
	642	
	643	
	644	
	645	
	646	
	647	
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	coefficient Voxels Max	t X Y Z label

Behavioral	policy 841 6.37 27 -60 -18 Temporal	occipital	fusiform
389 6.03 -37 -21 58 Left	precentral	gyrus	(left	motor)

Change-point	probability 3795 8.13 12 -93 -6 Occipital	pole	
Uncertainty 29941 11.4 -4 -63 49 Precuneous

local	max 9.4 -22 -90 -15 Occipital	fusiform	gyrus
local	max 8.6 9 22 37 Anterior	cingulate	cortex
local	max 8.3 15 -54 1 Lingual	gyrus
local	max 8 51 -39 55 Supramarginal	gyrus
local	max 8 48 16 1 Insula	

Shifting	latent	state 869 6.02 -61 -24 -24 Inferior	temporal	gyrus	(posterior)
231 5.48 21 -69 67 Occipitoparietal	cortex
220 5.56 -16 49 -15 Left	OFC
220 5.2 -28 -48 52 Superior	parietal	lobule
199 5 27 43 -18 Right	OFC
181 5.6 -13 -93 -9 Occipital	pole

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2018. ; https://doi.org/10.1101/364638doi: bioRxiv preprint 

https://doi.org/10.1101/364638
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

Table	1:	Peak	voxel	locations	corresponding	to	behavioral	policy,	relative	uncertainty,	change-
point	probability	and	shifting	latent	state	representations.	Cluster	size	(in	voxels),	maximum	(t-
statistic)	and	MNI	coordinates	for	each	cluster	surviving	multiple	comparisons	correction.	
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Latent	state	analysis	with	unsmoothed	voxels	

Region	 Mean	Beta	 t-value	 p-value	
(uncorrected)	

Left	inferior	temporal	
gyrus	
	

0.0663	 4.42	 1.11e-4	

Left	superior	parietal	
lobule	
	

0.0491	 3.51	 .00138	

Right	occipital	cortex	
	

0.1104	 4.80	 3.76e-5	

Left	orbitofrontal	cortex	 0.0541	 3.36	 .00210	

Right	orbitofrontal	cortex	 0.0649	 4.08	 2.89e-4	

Left	occipital	pole	 0.0442	 2.97	 .00574	

Table	2:	Regions-of-interest	that	showed	a	significant	effect	of	shifting	latent	state,	re-
analyzed	with	unsmoothed	voxels.	
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Latent	state	analysis	with	unsmoothed,	pre-whitened	voxels	

Region	 Mean	Beta	 t-value	 p-value	
(uncorrected)	

Left	inferior	temporal	
gyrus	
	

0.0375	 3.68	 8.78e-4	

Left	superior	parietal	
lobule	
	

0.0175	 1.82	 .0792	

Right	occipital	cortex	
	

0.0624	 3.16	 .00347	

Left	orbitofrontal	cortex	 0.0256	 2.27	 .0304	

Right	orbitofrontal	cortex	 0.0271	 2.18	 .0367	

Left	occipital	pole	 0.0243	 2.68	 .0116	

Table	3:	Regions-of-interest	that	showed	a	significant	effect	of	shifting	latent	state,	re-
analyzed	with	unsmoothed	voxels	that	were	spatial	pre-whitened	(Walther	et	al.,	2016).	
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Minimal	latent	state	analysis	with	unsmoothed	voxels	

Region	 Mean	Beta	 t-value	 p-value	
(uncorrected)	

Left	inferior	temporal	
gyrus	
	

0.0693	 4.57	 7.37e-5	

Left	superior	parietal	
lobule	
	

0.0116	 0.547	 .588	

Right	occipital	cortex	
	

0.0372	 1.13	 .265	

Left	orbitofrontal	cortex	 0.0517	 3.43	 .00172	

Right	orbitofrontal	cortex	 0.0586	 3.93	 4.45e-4	

Left	occipital	pole	 0.0539	 3.47	 .00153	

Table	4:	Latent	state	effect	in	ROIs	sensitive	to	latent	state,	re-analyzed	with	
unsmoothed	voxels	and	a	model	that	only	contained	an	intercept,	the	latent	state	
predictor,	and	15	off-diagonal	autocorrelation	terms.	
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Time	shifted	latent	state	analysis		

Region	 Mean	Beta	 t-value	 p-value	
(uncorrected)	

Left	inferior	temporal	
gyrus	
	

0.0729					 4.19					 2.14e-4	

Left	superior	parietal	
lobule	
	

0.0656					 4.22					 2.00e-4	

Right	occipital	cortex	
	

0.0859					 4.09					 2.81e-4	

Left	orbitofrontal	cortex	 0.0720					 3.98					 3.91e-4	

Right	orbitofrontal	cortex	 0.0640					 4.06					 3.11e-4	

Left	occipital	pole	 0.0426			 3.08						 .00435	

Table	5:	Shifting	latent	state	effect	in	ROIs	sensitive	to	shifting	latent	state,	re-analyzed	
using	a	time-shifted	“shifting	latent	state”	regressor	in	which	representations	at	the	
time	of	outcome	on	a	given	trial	are	modeled	as	reflecting	the	beliefs	that	will	guide	
behavior	on	the	subsequent	trial.	This	is	offset	by	one	trial	from	our	original	analysis,	
which	assumed	that	representations	upon	viewing	an	outcome	would	reflect	the	beliefs	
that	were	formed	in	anticipation	of	that	outcome,	rather	than	the	updated	ones	that	
incorporated	it.		
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2018. ; https://doi.org/10.1101/364638doi: bioRxiv preprint 

https://doi.org/10.1101/364638
http://creativecommons.org/licenses/by-nc-nd/4.0/

