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Abstract 
 
The study of rare Mendelian diseases through exome sequencing typically yields incomplete 
diagnostic rates, ~8-70% depending on the disease type. Whole genome sequencing of the 
unresolved cases allows addressing the hypothesis that causal variants could lay in non-
coding regions with damaging regulatory consequences. The large amount of rare and 
singleton variants found in each individual genome requires computational filtering and 
scoring strategies to gain power in downstream statistical genetics tests. However, state-of-
the-art methods estimating the functional relevance of non-coding genomic regions have 
been mostly characterized on sets of variants largely composed of trait-associated 
polymorphisms and associated to common diseases, yet with modest accuracy and strong 
positional biases. In this work we first curated a collection of n=737 high-confidence 
pathogenic non-coding single-nucleotide variants in proximal cis-regulatory genomic regions 
associated to monogenic Mendelian diseases. We then systematically evaluated the ability to 
predict causal variants of a comprehensive set of natural selection features extracted at three 
genomic levels: the affected position, the flanking region and the associated gene. In addition 
to inter-species conservation, a comprehensive set of recent and ongoing purifying selection 
signals in human was explored, allowing to capture potential constraints associated to 
recently acquired regulatory elements in the human lineage. A supervised learning approach 
using gradient tree boosting on such features reached a high predictive performance 
characterized by an area under the ROC curve = 0.84 and an area under the Precision-Recall 
curve = 0.47. The figures represent a relative improvement of >10% and >34% respectively 
upon the performance of current state-of-the-art methods for prioritizing non-coding variants. 
Performance was consistent under multiple configurations of the sets of variants used for 
learning and for independent testing. The supervised learning design allowed the assessment 
of newly seen non-coding variants overcoming gene and positional bias. The scores 
produced by the approach allow a more consistent weighting and aggregation of candidate 
pathogenic variants from diverse non-coding regions within and across genes in the context 
of statistical tests for rare variant association analysis. 
 
	  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2018. ; https://doi.org/10.1101/363903doi: bioRxiv preprint 

https://doi.org/10.1101/363903


2 Caron, Luo & Rausell, BioRxiv 2018 

Introduction 
 

To date, more than 4,000 Mendelian diseases have been clinically recognized 1, collectively 
affecting more than 25 million people in the US only 2. However, around 50% of all known 
Mendelian diseases still lack the identification of the causal gene or variant 3. Moreover, every 
year approximately 300 new Mendelian diseases are described, whereas the pace for 
discovery of the causal molecular mechanisms fluctuates at around 200 yearly 3. Despite the 
progress achieved through Whole Exome Sequencing (WES)-based studies, recent reviews 
show highly heterogeneous diagnostic rates across disease types 4,5, ranging from <15% 
(e.g. congenital diaphragmatic hernia or syndromic congenital heart disease) to >70% (e.g. 
ciliary dyskinesia). In those scenarios, a common working hypothesis is that non-coding 
variants could explain the etiology of many of the unresolved cases 5. Whole Genome 
Sequencing (WGS) permits to expand the survey of pathogenic variants to non-coding 
genomic regions in an unbiased way. Such possibility generates great expectations, as most 
trait/disease-associated Single Nucleotide Variants (SNVs) identified by Genome Wide 
Association Studies (GWAS) map to non-coding regions, suggesting a prominent role of 
regulatory elements in genetic diseases 6,7. Nevertheless, the large amount of rare and 
singleton variants in non-exonic positions shown by large-scale WGS projects in human 8, 
makes computational predictions a fundamental step to prioritize candidate variants for further 
clinical and experimental follow up.	
A number of machine-learning methods have been developed in the last years to predict the 
regulatory consequences of non-coding SNVs 9–15. Two complementary perspectives have 
been exploited: First, from an evolutionary standpoint, genomic positions under non-neutral 
evolution are expected to have a functional role. Consequently, position-based purifying 
selection scores determined at different time-scales (i.e. from vertebrates, mammals and 
primates sequence alignments) have been successfully used by reference methods. Second, 
from a mechanistic view, phenotypic consequences of genetic variants are thought to result 
from their impact on non-coding functional elements, defined as those having reproducible 
biochemical features associated to regulatory roles, such as promoters, enhancers, silencers, 
repressors, etc. Thus, computational methods have exploited diverse sets of chromatin and 
epigenetic characteristics (e.g. histone marks, chromatin states, DNase I-hypersensitivity 
sites and transcription factor binding sites) obtained from heterogeneous sets of cell lines, 
primary cell types and tissues by Consortia such as ENCODE, FANTOM5, the Roadmap 
Epigenomics and BluePrint projects 16–18. While the ability of state-of-the-art methods to 
discriminate functionally relevant non-coding variants is well established, the value of such 
scores as a proxy of pathogenic potential in the context of Mendelian diseases is still unclear. 
This stems from the fact that functional scores of non-coding SNVs were mostly evaluated by 
their ability to identify trait-associated (e.g. quantitative trait loci, QTLs) and disease-
associated loci from GWAS studies of common diseases. Yet, even in those contexts, 
predictive accuracy is modest and mainly driven by position-based interspecies conservation 
signals, with chromatin and epigenetic features providing only a marginal contribution 10,13,15.	
More recently, Smedley et al. developed the so-called Regulatory Mendelian Mutation Score 
(ReMM)19, which -to our knowledge- is the only method specifically developed to score 
pathogenic non-coding variants in the context of Mendelian disease studies. The approach 
trained a random forest classifier on a curated set of 406 SNVs (including long non-coding 
RNA SNVs). Twenty-six features were considered, including 8 interspecies conservation 
scores, 4 GC/CpG-based characteristics and 8 epigenetic features. Despite the simplicity of 
the model, ReMM scores proved valuable to prioritize Mendelian disease variants when 
integrated in a more comprehensive framework considering candidate regulatory regions and 
the phenotypic relevance of the associated genes 19. 	
In this work we hypothesized that the computational prediction of pathogenic non-coding 
variants in Mendelian diseases would benefit from a more comprehensive set of natural 
selection signals, notably regarding recent and ongoing selective constraints in human. In this 
regards, evolutionary and functional evidence support a rapid turnover of functional non-
coding elements across species that would limit the capacity of interspecies conservation to 
pinpoint recently acquired regulatory sequences in the human lineage 20,21. Moreover, it has 
been suggested that lineage-specific and ongoing natural selection in human could help 
further understanding the partial overlap observed among the fraction of the genome inferred 
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to be functional from evolutionary, biochemical and genetic evidences 22,23. The use of recent 
and ongoing purifying selection signals to prioritize pathogenic variants has been historically 
challenged by a number of confounding factors shaping patterns of human genomic variation. 
Thus, random genetic drift, population structure and demographic processes such as rapid 
expansions, migrations and population bottlenecks, have played a major role of governing 
changes in allele frequency within and between populations23–25. In addition, uneven 
recombination rates across the genome and heterogeneous neutral mutation rates26 
associated to sequence context27,28 or to different types of non-coding elements29 further 
complicates the distinction of neutral versus non-neutral evolution.  

Notwithstanding, the increasing sample size of current large-scale whole genome sequencing 
projects of the general population are providing a better resolution of recent and ongoing 
purifying selection signals in human8,30–32 that could improve their utility in scoring systems of 
pathogenic variants. In addition, machine learning methods have shown able to extract 
complex patterns associated to functional variants combining different types of selective 
constraints that would be missed by classical approaches10,15. Hence, a supervised learning 
approach could help better exploiting recent natural selection features in spite of confounding 
factors. To test both previous possibilities, in this study we first extracted a comprehensive set 
of recent and ongoing natural selection features determined from recent large-scale WGS 
projects in human together with interspecies conservation scores assessed on different 
evolutionary timescales. We then trained NCBoost, a classifier of non-coding SNVs based on 
gradient tree boosting, on a curated set of high-confidence pathogenic non-coding SNVs 
associated to monogenic Mendelian disease genes and on common non-coding SNVs 
without clinical assertions. The approach outperformed existing state-of-the-art methods 
under multiple training and testing scenarios, while overcoming gene and positional bias.  
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Material and Methods 
 

High-confidence pathogenic variants  

Three sets of high-confidence pathogenic variants in non-coding regions were obtained: 1) 
Regulatory disease-causing mutations (so-called “DM” set) from the Human Gene Mutation 
Database (HGMD, professional version, accessed on 2018/01/03, 33), manually annotated as 
involved in conferring the associated clinical phenotype; 2) pathogenic single-nucleotide 
variants (SNVs) from Clinvar 34 manually annotated as “pathogenic” with no conflicting 
assertions (GrCh37 release from 2017/12/31, downloaded from 
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/); and 3) a manually curated set compiled from the 
medical literature of non-coding single-nucleotide variants associated with Mendelian disease 
and validated by experimentation or co-segregation studies, or for which other convincing 
evidence of pathogenicity was available (19.	
 

Variant mapping and annotation of non-coding SNVs. 

Only Single Nucleotide Variants (SNVs) where considered through the study. Variants were 
annotated using Annovar 35, downloaded on 2016-02-01; using the gene-based annotation 
option based on RefSeq for Humans (assembly version hg19); 
http://annovar.openbioinformatics.org/en/latest/user-guide/gene/) in order to obtain i) the gene 
region affected by intragenic variants, or ii) the nearest flanking gene in the case of intergenic 
variants. Exonic variants and variants within 10 base pairs (bp) of a splicing junction of 
protein-coding genes were removed (Annovar splicing_threshold =10). At this stage, variants 
from HGMD-DM, Clinvar and Smedley’2016 overlapping non-coding RNAs within an exon (n= 
143, 2 and 68, respectively), intron (n= 24, 3, 13, respectively) or 10bp from a splicing junction 
(n= 1, 0, 0, respectively) were filtered out. In the case of SNV overlapping several types of 
regions associated to different genes or transcripts, the following three criteria were 
consecutively adopted: A) the default Annovar precedence rule for gene-based annotation 
was adopted, i.e.: exonic = splicing > ncRNA > UTR5 = UTR3 > intronic > upstream = 
downstream > intergenic. B) if after applying the previous precedence rule a SNV could still 
be associated to several neighbor/overlapping genes (e.g. in the intergenic region between 
two genes, or in the intronic region of two overlapping genes, etc), the SNV’s nearest protein 
coding gene was kept as a reference for the annotation of the variant. The SNV’s nearest 
gene was determined by the shortest distance to either the TSS or TSE. C) In case of SNVs 
with two or more genes with identical shortest distance to TSS/TSE, the SNV was tagged as 
‘conflicted’ and filtered out from the analysis. After all previous filtering steps, a total of 18 
disease-causing SNVs overlapping upstream (n=9), UTR’3 (n=7) and downstream regions 
(n=2) of non-coding RNAs were filtered-out. Thus, for the purpose of this study, the set of 
non-coding variants was constituted of SNVs associated to protein-coding genes and 
overlapping intronic, 5’ UTR or 3’ UTR, upstream and downstream regions -i.e. closer than 
1kb from the Transcription Start Site (TSS) and the Transcription End Site (TSE) respectively- 
and intergenic regions.	
Curation of high-confidence pathogenic non-coding SNVs associated to monogenic 
Mendelian disease genes. 

For high-confidence pathogenic SNVs, we manually supervised a total of n=71 cases showing 
a disagreement between the gene associated to the variant in the original resource (i.e. 
HGMD-DM, Clinvar and Smedley’2016) and the gene associated by the previously described 
annotation procedure. The original gene assignment was kept for n=17 SNVs where conflict 
originated due to straightforward exceptions of the Annovar’s precedence rule or the 
assignment to the nearest upstream or downstream gene (Criteria A and B described in the 
previous section). The number of variants retained at this stage is represented in Figure 1A. 
Only high-confidence pathogenic non-coding variants associated to the same gene by both 
the original resource and the annotation process done in this work were retained for 
downstream analyses.  
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We then evaluated whether the genes associated to high-confidence pathogenic non-coding 
SNVs were reported as Mendelian disease genes in 1. A list of n=3695 Mendelian disease 
genes was obtained following 3: OMIM raw data files mim2gene.txt, genemap2.txt and 
morbidmap.txt were downloaded from www.omim.org on 2017/10/13. MIM phenotype number 
and supporting evidence annotations where extracted from morbidmap.txt. Phenotype 
descriptions containing the word ‘somatic’ were flagged as ‘somatic’, those containing 
[‘carcinoma', 'cancer', 'tumor', 'leukemia', 'lymphoma', 'sarcoma', 'blastoma', 'adenoma', 
'cytoma', 'myelodysplastic', 'Myelofibrosis' or 'oma’] were flagged as ‘cancer’, and those 
containing [‘risk', 'quantitative trait locus', 'QTL', '{', '[' or 'susceptibility to’] were flagged as 
‘complex’. Phenotypes flagged as ‘somatic’ and ‘cancer’ were classified as ‘somatic cancer’. 
Mendelian genes were then defined as the genes having a supporting evidence level of 3 (i.e. 
the molecular basis of the disease is known) and not having a ‘somatic’ flag. Two main 
categories of Mendelian disease genes where defined: monogenic Mendelian disease genes 
(n=3354) and complex Mendelian disease genes (n=596), i.e. those presenting mutation risk 
factors, quantitative-trait loci (QTL) or contributing to susceptibility to multifactorial disorders 
or to susceptibility to infection 3. Of note, 255 genes were associated to both monogenic and 
complex Mendelian disease genes.	
High-confidence pathogenic non-coding SNVs associated to monogenic Mendelian disease 
genes where manually further inspected to check consistency between the disease 
phenotype reported in the original source (i.e. HGMD-DM, Clinvar and Smedley’2016) and the 
ones described in OMIM database for the same gene. A total number of n=138 variants for 
which the agreement was unclear or a disagreement was observed were filtered out for 
downstream analyses. In the remaining set of high-confidence pathogenic non-coding SNVs 
associated to monogenic Mendelian disease genes, we then inspected whether variants were 
detected as heterozygous or homozygous among the individuals included in the GnomAD 
database 31; http://gnomad.broadinstitute.org/downloads, version r2.0.2, using both whole 
genome sequencing data and whole exome sequencing data. Variants present as 
homozygous in at least one carrier were filtered out for downstream analysis. Thus only high-
confidence pathogenic non-coding SNVs associated to monogenic Mendelian diseases, with 
no homozygous individuals in GnomAD and overlapping intronic, 5’UTR, 3’UTR, upstream, 
downstream and intergenic regions were finally retained for downstream analysis (Table S1). 	
 

Common and rare human variants without clinical assertions 

Common and rare human variants without clinical assertions where obtained from dbSNP 
(downloaded on 2017/07/10 from 
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/All_20170710.vcf.gz). For the purpose 
of this study, variants labeled as common (“COMMON=1”) and with Minor Allele Frequency 
(MAF)> 0.05 were considered as ‘common variants’, while those labeled as non-common 
(“COMMON=0”) and with MAF< 0.01 were annotated as ‘rare variants’. Variants with no MAF 
information (no “CAF” field reported in the “INFO” field of the variant) and multiallelic variants 
were filtered out. Common and rare human variants without clinical assertions were first 
annotated by Annovar and filtered as described above. For consistency in the comparison 
against the pathogenic set of SNVs, the set of common and rare human variants without 
clinical assertions was restricted to SNVs associated to protein-coding genes and overlapping 
intronic, 5’UTR, 3’UTR, upstream, downstream and intergenic regions. The list of protein-
coding genes was extracted from Ensembl Biomart 36; human genome assembly version 
GrCh37.p13).	
 

Pathogenicity scores of non-coding SNVs 

Pre-computed pathogenicity scores of non-coding SNVs were extracted from the following 
state-of-the-art methods: CADD non-coding score (version v1.3, 9; DeepSEA functional 
significance score (version v0.94,13; Eigen and Eigen-PC scores (version v1.1,15; FunSeq2 
score (version v1.2, 11 and ReMM scores (version v0.3.1; 19).	
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Feature extraction of non-coding SNVs 

Features extracted are summarized in Table 1. They can be gathered in 5 main categories: 

A. Inter-species sequence conservation features at position and window level 

To evaluate evolutionary conservation at a given site, the following scores evaluating non-
neutral rates of substitution from multiple species alignments (excluding human) were used: 
PhastCons 37,38 and PhyloP 39 scores for three multi-species alignment (Vertebrates, 
Mammals and Primates, excluding human) and GerpN and GerpS single-nucleotide scores 
fom mammalian alignments 40, all of them obtained from CADD (version v1.3, 9, file name: 
whole_genome_SNVs_inclAnno.tsv.gz, downloaded from 
http://cadd.gs.washington.edu/download). PhyloP scores measure neutral evolution at 
individual sites. The score corresponds to the -log p-value of the null hypothesis of neutral 
evolution. Positive values (up to 3) represent purifying selection, while negative values (up to -
14) represent acceleration. PhastCons scores estimate the probability that the locus is 
contained in a conserved element. GerpN and GerpS single-nucleotide scores assess 
respectively the neutral substitution rate and the rejected substitution rate of the locus. A high 
GerpN value indicates high homology of the locus across species. Positive values of GerpS 
indicate a deficit in substitutions, while negative values convey a substitution surplus. 	
B. Recent and ongoing natural selection signals in Humans at position and window 
level 

Three human population-specific natural selection scores based on the allele frequency 
spectrum on a 30 kb sequence window region centered around the SNV were obtained from 
The 1000 Genomes Selection Browser 1.0 (http://hsb.upf.edu/,41): Tajima’s D 42, Fu & Li’s D* 
and Fu & Li’s F* 43. Tajima’s D is a neutrality test comparing estimates of the number of 
segregating sites and the mean pair-wise difference between sequences. Fu & Li’s D* is a 
neutrality test comparing the number of singletons with the total number of nucleotide variants 
within a region. Fu & Li’s F is a neutrality test comparing the number of singletons with the 
average number of nucleotide differences between pairs of sequences. The three tests were 
performed within 3 populations of the 1000 Genome Project phase 1 data, producing 
population-specific scores: Yoruba in Ibadan, Nigeria (YRI), Han Chinese in Beijing, China 
(CHB) and Utah Residents with Northern and Western European Ancestry (CEU). Negative 
logarithmic percentiles associated to each of these score were used with values ranging from 
0 (indicating positive selection) to 6 (indicating purifying selection). Here, we used the 
negative logarithm of the ranked percentile of each score over the whole genome 
(http://hsb.upf.edu/?page_id=594) associated to the raw scores, with values ranging from 0 
(indicating positive selection) to 6 (indicating purifying selection).	
The background selection score (B statistic, 44), indicating the expected fraction of neutral 
diversity that is present at a site, was obtained from CADD annotations (version v1.3). B 
statistic values close to 0 represent nearly complete removal of diversity as a result of 
selection and values near 1 indicate no conservation. B-statistic is based on human single 
nucleotide polymorphism (SNP) data from Perlegen Sciences, HapMap phase II, the 
SeattleSNPs NHLBI Program for Genomic Applications and the NIEHS Environmental 
Genome Project. 	
Context-dependent tolerance scores (CDTS) for 10bp bins of the human genome computed 
on 15496 unrelated individuals from the gnomAD consortium 32) were downloaded from 
http://www.hli-opendata.com/noncoding/ (file 
CDTS_diff_perc_coordsorted_gnomAD_N15496_hg19.bed.gz). The CDTS represents the 
difference between observed and expected variations in humans. The expected variation is 
computed genome-wide for each nucleotide as the probability of variation of each nucleotide 
depending on its heptanucleotide context. Low CDTS scores indicate loci intolerant to 
variation.	
Mean heterozygosity and mean derived allele frequency of variants in a 1kb window region 
centered around the SNV and calculated from the 1000 Genomes Project (excluding the 
query variant) were obtained from 10 
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/source_data/1kg). Mean minor allele 
frequency (MAF) of variants in 1kb flregion were calculated from GnomAD genome data 31, 
excluding the query variant from the calculation. Mean MAF was assessed for the global 
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population and for population-specific frequencies: Africans and African Americans (AFR), 
Admixed Americans (AMR), East Asians (EAS), Finnish (FIN), Non-Finnish Europeans (NFE), 
Ashkenazi Jewish (ASJ) and Other populations (OTH). Additionally, we extracted mean MAF 
of variants in a 1kb window calculated from the 1000 Genomes Project (excluding the query 
variant). MAFs both from GnomAD and the 1000 Genomes Project were extracted from 
GnomAD release r2.0.2, using the Genome VCF files (available at 
http://gnomad.broadinstitute.org/downloads).	
C. Gene-based features 

The following gene-level features associated to natural selection were obtained: 

Primate dn/ds ratios (i.e. the ratio between the number of nonsynonymous substitutions and 
the number of synonymous substitutions) were taken from 45. Low dn/ds values reflect 
purifying selection, while high dn/ds values are indicative of positive selection.	
The gene probability of loss-of-function intolerance (pLI), from 31, reflecting a depletion of rare 
and de novo protein-truncating variants as compared to the expectations drawn from a neutral 
model of de novo variation on ExAC exomes data. pLI values close to 1 reflect gene intolerant 
to heterozygous and homozygous loss-of-function mutations.	
Gene Damage Index (GDI), a gene-level metric of the mutational damage that has 
accumulated in the general population, based on CADD scores 46. High GDI values reflect 
highly damaged genes.	
The Residual Variation Intolerance Score (RVIS percentile; 47), which provides a gene 
measure of the departure from the average number of common functional mutations in genes 
with a similar amount of mutational burden in human. High RVIS percentiles reflect genes 
highly tolerant to variation.  	
The non-coding version of the RVIS score (ncRVIS, 48 measuring the departure from the 
genome-wide average of the number of common variants found in the noncoding sequence of 
genes with a similar amount of noncoding mutational burden in human. Negative values of 
ncRVIS indicate a conserved proximal non-coding region, while positive values indicate a 
higher burden of SNVs than expected under neutrality. 	
The average non-coding GERP (ncGERP) is the average GERP score 40 across a gene’s 
noncoding sequence (Petrovski et al., 2015). Both in the case of ncRVIS and ncGERP, the 
non-coding sequence was defined in the original publication as the collection of 5'-UTR, 3'-
UTR and an additional non-exonic 250 bp upstream of transcription start site (TSS).	
Gene age estimating the gene time of origin based on the presence/absence of orthologs in 
the vertebrate phylogeny was taken from 49. It varies from 0 (oldest) to 12 (youngest, 
corresponding to human specific genes).The number of human paralogs for each gene was 
obtained from the OGEE database 50.	
For all scores, gene names were mapped to approved gene symbols from HGNC. Missing 
values were imputed through the median value computed over all protein coding genes. 

D. Sequence context 

The percentage of GC and CpG in a window of 150bp around the variant of interest was 
taken from CADD v1.3 annotations. In addition, we one-hot encoded the non-coding genomic 
region overlapping the SNV annotated by AnnoVar, and used it as binary features: intronic, 
5’UTR, 3’UTR, upstream, downstream and intergenic regions. 

E. Epigenetic features 

Epigenetic features such as histone modification marks, nucleosome position, open chromatin 
profiles and transcription factor binding sites (TFBS) profiles generated by the ENCODE 
project 51 were extracted from CADD v3.1 annotations. DNA accessibility was assessed using 
two set of features: 1) the open chromatin evidence coming from the open chromatin super 
track, containing peak signal and Phred-scaled p-values of evidence for five open chromatin 
assays: DNase-seq (EncOCDNaseSig and EncOCDNasePVal), FAIRE-seq (EncOCFaireSig 
and EncOCFairePVal) and ChIP-seq using CTCF (EncOCctcfSig and EncOCctcfPVal), PolII 
(EncOCpolIISig and EncOCpolIIPVal) and Myc (EncOCmycSig and EncOCmycPVal), the 
Phred-scaled combined p-value of both DNase-seq and FAIRE-seq assays 
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(EncOCCombPVal) and the Open Chromatin Code (EncOCC), a metric integrating DNaseI, 
FAIRE and ChIP-seq peak evidence of open chromatin. Further details are provided herein: 
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgTrackUi?g=wgEncodeOpenChromSynth  and 
http://rohsdb.cmb.usc.edu/GBshape/cgi-
bin/hgTables?db=hg19&hgta_group=regulation&hgta_track=wgEncodeOpenChromSynth&hgt
a_table=wgEncodeOpenChromSynthGm18507Pk&hgta_doSchema=describe+table+schema
). And 2) the maximum nucleosome position score obtained through MNase-seq (EncNucleo), 
indicating packed chromatin states: http://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg19&g=wgEncodeSydhNsome. Potential transcription factor activity was 
assessed using i) the number of different overlapping TFBS (TFBS), ii) the number of 
overlapping TFBS peaks summed over cell types (TFBSPeaks) and iii)  the highest value of 
overlapping TFBS peaks across cell types from ChIP-seq (TFBSPeaksMax), as well as using 
histone modification marks, such as the maximum methylation peak at H3K4 (EncH3K4Me1, 
enhancers-associated), maximum  trimethylation peak at H3K4  (EncH3K4Me3, promoter-
associated) and maximum acetylation peak at H3K27 (EncH3K27Ac, associated to active 
enhancers).	
 

NCBoost training strategy 

NCBoost training was performed with XGBoost, a machine learning technique based on 
gradient tree boosting (aka. gradient boosted regression tree; 52,53). The R implementation 
from https://github.com/dmlc/xgboost (version 0.71.1) was used with parameters: eta=0.01, 
max_depth=25 and gamma=10, selected to avoid overfitting and after parameter optimization 
through a prior tenfold cross-validation step.	
To train NCBoost, we first randomly split the complete list of protein-coding genes in 10 
genome partitions of equal size, with the same distribution across all chromosomes and 
keeping in each of them the same proportion of monogenic Mendelian disease genes 
presenting high-confidence pathogenic non-coding variants (see above). Throughout the 
work, each disease-causing variant (aka. ‘positive’ variants) was associated with a unique set 
of 10 ‘negative’ variants, randomly sampled from the set of common human variants without 
clinical assertion described above and associated to genes within the same genome partition. 
Random sampling of common variants was matched to the positive set to keep the same 
fraction of variants per type of region: intronic, 5’UTR, 3’UTR, upstream, downstream and 
intergenic regions. A maximum of one positive and one negative variant associated to the 
same gene was allowed, although no minimum per gene was required. For the training step, 
a maximum of one disease-causing non-coding variant was randomly sampled per gene 
(Table S2). We then trained NCBoost as a bundle of 10 independently trained models, 
consecutively excluding in each of them 1 of the 10-genome partitions described above.  

 

Correlation between independently trained 10-NCBoost models 

To assess the correlation among the scores led by the independently trained 10-NCBoost 
models, we created 11 genome partitions in order to create 11 independent sets of positive 
and negative variants, randomly sampled in an analogous way as described above. One 
partition was randomly selected and reserved for validation while the other 10 were used for 
training. 10-NCBoost models were then independently trained using the set of features 
A+B+C+D described above, by consecutively excluding in each of them 1 of the 10-genome 
partitions. Then, each model was used to score variants in the 11th partition. Correlation 
among the scores of the 10 models was assessed through Spearman rank correlation. 

 

Random sampling of rare human variants without clinical assertion 

Each disease-causing variant was associated with a unique set of 10 rare variants, randomly 
sampled from the set of rare human variants without clinical assertion described above. 
Random sampling of rare variants was matched to the positive set to keep the same fraction 
of variants per type of region: intronic, 5’UTR, 3’UTR, upstream, downstream and intergenic 
regions. A maximum of one positive and one rare variant associated to the same gene was 
allowed, although no minimum per gene was required.  
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Region-based random sampling of common variants 

To constitute a “region-context” matched set of positive and negative variants, each disease-
causing variants was associated –when available- with one common variant, randomly 
sampled from the set of common human variants without clinical assertion associated to the 
same gene and mapping to the same region (intronic, 5’UTR, 3’UTR, upstream, downstream 
and intergenic regions). Disease-causing variants with no matching common variants in the 
same region of the same gene were excluded from the region-context matched set of positive 
and negative variants. Multiple positive-negative variant pairs per gene were allowed in this 
setting. In the end, 149 region-matched pairs of pathogenic and random common variants 
were sampled, associated to 54 unique genes. 

 

Annotation of dominant/recessive and haploinsufficient genes 

A list of n=299 haploinsufficient genes was obtained from 54. Genes intolerant to heterozygous 
truncation (pLI>0.9; 31 were obtained from ExAC browser: file 
fordist_cleaned_exac_nonTCGA_z_pli_rec_null_data.txt downloaded from 
ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint/. 
Dominant and recessive disease gene predictions were obtained from DOMINO 55, file 
score_all_final_03.04.17.txt downloaded from https://wwwfbm.unil.ch/domino/download.html). 
Following Quinodoz et al., 2017, DOMINO score, reflecting the predicted probability of a gene 
to harbor dominant changes, was used to establish five gene categories (i.e. recessive, likely 
recessive, rest, likely dominant, dominant), corresponding to the probability intervals <0.2, 
0.2-0.4, 0.4-0.6, 0.6-0.8, >=0.8, respectively. 	
 

Software availability	
Scripts to annotate SNVs with all features used in this study, software to score pathogenicity 
with NCBoost (ABCD model) and genome-wide pre-computed scores will be available online 
at http:// [URL TBD] upon publication of the manuscript 
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Results 
Curation of a high-confidence set of pathogenic non-coding variants associated to 
monogenic Mendelian disease genes 

The number of high-confidence pathogenic non-coding variants obtained from HGMD-DM, 
Clinvar and Smedley’2016 is represented in Figure 1A (Methods). The majority of causal 
variants were assigned to the closest protein-coding gene in the reference source (94%, 98% 
and 89%, respectively). Thus the available set is mostly constituted of proximal cis-regulatory 
variants (Figure 1A), with distal cis-regulatory and trans-acting variants scarcely represented. 
Our curation effort allowed further refining this set to retain the fraction of pathogenic variants 
confidently associated to monogenic Mendelian diseases genes (84%, 87% and 98%, 
respectively; Figure 1B). In addition, a small though non-negligible fraction of variants for 
which homozygous individuals were detected in recent large-scale whole exome and genome 
sequencing (GnomAD; 17  ) were excluded for downstream analysis (5%, 7% and 4% 
respectively; Figure 1B). After all filtering steps, a total of 737 pathogenic non-coding SNVs 
collectively associated to 283 genes were retained (Figure 1C). Variants distributed in intronic 
(23%), UTR’5 (36%) and UTR’3 (12%), and 1Kb-upstream TSS (26%), with a minority of 
variants in 1Kb-downtream TSE (<1%) and in intergenic regions (1%). The 3 resources mined 
in this work (HGMD-DM, Clinvar and Smedley’2016) showed varying degrees of overlap 
regarding causal SNVs (Figure 1D) and associated genes (Figure 1E). Notably, the set of 
283 monogenic Mendelian disease genes collectively affected by pathogenic non-coding 
SNVs is enriched in haploinsufficient genes (Odds ratio OR = 2,59, one-sided Fisher test p-
value= 1,279e-9), in genes intolerant to heterozygous truncation (OR = 1,29; p-value=1,279e-
9) and in genes predicted to have a dominant inheritance mode (OR = 1,36; p-value=1,72e-3) 
as compared to a background set of 3354 monogenic Mendelian disease genes (Figure S1; 
Methods).	
 

Distribution of state-of-the-art pathogenicity scores across pathogenic and non-
pathogenic SNVs 

We then checked the distribution of six state-of-the-art pathogenicity scores (CADD, 
DeepSea, Eigen, Eigen-PC, FunSeq2 and ReMM; Methods) across the 737 high-confidence 
non-coding pathogenic variants and 4’960’178 common SNVs without clinical assertions. All 
evaluated scores showed marked differences depending on the type of gene region involved 
(i.e. intergenic, intronic, 3’UTR, 5’UTR, upstream and downstream regions of associated 
genes; Figure S2). Thus, the distributions of median scores per gene for pathogenic SNVs in 
5’UTR and for SNVs within 1Kb-upstream TSS were shifted towards more severe values than 
those of pathogenic SNVs in 3’UTR, intronic and intergenic regions. Bias per gene region was 
also observed across common SNVs without clinical assertions, suggesting that the 
regulatory region where a variant maps systematically biases the scores (Figure S2). 
Surprisingly, the distributions of median scores per gene for common SNVs in 5’UTR was not 
significantly lower (i.e. less severe) than that of pathogenic SNVs in 3’UTR, intronic and 
intergenic regions for none of the 5 scores evaluated (two-sided Wilcoxon test p-values for all 
pair-wise comparisons evaluated are reported in Table S3). As a corollary, the previous 
observations warn about the necessity of matching the relative composition of pathogenic and 
non-pathogenic SNVs across different gene regions in predictive benchmarks, as well as for 
relative differences in region distribution across datasets (Figure 1C).  

 

Ability of natural selection signals to predict pathogenic non-coding SNVs when 
considered independently 

Table 1 summarizes the set of natural selection features extracted for both pathogenic non-
coding SNVs and common SNVs without clinical assertions. Features gathered covered 
different evolutionary scales and can be classified as interspecies natural selection 
(considering vertebrates, mammals and primates, excluding human) or recent and ongoing 
natural selection in human. Second, features were categorized either as “position-based”, 
when they refer to the specific genomic position where the variant occurred, “window-level” 
when they refer to a given sequence interval centered in the SNVs, or “gene-level”, when they 
refer to the global characteristics of the closest protein-coding gene.  
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For the purpose of this work, features were group under three main sets (Table 1): A) inter-
species sequence conservation features at position and window level; B) recent and ongoing 
natural selection signals in human at position and window level; and C) gene-based features. 
Furthermore, we included 2 additional sets of features: D) the sequence context, i.e. GC and 
CpG content as well as information of the type of gene region (intronic, 5’UTR, 3’UTR, 
upstream, downstream and intergenic region); and E) epigenetic features such as histone 
modification marks, nucleosome position, open chromatin profiles and transcription factor 
binding sites (TFBS) profiles generated by the ENCODE project 51.	
We first checked the predictive ability of each individual feature to classify the n=737 high-
confident set of pathogenic non-coding SNVs associated to monogenic Mendelian disease 
genes from a ‘negative set’ of n=7370 randomly sampled common SNVs without clinical 
assertions and matched by region (Methods). Figure 2 shows the area under the receiver 
operating characteristic (AUROC) curve and the area under the Precision-Recall curve 
(AUPRC) obtained for each feature. The ranking of features according to both AUROC and 
AUPRC showed that predictive ability was dominated by interspecies sequence conservation 
features at position and window level (Category A), while only poor performances were 
observed for the rest of features when considered independently. 

 

Supervised learning of NCBoost based on a comprehensive set of ancient, recent and 
ongoing purifying selection signals in human 

NCBoost, a machine learning approach based on gradient tree boosting (Methods) was 
trained on a ‘positive set’ of n=283 high-confident set of pathogenic non-coding SNVs 
associated to monogenic Mendelian disease genes (randomly selecting one variant per gene 
out of the total n=737 initially obtained to avoid gene-level contamination of the training/testing 
sets; Figure 1C) and a ‘negative set’ of n=2830 randomly sampled common SNVs without 
clinical assertions, matched by region and allowing a maximum of one negative variant per 
gene (Methods). NCBoost is a bundle of 10 independently trained models, consecutively 
excluding in each of them 1 out of 10 genome partitions were ‘positive’ and ‘negative’ variants 
are evenly distributed. In such a way, each non-coding variant in a putative cis-regulatory 
region of a protein-coding gene may be scored in NCBoost by the model that excluded from 
its training all variants -either pathogenic or non-pathogenic- associated to the same gene. 
This strategy permits to reduce overfitting as well as to avoid biasing the score of newly seen 
variants by the fact that they mapped in the vicinity of variants and genes initially presented to 
the classifier. Therefore, NCBoost may be applied to score any set of non-coding variants in 
cis-regulatory regions with no contamination with the training set. Of note, the 10 models 
proved to be largely equivalent among them, as shown by the high correlation of their scores 
when applied to an independent set of variants excluded from their training (average 
Spearman correlation 0.96 ± 0.0111 of all pairwise comparisons among the 10 models; 
Methods). 

Six feature configurations were evaluated, including the following combinations of feature 
categories: A, B, A+B, A+B+C, A+B+C+D and A+B+C+D+E. The different NCBoost 
configurations were first tested mimicking a ten-fold cross-validation on the same n=283 high-
confidence pathogenic non-coding SNVs and n=2830 common variants. Figure 3 shows the 
area under the receiver operating characteristic (AUROC) curve and the area under the 
Precision-Recall curve (AUPRC) obtained for each of the six feature configurations. Best 
performance was reached by the model including ABCD features: AUROCABCD = 0,84 and 
AUPRCABCD=0,47. The figures represent a relative improvement of 9% (AUROC) and 42% 
(AUPRC) over a model based purely in interspecies sequence conservation features at 
position and window level. Results were consistent when NCBoost was trained and tested on 
positive variants from each of the 3 resources taken independently, i.e. HGMD-DM, Clinvar 
and Smedley’2016 (Figure S3A, S3B and S3C, respectively). 

The features importance analysis of NCBoost upon the explored feature configurations, 
revealed a balanced contribution of inter-species sequence conservation features at position 
and window level (Category A, cumulative importance in the ABCD configuration CIABCD= 
42%) and recent and ongoing natural selection signals in human at position and window level 
(Category B, CIABCD= 33%) collectively considered (Figure S4A and S4B). Such balance is 
observed in spite of the sharp differences in predictive ability observed across features when 
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considered independently (Figure 2). The collective feature importance of recent and ongoing 
natural selection signals in human is in turn much higher than what could be expected from 
the observed incremental performance obtained in the join model AB (interspecies and 
intraspecies selection) as compared to B (interspecies selection; Figure 3). Both previous 
observations are not merely the straightforward consequence of the correlation structure 
across features (Figure S5). The previous results show the capacity of a supervised learning 
approach using a regression tree to extract complex patterns of natural selection signals 
distinguishing pathogenic versus non-pathogenic non-coding variants. 	
Notably, in contrast with the state-of-the-art methods evaluated (Figure S2), the per-region 
distribution of NCBoost scores across the 737 high-confidence non-coding pathogenic 
variants and 4’960’178 common SNVs, showed a clearer separation of between pathogenic 
and common variants for all types of regions evaluated (Figure S6). Thus, the distributions of 
median scores per gene for common SNVs in 5’UTR was significantly lower (i.e. less severe) 
than that of pathogenic SNVs in all evaluated regions (i.e. intronic, 3’UTR, 5’UTR and 
upstream regions; two-sided Wilcoxon test p-values <1e-10; Table S3), with the exception of 
intergenic region due to the low sample size.  

 

Comparative benchmark against state-of-the-art methods 

NCBoost performance observed in Figure 3 (Configuration ABCD) was compared against the 
results of the 6 state-of-the-art methods considered in this work (i.e. CADD, DeepSEA, Eigen, 
Eigen-PC, FunSeq2 and ReMM) when applied on the same ‘positive’ and ‘negative set’ of 
SNVs (Figure 4). NCBoost outperformed all evaluated methods both regarding AUROC and 
AUPRC, with a relative improvement of 10% and 34% respectively over the 2nd ranked 
method (REMM), and of 13% and 104% over the 3rd ranked method (Eigen). We note here 
that REMM is a supervised learning method whose training set partially overlapped with the 
‘positive set’ of pathogenic non-coding SNVs variants used for testing here. Figures were 
consistent when the benchmark was performed on positive variants from each of the 3 
resources taken independently, i.e. HGMD-DM, Clinvar and Smedley’2016 (Figure S7A, S7B 
and S7C, respectively). 

The outperformance of NCBoost over reference methods was also observed when testing on 
the same ‘positive set’ of n=283 high-confident set of pathogenic non-coding SNVs as in 
Figure 4 and on a negative set that -rather than of common variants- is composed of 2830 
randomly selected rare variants (allele frequency < 1%) matched by region (Figure S8; 
Methods). This test allows ruling out the possibility that figures obtained in Figure 4 are 
merely explained by the capacity to discriminate rare from common variants, rather than 
pathogenic from non-pathogenic variants.  

In a more stringent set-up, we further explored the capacity of the different methods to 
discriminate pathogenic and non-pathogenic variants within the same non-coding region of a 
given gene. For this purpose, we restricted the previous testing to a set of 149 region-
matched pairs of pathogenic and random common variants associated to 54 unique genes 
(Figure S9). Figures obtained were consistent with those previously observed in Figure 4 
and Figure S8, further supporting the superior capacity of NCBoost to discriminate 
pathogenic variants as compared to reference methods. We note that both in Figure S8 and 
Figure S9, no re-training of NCBoost was done, but used the same NCBoost ABCD model 
trained as described in the previous section. 

 

Fully independent training and testing across all possible configurations of the three 
sources of high-confident non-coding pathogenic SNVs 

To further characterize the performance of the NCBoost approach upon different training and 
testing scenarios, we evaluated all possible configurations of the training and testing set upon 
the three sources of high-confident non-coding pathogenic SNVs, i.e: HGMD-DM, Clinvar and 
Smedley’2016. Thus, the ‘positive set’ of n=283 high-confident set of pathogenic non-coding 
SNVs and the associated ‘negative set’ of n=2830 common SNVs matched by region 
(Methods) were each split in two non-overlapping sets in three different ways according to 
the source of annotation (Table 2), that is: training on the pathogenic variants reported in one 
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source and testing on those in the other two sources not overlapping with the first one. In 
addition, we explored two additional configurations: training on variants reported in at least 
two sources and testing on those reported only in one single source, and the other way 
around. For each different training set, we retrained NCBoost as a bundle of 10 independently 
trained models, consecutively excluding in each of them 1 out of 10 genome partitions as 
previously done for the entire sets. We note again that a maximum of one positive and one 
negative variant per gene was allowed within the positive and negative sets, so that gene-
level contamination across the training and test sets is avoided. Table 2 shows the AUROC 
and AUPRC values obtained on each of the independent test sets when applying the 
corresponding NCBoost model. Consistently with previous sections, NCBoost outperformed 
the reference state-of-the-art methods under all training and testing scenarios evaluated. 
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Discussion 
 
In this work we implemented a supervised learning approach, so called NCBoost, to classify 
pathogenic SNVs based on a comprehensive set of features at the position, flanking region 
and gene level, associated to interspecies, recent and ongoing selection in human. When 
trained and tested on multiple configurations of high confidence sets of pathogenic non-coding 
SNVs associated to monogenic Mendelian disease genes, the approach showed superior 
performance than reference methods. Notable improvements were observed on precision-
recall rates. The context-specific assessment of natural selection signals permitted to 
overcome the pervasive regional bias observed in all evaluated reference methods, which e.g. 
tend to provide scores to non-pathogenic SNVs in 5’UTR not significantly different from the 
scores assigned to high-confident pathogenic SNVs in 3’UTR and intronic regions. 

The curation process showed that current sets of high confidence large-effect pathogenic non-
coding SNVs associated to monogenic Mendelian diseases are mostly constituted of proximal 
cis-regulatory variants associated to the closest protein-coding gene, in line with previous 
reports19. Such distribution most probably reflects a historical ascertainment bias towards such 
regions in previously described Mendelian genes, which is expected to be steadily overcome 
by unbiased WGS approaches 5. However, in the time being, the current status posses limits to 
the supervised learning and benchmark on distal cis- and trans- acting pathogenic regulatory 
variants with clinical implications in Mendelian diseases, and warns about the applicability of 
our approach and reference methods in such scope. 

The approach implemented allowed us to evaluate the ability to prioritize pathogenic non-
coding SNVs of recent and ongoing natural selection features in human when considered 
independently, collectively and in combination with interspecies conservation. While none of 
the features evaluated showed individual predictive strength (Figure 2), supervised learning 
performed through gradient tree boosting found complex patterns associated to pathogenic 
SNVs, reaching a significant performance combining multiple features (Figure 3). Detailed 
feature importance analysis showed a prominent contribution of recent and ongoing natural 
selection signals under all feature configurations evaluated. However, their final impact in the 
global performance of the classifier, while significant, is attenuated by the fact that some 
signals may be redundant with selective constrains already accounted for by interspecies 
conservation. Best figures were, nevertheless, obtained when the collective assessment of 
interspecies and intraspecies natural selection features was performed taking into 
consideration the sequence context where SNVs occurred, as informed by the selective signals 
accumulated by the associated gene and by the type of non-coding element involved.  

This work represents a proof-of-concept of the added value of incorporating a large and 
heterogeneous set of recent and ongoing natural selection features under a supervised 
machine learning approach for the detection of pathogenic non-coding SNVs associated to 
Mendelian diseases. The rapidly increasing sample size of current large-scale WGS projects in 
the general population is expected to have a major impact in the capacity to detect additional 
and more accurate recent and ongoing natural selection signals in human, with a consequent 
repercussion in their use to identify pathogenic non-coding variants, as recently illustrated 
32,56,57. 

In the last years, different large-scale projects have identified an important fraction of 
regulatory elements of the human genome, and the epigenetic insights are proving valuable 
to understand the functional consequences of disease-associated variants in those regions 16–

18. However, in the setting of this work, the small set of epigenetic features evaluated had only 
a minor contribution to the classification of pathogenic SNVs associated to Mendelian 
diseases, in line with the results of previous analysis 10,13,15. On the one hand, this may 
suggest that the epigenetic signals evaluated here are partially redundant with natural 
selection features; a more exhaustive extraction of epigenetic features is however beyond the 
scope of this work. On the other hand, it may reflect a lack of specificity in regards of the cell 
types and tissues relevant for the heterogeneous set of Mendelian diseases considered here. 
In this line, recent studies are consolidating a view of regulatory mechanisms that is highly 
cell type-specific, where gene expression, DNA methylation, histone modifications, promoter 
interaction networks and transcription factor binding sites may substantially vary across 
tissues and developmental stages 58–61. Thus, the assessment of non-coding variants in the 
context of Mendelian diseases may largely benefit from the integration of purifying selection 
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signals with the epigenetic information derived on the particular cell types, tissues and/or 
developmental time relevant for the onset and progression of a disease, as illustrated by 
recent successful examples 57,62. Notwithstanding, the identification of the specific cell type 
and tissue to be considered may be a challenging task, especially in the case of largely 
uncharacterized rare Mendelian diseases and syndromes. 

Recently, it was shown that the number of singleton variants found on each newly sequenced 
genome stabilizes on average at ~8’500, with regulatory elements highly enriched in the 
relative amount of SNVs found per kb of sequence 8. The large amount of rare variants in each 
individual genome, together with the typically low number of participants in the study of specific 
rare diseases, challenges the statistical power of downstream statistical association and/or 
linkage studies to associate a genotype with a phenotype. The scoring approaches evaluated 
in this work may help filtering variants to increase power, although they often need to be 
integrated within more comprehensive frameworks in order to reach the necessary sensitivity 
and specificity to identify causal variants in disease cohorts19. In addition to the use of 
epigenetic information previously discussed, variant filtering strategies include focusing on 
SNVs associated to genes of phenotypic relevance for the disease under consideration19,63. 
From a complementary perspective, gene-based or region-based aggregation tests of multiple 
variants (a class of rare variant association tests) have been developed to evaluate cumulative 
effects of multiple genetic variants in a gene or region, with the aim of increasing power 
when multiple variants are associated with a disease 64, e.g. burden tests and variance 
component tests implemented in popular software such as PLINK/SEQ and SKAT. In these 
approaches,  a continuous weight function can be used in the aggregation of rare variants in 
order to up-weight those predicted to have more damaging consequences.  A similar weighting 
strategy can be proposed for rare-variant extensions of the Transmission Disequilibrium Test in 
the analysis of parent-child trio data 65. In both previous families of statistical tests for rare 
variant analysis of WGS from Mendelian diseases studies, the pathogenic scores led by the 
supervised learning approach implemented in this work, NCBoost, may be used to weight the 
aggregation of candidate pathogenic SNVs across heterogeneous cis-regulatory elements in a 
consistent way.  
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Supplemental Data 
 
Supplemental Data include nine figures and three tables and can be found with this article 
online. 
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Table and Figure legends 
 
Table 1. Natural selection features associated to non-coding Single-Nucleotide 
Variants mined in this work. Features are classified under different categories depending 
on the sequence context (i.e. position level, window level and gene level) and evolutionary 
scale: interspecies (vertebrates, mammals and primates, excluding human), or recent and 
ongoing natural selection in human. We note here that the query variant was excluded from 
the calculations involving mean allele frequencies and mean heterozygosity of a given region, 
and that the variant allele frequency itself was not used as a feature in any training or 
pathogenicity prediction throughout the study. 
 
Table 2. AUROC and AUPRC values obtained by NCBoost upon different 
configurations of the training and independent test sets. The figures obtained by the 5 
state-of-the-art methods evaluated on the same test sets is shown together with NCboost.  
 
Figure 1. Curation of high-confidence pathogenic non-coding SNVs associated to 
monogenic Mendelian disease genes. A. Number of high-confidence pathogenic non-
coding SNVs obtained from the Human Gene Mutation Database 33 (HGMD-DM), Clinvar 34 
and Smedley’2016 19 (Methods), after filtering out SNVs overlapping exonic and splice sites 
of protein-coding genes and exons and introns of non-coding RNAs. Only high-confidence 
pathogenic non-coding variants associated to the same protein-coding gene by both the 
original resource and the annotation process done in this work (depicted in orange), were 
retained for downstream analysis. B. Retained variants in (A) were further classified 
according the OMIM category of the associated gene, i.e.: non-Mendelian disease gene, 
Mendelian disease gene associated to a disease phenotype differing from the one reported in 
the original resource (i.e. presenting a conflicting disease description), complex Mendelian 
disease genes and monogenic Mendelian disease genes. Only high-confidence pathogenic 
non-coding SNVs associated to monogenic Mendelian diseases with no homozygous 
individuals in GnomAD database 31 )depicted in green) were finally retained for downstream 
analyses. C. Distribution of the high-confidence pathogenic non-coding SNVs associated to 
monogenic Mendelian disease genes according to the type of gene region they overlap: 
intronic, 5’UTR, 3’UTR, upstream, downstream and intergenic regions. D. Distribution of the 
high-confidence pathogenic non-coding SNVs associated to monogenic Mendelian disease 
genes according to the original annotation source, i.e. HGMD-DM, Clinvar and Smedley’2016. 
E. Corresponding number of monogenic Mendelian disease genes collectively involved by 
SNVs in (D). The number of SNVs in each category is indicated inside the barplots and Venn 
diagrams together with the number of genes collectively involved (in parenthesis in A-C; totals 
are reported above each barplot).  
 
Figure 2. Performance of individual features mined in this work to classify high- 
confident set of pathogenic non-coding SNVs associated to monogenic Mendelian 
disease genes (n=737) from a ‘negative set’ of randomly sampled common SNVs 
without clinical assertions (n=7370) matched by region. The area under the receiver 
operating characteristic curve (AUROC; left panel) and the area under the Precision-Recall 
curve (AUPRC; right panel) obtained for each feature is represented. Features are gathered 
according to 5 categories (A-E; Methods), and ranked within category by decreasing AUROC 
and AUPRC. AUROC values <0,5 (anti-classifiers) were transformed in 1-AUROC values for 
the purpose of this figure and are indicated with an asterisk (*). Of note, population-specific 
GnomAD MAFs (Methods) are not shown for simplicity. 1 hot-encoded SNV region features 
(i.e. ‘intronic’, ‘UTR5’, ‘UTR3’, ‘upstream’, ‘downstream’ and ‘intergenic’) are gathered as a 
single feature labeled as 'region'. 
 
Figure 3. Comparative performance of NCboost models trained upon different sets of 
features. The figure represents the area under the receiver operating characteristic curve 
(AUROC; Panel A) and the area under the Precision-Recall curve (AUPRC; Panel B) 
obtained for each of the six feature configurations evaluated (feature categories A, B, A+B, 
A+B+C, A+B+C+D and A+B+C+D+E) when tested mimicking a ten-fold cross-validation on 
n=283 high-confidence pathogenic non-coding SNVs and n=2830 common variants without 
clinical assertions. 
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Figure 4: Comparative performance of NCBoost against state-of-the-art methods. 
Figure shows the represents the area under AUROC (Panel A) and the AUPRC (Panel B) 
obtained for NCBoost (configuration of features ABCD) together with 6 state-of-the-art 
methods (CADD, DeepSEA, Eigen, Eigen-PC, FunSeq2 and ReMM; Methods) when tested 
on the same set of ‘positive’ and ‘negative’ variants described for Figure 3. 
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Supplemental Table and Figure Legends 
 
Table S1. High-confidence pathogenic non-coding variants associated to monogenic 
Mendelian disease genes.  
 
Table S2. Variants randomly sampled from the set of common human SNVs without 
clinical assertion associated to protein-coding genes used as the non-pathogenic set 
for training and testing in this work. Sampling of variants was done to match the relative 
distribution across gene regions of the high-confidence pathogenic non-coding variants 
reported in Table S1.  
 
Table S3. Regional bias of pathogenic score distributions. Two-sided Wilcoxon test p-
values evaluating the null hypothesis that the per-gene median pathogenicity score 
distribution in 5’UTR for common non-coding SNVs is not different than the corresponding 
distribution for pathogenic variants in the 6 types of genomic regions evaluated, i.e: 
intergenic, intronic, 3’UTR, 5’UTR, upstream and downstream. The reported p-values are 
associated to the distributions represented in Figure S2. 
 
Figure S1. Relative enrichment of monogenic Mendelian disease genes associated to 
high-confidence pathogenic non-coding SNVs in haploinsufficient and dominant 
genes. Barplots showing the distribution of all monogenic Mendelian disease genes (n=3354; 
abbreviated as MMDG for the purpose of this figure) and those MMDG associated to high-
confidence pathogenic non-coding SNVs (n=283) among the following categories: A. 
Haploinsufficient genes from 54. B. Genes intolerant to heterozygous truncation (pLI>0.9 31). 
C. DOMINO gene predictions: recessive, likely recessive, rest, likely dominant, dominant 
(Methods). One-sided Fisher test p-values assessing the enrichment of monogenic 
Mendelian disease genes associated to high-confidence pathogenic non-coding SNVs in 
haploinsufficient and dominant genes were: 1.279e-09 (Panel A); 0.04107 (Panel B) and 
0.00172 (Panel C). 
 
Figure S2. Distribution of pathogenic scores of non-coding SNVs according to the 
affected type of genomic region. Boxplots in the panels show the genome-wide distribution 
of per-region median pathogenic scores of all non-coding SNVs associated to a given protein-
coding gene. Two sets of non-coding SNVs are represented: n=4’960’178 common SNVs 
without clinical assertions (collectively associated to 18196 protein-coding genes; in grey) and 
n=737 high-confidence non-coding pathogenic variants (collectively associated to 282 
monogenic Mendelian disease genes; in orange). Six types of genomic regions are depicted: 
intergenic, intronic, 3’UTR, 5’UTR, upstream and downstream regions of associated genes. 
The downstream region is however not represented in the case of pathogenic non-coding 
SNVs due to the low set size. Five pathogenicity scores are represented: A. CADD non-
coding score 9; B. DeepSEA functional significance score 13; C. Eigen score 15; D. FunSeq2 
score 11; and E. ReMM scores 19. The horizontal red line is depicted in each panel at the 
median value of the 5’UTR distribution for common non-coding SNVs. Table S3 reports the 
two-sided Wilcoxon test p-values evaluating the null hypothesis that the median pathogenicity 
score distribution in 5’UTR for common non-coding SNVs is not lower than the corresponding 
distribution for pathogenic variants in the 5 types of genomic regions evaluated, i.e: 
intergenic, intronic, 3’UTR, 5’UTR and upstream. 
 
Figure S3. Comparative performance of NCboost models trained upon different sets of 
features analyzed independently for each source of pathogenic variants. The figure 
represents the area under the receiver operating characteristic curve (AUROC; Left panels) 
and the area under the Precision-Recall curve (AUPRC; Right panels) obtained for each of 
the six feature configurations evaluated (feature categories A, B, A+B, A+B+C, A+B+C+D and 
A+B+C+D+E) when trained and tested mimicking a ten-fold cross-validation on high- 
confidence pathogenic non-coding SNVs from the HGMD-DM set (Panel A), Clinvar (Panel 
B) and Smedley’2016 (Panel C). 
 
Figure S4. Features importance analysis of NCBoost. A. Cumulative feature importance of 
the feature categories A-E under the six NCBoost feature configurations (A, B, A+B, A+B+C, 
A+B+C+D and A+B+C+D+E) when trained on n=283 high-confidence pathogenic non-coding 
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SNVs and n=2830 common variants without clinical assertions corresponding to the model 
performances represented in Figure 3. Cumulative importance values were averaged across 
the 10 independently trained models within the NCBoost bundle, consecutively excluding in 
each of them 1 of the 10-genome partitions as described in Methods. B. Mean and standard 
deviation of individual feature importance values across the 10 independently trained models 
within the NCBoost bundle (feature configuration ABCD), consecutively excluding in each of 
them 1 of the 10-genome partitions (Methods). 
 
Figure S5. Correlation structure among the features mined in the work. The figure shows 
the heatmap representation and associated hierarchical clustering of features based on their 
Spearman correlation values across the a set of SNVs composed of n=737 non-coding 
pathogenic variants associated to monogenic mendelian disease genes and n=7370 random 
common variants.  
 
Figure S6. Distribution of NCBoost scores of non-coding SNVs according to the 
affected type of genomic region. The figure represents the analogous distributions 
represented in Figure S2, this time for NCBoost scores. Boxplots in the panels show the 
genome-wide distribution of per-region median pathogenic scores of all non-coding SNVs 
associated to a given protein-coding gene. Two sets of non-coding SNVs are represented: 
n=4’960’178 common SNVs without clinical assertions (collectively associated to 18196 
protein-coding genes; in grey) and n=737 high-confidence non-coding pathogenic variants 
(collectively associated to 282 monogenic Mendelian disease genes; in orange). Six types of 
genomic regions are depicted: intergenic, intronic, 3’UTR, 5’UTR, upstream and downstream 
regions of associated genes. The downstream region is however not represented in the case 
of pathogenic non-coding SNVs due to the low set size. Table S3 reports the two-sided 
Wilcoxon test p-values evaluating the null hypothesis that the median pathogenicity score 
distribution in 5’UTR for common non-coding SNVs is not lower than the corresponding 
distribution for pathogenic variants in the 5 types of genomic regions evaluated, i.e: 
intergenic, intronic, 3’UTR, 5’UTR and upstream. 
 
Figure S7: Comparative performance of NCBoost against state-of-the-art methods 
analyzed independently for each source of pathogenic variants. Figure shows the the 
area under AUROC (Left panels) and the AUPRC (Right panels) obtained for NCBoost 
(feature configuration ABCD) together with 6 state-of-the-art methods (CADD, DeepSEA, 
Eigen, Eigen-PC, FunSeq2 and ReMM; Methods) when tested on high-confidence 
pathogenic non-coding SNVs from the HGMD-DM set (Panel A), Clinvar (Panel B) and 
Smedley’2016 (Panel C). The NCBoost model used in each panel as well as the 
corresponding ‘positive’ and ‘negative’ variants correspond to those described in Figure 4 for 
analogous panels. 
 
Figure S8. NCBoost capacity to discriminate pathogenic non-coding SNVs from 
randomly selected rare variants. Figure shows the represents the area under AUROC 
(Panel A) and the AUPRC (Panel B) obtained for NCBoost (configuration of features ABCD) 
together with 6 state-of-the-art methods (CADD, DeepSEA, Eigen, Eigen-PC, FunSeq2 and 
ReMM; Methods) when tested on the same ‘positive set’ of n=283 high-confident set of 
pathogenic non-coding SNVs as in Figure 4 and on a negative set that -rather than of 
common variants- is composed of 2830 randomly selected rare variants (allele frequency < 
1%) matched by region. We note that no re-training of NCBoost was done here but used the 
same NCBoost ABCD model trained as described for Figure 3 and Figure 4. 
 
Figure S9. NCBoost capacity to discriminate pathogenic and non-pathogenic variants 
within the same non-coding region of a given gene. Figure shows the represents the area 
under AUROC (Panel A) and the AUPRC (Panel B) obtained for NCBoost (configuration of 
features ABCD) together with 6 state-of-the-art methods (CADD, DeepSEA, Eigen, Eigen-PC, 
FunSeq2 and ReMM; Methods) when tested on a set of 149 region-matched pairs of 
pathogenic and random common variants associated to 54 unique genes.  We note that no 
re-training of NCBoost was done here but used the same NCBoost ABCD model trained as 
described for Figure 3 and Figure 4. 
.  
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Table 1. Natural selection features associated to non-coding Single-Nucleotide 
Variants mined in this work. 
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Position-
level 

Inter-species 
(Mammals) A GerpS 

Base-wise Rejected Substitution (RS) score defined by Genomic 
Evolutionary Rate Profiling (GERP++ scores) from mammalian 
alignments, excluding human  

40	
Inter-species 
(Mammals) A GerpN Neutral evolution score defined by GERP++, excluding human  40	

Recent and 
on-going in 

human 
B bStatistic 

b Statistic: Background selection score indicating the expected fraction 
of neutral diversity that is present at a site, with values close to 0 
representing near complete removal of diversity as a result of selection 
and values near 1 indicating little effect. B-statistic is based on human 
single nucleotide polymorphism (SNP) data from Perlegen Sciences, 
HapMap phase II, the SeattleSNPs NHLBI Program for Genomic 
Applications and the NIEHS Environmental Genome Project 

20	

Inter-species 
(Primates) A priPhCons Primate PhastCons conservation score, excluding human  37,38	

Inter-species 
(Mammals) A mamPhCons Mammalian PhastCons conservation scores, excluding human  13,14	

Inter-species 
(Vertebrates) A verPhCons Vertebrate PhastCons conservation score, excluding human  37,38	
Inter-species 

(Primates) A priPhyloP Primate PhyloP conservation score, excluding human  39	
Inter-species 
(Mammals) A mamPhyloP Mammalian PhyloP conservation score, excluding human  39	

Inter-species 
(Vertebrates) A verPhyloP Vertebrate PhyloP conservation score, excluding human  39	

1000 bp 
window 

On-going in 
human B meanDaf1000G Mean derived allele frequency of variants in 1kb window region 

calculated from the 1000 Genomes Project (excluding the query variant) 
10	

On-going in 
human B meanHet1000G Mean heterozygosity of 1kb window region calculated from the 1000 

Genomes Project (excluding the query variant) 
10	

On-going in 
human B meanMAF1000G Mean minor allele frequency of variants in 1kb flanking region calculated 

from 1000 Genomes Project (excluding the query variant) 
31	

On-going in 
human B 

meanMAFGnomAD 
meanMAF_AFRGnomAD 
meanMAF_AMRGnomAD 
meanMAF_EASGnomAD 
meanMAF_FINGnomAD 
meanMAF_NFEGnomAD 
meanMAF_OTHGnomAD 
meanMAF_ASJGnomAD 

Mean minor allele frequency of variants in 1kb window region calculated 
from GnomAD genome data (excluding the query variant from the 
calculation). Mean MAF was assessed for the global population and for 
population-specific frequencies: Africans and African Americans (AFR), 
Admixed Americans (AMR), East Asians (EAS), Finnish (FIN), Non-
Finnish Europeans (NFE), Ashkenazi Jewish (ASJ) and Other 
populations (OTH) 

 
31	

30 kb 
window  

Recent and 
on-going in 

human 
B 

TajimasD_CHB_pvalue 
TajimasD_CEU_pvalue  
TajimasD_YRI_pvalue  

Tajima’s D p-value: neutrality test that compares estimates of the 
number of segregating sites and the mean pair-wise difference between 
sequences. The test is performed within 3 subpopulations of the 1000 
Genome Project, producing population-specific scores. 

66	

30 kb 
window 

Recent and 
on-going in 

human 
B 

FuLisD_CEU_pvalue 
FuLisD_CHB_pvalue 
FuLisD_YRI_pvalue 
FuLisF_CEU_pvalue 
FuLisF_CHB_pvalue 
FuLisF_YRI_pvalue 

FuLi’S F* p-value:  neutrality test that compares the number of 
singletons with the average number of nucleotide differences between 
pairs of sequences. FuLi’s D* p-value: neutrality test that compares the 
number of singletons with the total number of mutations in a genomic 
region within a group. These tests are performed within 3 subpopulations 
of the 1000 Genome Project, producing population-specific scores. 

35	

10 bp 
window 

Recent and 
on-going in 

human 
B CDTS 

The Context-Dependent Tolerance Score (CDTS) represents the 
difference between observed and expected variations in Humans. The 
expected variation is computed for each nucleotide genome-wide as the 
probability of variation of each nucleotide depending on its 
heptanucleotide context. 

32	

75 bp 
flanking-
region 

N/A D GC Percent GC in a window of +/- 75bp 40	
N/A D CpG Percent CpG in a window of +/- 75bp 40	

G
en

e-
le

ve
l f

ea
tu

re
s 

Non-coding 
region of the 

closest 
gene (*) 

On-going in 
human C ncRVIS 

Non-coding RVIS, s a measure of the departure from the genome-wide 
average number of common variants found in the noncoding sequence 
of genes with a similar amount of noncoding mutational burden in 
human. ncRVIS was computed on an in-house collection of whole 
genome sequencing of 690 individuals. 

48	

Inter-species 
(Mammals) C ncGERP Average GERP++ score across a gene’s noncoding sequence  48	

Coding 
region of the 

closest 
gene 

Inter-species 
(Primates) C dN/dS Primate dN/dS ratio, providing a measure of the coding-sequence 

conservation across primates 
45	

On-going in 
human C pLI 

Probability of being loss-of-function intolerant (intolerant of heterozygous 
and homozygous loss-of-function variants), assessed from the ExAC 
database. 

31	
On-going in 

human C RVIS percentile 
Residual Variation Intolerance Score (RVIS) percentile, a measure of the 
departure from the average number of common functional mutations in 
genes with a similar amount of mutational burden in human. 

47	
On-going in 

human C GDI Gene Damage Index, a gene-level metric of the mutational damage that 
has accumulated in the general population, based on CADD scores 

46	
Phylo-
genetic 
gene 

features 

N/A C familyMemberCount  Number of human paralogs of the gene: Family member count (FMC) in 
OGEE database 

50	
N/A C gene_age The gene age is estimating the origination time of genes from the 

presence or absence of orthologs in the vertebrate phylogeny. 
49	

 
bp: base pairs ; GERP (Genomic Evolutionary Rate Profiling); RS: Rejected Substitution 
(*) Non-coding region of the closes gene defined in the original publication of ncRVIS and ncGERP as the collection of 5'-UTR, 3'-UTR and an additional 
non-exonic 250bp upstream of transcription start site (TSS). N/A: Not applicable	  
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Table 2. AUROC and AUPRC values obtained by NCBoost upon different 
configurations of the training and independent test sets. 
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HGMD-DM 186 ! HGMD-DM 97 0,76 0,67 0,78 0,67 0,74 0,82 0,24 0,16 0,23 0,15 0,26 0,36 

CV 107 !CV 176 0,74 0,72 0,73 0,68 0,77 0,78 0,31 0,27 0,24 0,15 0,37 0,38 

Smedley 78 !Smedley 205 0,72 0,69 0,73 0,66 0,75 0,78 0,25 0,24 0,21 0,14 0,31 0,36 

>= 2 sources 73 1 source 210 0,72 0,68 0,73 0,66 0,75 0,78 0,24 0,23 0,21 0,14 0,31 0,31 

1 source 210 >= 2 sources 73 0,81 0,8 0,82 0,77 0,82 0,85 0,43 0,31 0,29 0,24 0,48 0,52 
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Figure 3 
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Figure 4 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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Figure S7 
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Figure S8 
	
A.                                                    B. 
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Figure S9 
	
A.                                                    B. 
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Table S3 
	

 
Common SNVs Pathogenic SNVs 
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CADD <1E-16 <1E-16 <1E-16 <1E-16 <1E-16 0,125 3,59E-03 0,814 1,46E-10 6,21E-06 

FunSeq2 <1E-16 <1E-16 <1E-16 <1E-16 <1E-16 0,0112 0,014 0,436 1,96E-07 4,98E-03 

DeepSEA <1E-16 <1E-16 <1E-16 <1E-16 <1E-16 0,301 3,16E-05 0,427 9,78E-12 1,60E-07 

Eigen <1E-16 <1E-16 <1E-16 <1E-16 <1E-16 0,175 4,09E-05 0,685 7,94E-14 1,02E-04 

ReMM <1E-16 <1E-16 <1E-16 <1E-16 <1E-16 0,919 3,49E-02 0,391 <1E-16 1,73E-09 

NCBoost <1E-16 <1E-16 <1E-16 4,98E-10 <1E-16 0,767 <1E-16 9,39E-11 <1E-16 <1E-16 
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