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The patterns and mechanisms of collective decision making in humans and animals have attracted
both empirical and theoretical attention. Of particular interest has been the variety of social feed-
back rules, and the extent to which these behavioural rules can be explained and predicted from
theories of rational estimation and decision making. However, models that aim to model the full
range of social information use have incorporated ad hoc departures from rational decision-making
theory to explain the apparent stochasticity and variability of behaviour. In this paper I develop a
model of social information use and collective decision making by fully rational agents that reveals
how a wide range of apparently stochastic social decision rules emerge from fundamental information
asymmetries both between individuals, and between the decision-makers and the observer of those
decisions. As well as showing that rational decision making is consistent with empirical observations
of collective behaviour, this model makes several testable predictions about how individuals make
decisions in groups, and offers a valuable perspective on how we view sources of variability in animal,
and human, behaviour.

INTRODUCTION

ollective decision making is a ubiquitous task for social
animal species, including humans [1]. Whether deciding
where to forage, which nest site to choose or when to
move, individual decisions are greatly informed by ob-
serving the choices that others make. As recently as
2008, Ward et al. [2] were able to state that ‘little is
known about the mechanisms underlying decision mak-
ing in vertebrate animal groups’. Since then, however,
a large literature has explored the rules governing so-
cial information use in collective decisions across various
taxa, for example in insects [3], fish [2, 4], birds [5, 6]
and mammals [7, 8], including primates [9] and humans
[10, 11]. What links decision making in all of these groups
is the presence of social reinforcement, with individuals
demonstrating a strong preference for an option chosen
by others, which increases with the number of others who
have selected it. This reinforcement can be expressed as
a social response function – the probability of selecting
a given option conditioned on the number of other indi-
viduals that have previously chosen it. A large degree
of variation has been observed in these social response
functions, ranging from linear relationships (e.g. [3, 12]),
to strongly non-linear ‘quorum’ rules [13], where the ap-
parent attractiveness of an option appears to increase ex-
ponentially with the number of individuals choosing it,
before saturating as this number passes a ‘quorum’ level.
In addition to variation between taxa, studies have also
highlighted how the same species can exhibit different
patterns of collective behaviour under different labora-
tory or field conditions [14–17] highlighting the potential
importance of context-dependent social responses.

Complementing these empirical studies, mathematical
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theories have been developed to explain why these so-
cial decision rules take the form observed. For exam-
ple, Easley and Kleinberg [18] proposed a toy model
for understanding collective decision making in a group
of rational agents. This model, illustrated by the ex-
ample of an individual selecting a restaurant to eat at,
demonstrated how easily an unbreakable consensus deci-
sion could emerge, once the cumulative social informa-
tion provided by past choices outweighs any new quality
signal an uncommitted individual might receive. More
recent work has attempted to build a fully descriptive
model of such collective decision making by considering
the purportedly rational beliefs and decisions of agents
exposed to the social information provided by choices of
others [19, 20], and the studies have been successful in
reproducing the observed response functions in a variety
of taxa including insects [20], fish [19–21] and birds [5, 6].
Recent extensions of these models have also considered
how social responses might vary as a result of changes in
environmental context [22].

However, while these models have had success in re-
producing the observed features of collective decisions,
this has been at the cost of internal consistency as the-
ories of rational behaviour. An agent’s decision involves
two components: (i) an estimation stage, where the fo-
cal agent forms beliefs about the quality of its options,
and (ii) a decision rule, which specifies how the agent
acts based on those beliefs. In the first stage the models
present a broadly coherent theory of estimation based
on Bayesian updating. However, beliefs are restricted
to statements about whether options are ‘good’ or ‘bad’
(or ‘best’ [19]). This binary categorisation does not fully
capture the range of possibilities that individuals face
in expected-utility maximising, rational behaviour [23].
Choices made under uncertainty are characterised by
risk-reward trade-offs, and it is not clear how these can
be translated into a simple ‘good’ or ‘bad’ dichotomy,
or how decisions should be made on the basis of such a
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classification. The second stage of these models, the deci-
sion rule, introduces further departures from rationality.
Here agents are assumed to select options probabilisti-
cally based on the results of the estimation stage. Such
non-deterministic behaviour is inconsistent with the idea
of individuals as rational agents. This problem emerges
as a result of a confusion regarding the sources of ob-
servational uncertainty in empirical studies. Because the
decisions made are typically not predictable with cer-
tainty by an observer or experimenter, they are them-
selves deemed to be stochastic. Instead, this uncertainty
can be understood by incorporating the viewpoint of the
observer into the theory. The observer makes measure-
ments of the physical and social environment that only
imperfectly capture the information observed by the fo-
cal decision maker (or not observed, for example in the
case of visual occlusion). From this one can recognise
that the inability of the observer to predict individuals’
decisions arises from the limited access they have to the
information driving those actions, not from fundamen-
tally stochastic behaviour by the agents themselves.

Why should we be concerned about departures from
rationality in these models? Given established critiques
of rational-agent models [24, 25], should we not be more
concerned about whether these models are consistent
with empirical measurements? To this objection there
are two responses. The first is that rational-agent mod-
els provide a baseline from which to measure departures
from rationality. These departures are interesting be-
cause they indicate either where an evolutionary process
has been unable to produce an optimal solution, or where
other factors, such as cognitive cost, have produced a
trade-off. Such departures can only be detected if we
understand what genuinely rational behaviour looks like.
The second response concerns the purported goals of pre-
vious work. One can find a reasonable empirical match
to any observed social response by choosing an appropri-
ate parametrisation of a sufficiently flexible mathematical
function. It has been the explicit goal of theoretical work
in this area [19, 20] to understand how these responses
emerge from logical consideration of the individuals’ own
estimations and actions as rational decision makers. My
goal here is to fully explore the consequences of the ratio-
nality assumption to show where data can (and cannot)
be explained by this fundamental principle.

This paper develops a model of collective decision mak-
ing by identical, rational agents, based on three funda-
mental principles: (i) individuals behave as expected-
utility maximising agents, based on their own beliefs
about the world; (ii) each individual’s beliefs are gen-
erated from the public and private information that they
have access to, using Bayesian probability updating; and
(iii) empirical observation of individuals’ actions is un-
dertaken by an observer who has their own private infor-
mation as well as the public social information on which
to base predictions and interpretations of individual be-
haviour. The resulting model reproduces the key success-
ful aspects of previous research, while making additional,

testable predictions about social information use that are
not accounted for in existing theory.

THEORY

Consider the classic paradigm of a group faced with a
sequential, binary decision. That is, a sequence of n iden-
tical individuals choose between option A and option B,
and can see the choices made by those ahead of them.
Such a context is well approximated empirically by, for
example, Y-maze experiments (e.g. [2, 26]) where indi-
viduals are asked to choose between two competing arms
of a maze. I develop a mathematical framework for cal-
culating the optimal choice for each individual, based on
private information that they alone observe, and public
information constituted by the observable choices made
by others. I also derive mathematical expressions for
the probability that an outside observer (such as an ex-
perimental scientist) will observe an individual making
a particular choice, conditioned on what that observer
can know about the system and the focal individual. As
noted above, incorporating the observer explicitly is key
to understanding the source of observational uncertainty
in a fundamentally deterministic model.

Rational choice

I start from the assumption that each of the two op-
tions each has a true utility, UA for option A and UB for
option B. These utilities may also be understood as fit-
ness consequences of the decision in terms of evolutionary
adaptation [27]. Since the individuals are assumed to be
identical, these utilities are the same for all. These true
utilities are unknown, but each individual, i ∈ 1, . . . , n,
can estimate the utility of each choice based on the spe-
cific information, Ii that they possess. Following the rules
of Bayesian-rational decision making [23], I assert that
individual i will choose option A if and only if the ex-
pected utility of A is greater than that of B, according to
i’s estimation. Let x = UA − UB be the true difference
in utilities, then:

P (i→ A | Ii) =

{
1, if

∫∞
−∞ xp(x | Ii)dx > 0

0, otherwise
(1)

where p(x | Ii) is a probability density representing indi-
vidual i’s personal belief about x.

Private and public information

What information does individual i have? I assume
that Ii is composed of two parts, private and public.
First, there is direct sensory information that i can per-
ceive from the two options. For example, a foraging in-
dividual may perceive differing food odours from A and
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B, or a prey animal may see differing patterns of shad-
ows that suggest one choice is more likely to lead to a
predator. This is the individual’s private information.
Secondly, if i > 1, then individual i can see the choices
made by any other individual j, where j < i. This is
public information – it is available to all individuals who
still wait to make their choice. In common with previous
work [19, 20] I make the important assumption that the
choices of others provide information about the relative
utilities of A and B, but do not influence the true values
of these utilities. That is, an option does not become
good simply because others have chosen it. In making
this assumption I exclude phenomena such as predation-
dilution effects [28], where the presence of conspecifics is
itself desirable, or foraging competition [29], where the
presence of other individuals lowers the utility of a given
option.

Prior belief

Before an individual receives any information regard-
ing the utility difference, x, I assume that they have no
reason to favour option A or B (any such reason should
count as private information). I ascribe to them a prior
belief regarding the values that x may take, and by sym-
metry centre this on zero. I further assume that by envi-
ronmental habituation (either genetic or experience) they
have an intrinsic idea of the scale of possible utility dif-
ferences between competing choices. In this paper I will
assume that prior beliefs follow a normal distribution,
and without loss of generality we can measure utilities in
units that set this variance of this distribution to one:

p(x) =
1√
2π

exp(−x2) = φ(x). (2)

Hereafter I use φ(x) to refer to the standard normal dis-
tribution density function. Throughout this paper I will
assume that information and expectations about the en-
vironment are normally distributed. This assumption is
likely to hold well for low-level sensory information such
as detecting food or predators, but may be less appro-
priate for more cognitively advanced tasks. The model
development detailed here can be followed for any alter-
native distribution of interest.

Private information

Individual i has access to private information that gives
a noisy estimate of x. This may be via visual, olfactory
or other sensory stimuli, but here I model this as an ab-
stract quantity, ∆i, that is generated stochastically by
the environment based on the real utility difference x,
and a noise variance ν2 due to both the latent sources of
environmental noise (e.g. air currents disrupting olfac-
tory gradients) and limitations of an individual’s sensory

apparatus. Mathematically, ∆i is normally distributed
with mean x and variance ν2:

p(∆i | x) = φ((∆i − x)/ν) (3)

Individual i revises their belief about x in the light of
their private information using Bayes’ rule:

p(x | ∆i) ∝ p(∆i | x)p(x)

∝ φ((∆i − x)/ν)φ(x)
(4)

Consider the case of the first decision-maker, i = 1. This
individual has no public, social information to draw on,
and bases their estimate of x entirely on their private
information, ∆1. For the purposes of making a rational
decision, the important quantity for them to evaluate is
the sign of the expected utility difference, E(x | ∆1):

E(x | ∆1) =

∫ ∞
−∞

xp(x | ∆i)dx

∝
∫ ∞
−∞

xφ((∆1 − x)/ν)φ(x)dx

(5)

It is clear that E(x | ∆1) > 0 iff ∆1 > 0, and therefore
that the sign of individual 1’s private information dictates
which option it will choose.

Social information

Having determined that the first decision-maker uses
the sign of their private information to make their choice,
I now consider the case of the second and subsequent
decision-makers. Individual 2 begins its estimation of
x in the same manner as individual 1, by updating its
original prior belief (which is identical for all agents),
using its own private information, ∆2:

p(x | ∆2) ∝ φ((∆2 − x)/ν)φ(x) (6)

What information does the choice of individual 1 provide
to individual 2? Since the choice of individual 1 does not
change the true utilities of the options, its choice can only
influence the estimation of individual 2 by giving infor-
mation about the private information that individual 1
received. If individual 1 were to communicate its private
information directly to individual 2, then the second in-
dividual could update its belief based on this new data.
However, imagine that individual 1 has chosen option
A. Individual 2 does not know what private information
individual 1 has received, but can only infer from the ob-
served resulting choice that ∆1 > 0. Therefore it must
consider all possible values of the ∆1 that the first indi-
vidual may have observed, weighted by probability, and
adjust its belief accordingly. Let C1 = 1 indicate that
individual 1 chose option A (and conversely C1 = −1 for
option B), then:

p(x | C1 = 1,∆2) ∝ p(x | ∆2)P (C1 = 1 | x)

∝ p(x | ∆2)P (∆1 > 0 | x)

∝ φ((∆2 − x)/ν)Φ(x/ν)φ(x)

(7)
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where Φ(z) =
∫ z

−∞ φ(t)dt is the cumulative distribution
function of the standard normal distribution. Similarly,
if individual 1 had chosen B, then individual 2 would
make the estimation:

p(x | C1 = −1,∆2) ∝ φ((∆2 − x)/ν)Φ(−x/ν)φ(x) (8)

The decision of individual 2 is now governed by their
expected value of x. Define ∆∗2 such that:

E(x | C1,∆
∗
2) = 0

⇒
∫ ∞
−∞

xφ((∆∗2 − x)/ν)Φ(C1x/ν)φ(x)dx = 0
(9)

Individual 2 will now choose option A iff ∆2 > ∆∗2, im-
plying that E(x | C1,∆

∗
2) > 0.

Subsequent decisions

To complete our view of how social information is used
we need to consider the viewpoint of the third individual
(assuming n > 2). This individual must consider not only
the decisions made by individuals 1 and 2 in conjunction
with its own private information, but also the order in
which these decisions were made. As with all individuals,
I begin by updating the universal prior, using individual
3’s private information:

p(x | ∆3) ∝ φ((∆3 − x)/ν)φ(x) (10)

Individual 3 can also update its belief based on the choice
of individual 1, in exactly the same manner as individual
2:

p(x | C1,∆3) ∝ φ((∆3 − x)/ν)Φ(C1x/ν)φ(x). (11)

Now individual 3 needs to update its belief based on the
decision made by individual 2, C2:

p(x | C1, C2,∆3) ∝ P (C2 | x,C1)p(x | C1,∆3) (12)

In order to evaluate the first term on the right hand side,
individual 3 needs to adopt the viewpoint of individual
2 and calculate the critical value ∆∗2 based on C1. Then,
from individual 3’s perspective, the the probability of
choice C2 is:

P (C2 = 1 | x,C1) = P (∆2 > ∆∗2 | x)

= Φ((x−∆∗2)/ν).
(13)

Similarly, P (C2 = −1 | x,C1) = Φ(−(x−∆∗2)/ν). Hence,
individual updates its belief based on C2 to:

p(x | C1, C2,∆3) ∝ φ((∆3 − x)/ν)Φ(C1x/ν)

×Φ(C2(x−∆∗2)/ν)φ(x)
(14)

As with individual 2, we can thus evaluate a critical value,
∆∗3, defined by:∫ ∞
−∞

xφ((∆∗3−x)/ν)Φ(C1x/ν)Φ(C2(x−∆∗2)/ν)φ(x)dx = 0.

(15)

Individual 3 will now choose option A iff ∆3 > ∆∗3. By
iteratively proceeding in similar fashion we can deter-
mine the belief of individual i, based on its private infor-
mation and the observed choices of previous individuals,
C1, . . . , Ci−1:

p(x | C1, . . . , Ci−1,∆i) ∝φ((∆i − x)/ν)φ(x)

×
i−1∏
j=1

Φ(Cj(x−∆∗j )/ν),
(16)

and ∫ ∞
−∞

xp(x | C1, . . . , Cj−1∆∗j )dx = 0, (17)

and I define ∆∗1 = 0.

Observation

So far I have discussed how each individual uses pri-
vate and public information to make a rational, expected-
utility maximising decision. Now I consider the perspec-
tive as an observer of this process. As an observer, one
is able to observe the same public, social information
available to the individuals themselves – the sequence of
decisions. However, the observer’s viewpoint differs in
two ways. First, they have no access to the private in-
formation of any individual. Secondly, they may have
knowledge about the true environmental conditions. For
example, they may have designed an experiment such
that x = UA − UB = 0, e.g. a Y-maze with symmetrical
arms. Furthermore, especially in a laboratory setting,
they may have altered the environment, such that noise
levels differ from those that the individuals are habitu-
ated to.

Assume that true values of x and ν2, and also the noise
variance of the experimental environment, η2 are known.
How can we calculate the probability that a individual
i will make a specific choice? First, we can follow the
calculations above for that individual, to determine the
critical value ∆∗i , based on the observed previous deci-
sions. We can then evaluate the probability, conditioned
on the known x and η2, that individual i’s private infor-
mation will exceed this value:

P (Ci = 1 | x, η, C1, . . . Ci−1) = P (∆i > ∆∗i | x, η)

= Φ((x−∆∗i )/η).
(18)

Although this equation provides the probability that the
observed decision will be a particular option, it implies
no non-deterministic behaviour; the uncertainty encoded
by the probability is purely a consequence of the ob-
server not sharing the same information as the focal
decision-maker. Note that the information provided by
C1, . . . Ci−1 is encoded in the calculated value of ∆∗i .
Since each critical value depends iteratively on those be-
fore, this is determined by the order of decisions made,
as well as the aggregate numbers choosing A and B.
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Unordered social information

Observers not only have differing information from the
individuals under observation, they also make choices
about how to measure and record behaviour. As an
example of this: the majority of previous studies have
largely ignored the precise order of previous decisions
made when measuring social responses. For comparison
with this previous work, we can consider what we, the
observer, would predict about the decision of individual
i, conditioned on knowing only the number of previous
individuals choosing A (nA) and B (nB). This requires
us to consider the set of all possible sequences, C that
obey result in nA, nB , and to sum over the probability
that each of these is the sequence to led to the current
arrangement. This summation, combined with the deci-
sion rule for each specific sequence derived above, then
gives the probability that next choice will be either A
or B, conditioned on this unordered observation of social
information.

P (Ci | nA, nB , x, η) =
∑
C
P (Ci | x, η, C1, . . . Ci−1)

× P (C1, . . . Ci−1 | x, η)

(19)

Note, this calculation assumes that the individuals them-
selves are aware of the order in which decisions were
made, but that the observer has been unable to record
these or has chosen not to do so.

Conflicting information

Several experimental studies have investigated scenar-
ios where a conflict is introduced between an individual’s
private and social information, in order to identify the
relative strengths of the two factors. For example, in
such an experiment each individual may be trained in
advance to associate food with one of two or more differ-
ent colour or pattern. Individuals with different trained
associations are then placed in a group and presented
with a decision where each option has a colour or pat-
tern signal (see e.g. [30]).

This scenario can be simulated by giving each agent
private information drawn from a mixture of two con-
flicting distributions:

p(∆i | x) =
1

2
[φ((∆i − z/2)/η) + φ((∆i + z/2)/η)] ,

(20)
where z is the magnitude of the conflict in information,
and η is again the experimental noise level. These two
parameters indicate respectively how strong the training
has indicated the utility difference is (e.g. the amount
or quality of food provided), and the reliability of the
signal (e.g. whether the food was always provided in the
same quantities). With each individual’s private informa-
tion drawn from this mixture distribution, a simulation
of the group’s aggregate behaviour can follow as above.

It should be noted here I am still assuming that the in-
dividual decision-makers have identical utility functions;
the conflict between them is solely on the level of the
information they have received, and not one of differing
preferences.

RESULTS

In this section I consider a variety of possible experi-
mental and field study scenarios that illustrate the key
predictions of the model.

Role of environmental signal to noise ratio

I begin by considering an experimental field study in
the habitual environment of the decision-makers. In this
case the decision-maker’s previous experience gives them
reliable prior information about typical signal and noise
levels in their environment, while the observer can ex-
perimentally control the true utilities of possible choices.
I analysed the expected behaviour when the decision-
makers are confronted with a symmetrical binary choice
in which the true utility difference is zero: UA−UB = 0.
I calculated the probability that the next decision maker
would choose option A, conditioned on different previ-
ous decision sequences, and for a range of environmental
noise/signal ratios. This analysis, illustrated in Figure
1 shows that environmental noise levels have little ef-
fect on the predicted choice probabilities, displaying only
a slightly inflection at a ratio of one. This result can
be understood intuitively by noting that higher ambi-
ent noise levels reduce the reliability of both private and
public information – the decision-maker should trust its
own information less, since it may result from noise,but
should also recognise that the decisions of others are also
more likely to be incorrect. These two effects almost per-
fectly balance in this analysis for a wide range of possible
noise/signal ratios. Since the environmental noise/signal
ratio has little effect on behaviour, I set it to a value of
ν = 1 henceforth for simplicity.

Observed social interaction rules

My model gives the probability that a focal individ-
ual will make a given choice conditioned on any ordered
sequence of previous decisions. However, in practice re-
searchers are often either unable to observe this precise
sequence, or choose to ignore the details of the order in
which decisions were made, focusing instead only on the
number of individuals who have previously chosen A or B
in aggregate. To make comparisons between the theory
developed here and previous work, I therefore calculated
the expected observations on this aggregated level by
considering all possible sequences of previous choices that
could have led to an aggregate state nA, nB (see equation
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FIG. 1. Consistency of predicted decisions across environ-
mental noise/signal ratios, for a range of possible observed
past decision sequence. Each line is labelled with the cor-
responding sequence of past decision. The black line shows
cases with one previous decision maker, blue lines two and
red lines three respectively.

19). To illustrate the predicted observations a researcher
would make in such an experiment, we consider two hy-
pothetical experiments, each with ten individuals and in
which the ambient noise level matches that of the habit-
ual environment. The first experiment uses symmetric
options (x = UA − UB = 0) The predicted observations
made in these experiments are shown in Figure 2. Panel
A shows the probability that a focal decision maker will
choose option A, conditioned on known nA and nB . Con-
tour lines of equal probability show a radial pattern that
is suggestive of Weber’s Law of relative differences [31].
To illustrate this further, panel B shows how the proba-
bility of choosing option A varies with the relative pro-
portion of previous decisions: (nA)/(nA + nB). We see
that the results averaged over all possible sequences (red
points) show a very close linear trend. However, this ap-
parently simple relationship results from the weighted
average of sequence-specific probabilities, shown with
black points, where larger points indicate more proba-
ble sequences. Evaluating the probability of generating
each possible sequence of decisions, we can determine the
probability for the final value of nA after all decisions
have been made (panel C). This exhibits the classic U-
shaped distribution that is characteristic of observations
in many collective decision-making studies (e.g [13]). At
first glance this result conflicts with the pattern in panel
B – a sequence of decisions made according to Weber’s
Law would be expected to results in a uniform distri-
bution equal probabilites for final values of nA (see [32]).
This apparent contradiction is resolved by noting that the

linear relationship in panel B does not hold as a decision
rule in its own right, but only as the average behaviour
aggregated over many possible sequences of decisions us-
ing the true behavioural rules shown in equations 16 and
17. This highlights how apparently straightforward anal-
ysis of empirical data may lead to erroneous conclusions
about underlying behavioural mechanisms.

In addition to a symmetric experimental setup, I also
consider a hypothetical experiment in which one option
is objectively better than the other, for example through
the presence of food (e.g. [33]), or the absence of a preda-
tor (e.g. [26]). In this example I assume that option A

is better, and set x = UA − UB =
√

2/π. This value is
equivalent to the average absolute difference in utilities in
the habitual environment, and thus represents a ‘typical’
decision for the agents to make. I made predictions of
the observed decisions made by ten agents as in the sym-
metric case, the results of which are shown in Figure 2
D-F. In this case we see that, as expected, decisions sys-
tematically favour the higher utility option. As above,
the decisions observed as a function of nA and nB hide a
broader variety of social contexts defined by the ordering
of decisions (panel E).

Context specificity

The hypothetical experiment above was assumed to
take place in an environment where noise levels were
the same as the decision-makers’ habitual experience. I
showed that this habitual noise level did not in itself have
a strong influence on predicted decisions – individuals ha-
bituated to noisy environments should be no more or less
likely follow one another in their own environment than
those from less noisy habitats. But what if individuals
are removed from their own habitat and placed in an un-
familiar environment? As an example, consider collecting
fish which usually shoal in somewhat murky and strongly
odoured rivers or lakes, and placing these in clear water
in a uniform, plastic experimental arena (e.g [13, 26, 34–
36] and many others). What impact might this change
have on their behaviour? One possibility is that a severe
change of environment may lead to erratic or pathological
behaviour as a result of distress or disorientation, which
I do not account for here. Another possibility is that the
fish continue to follow social interaction rules that have
evolved to be near-optimal in their own habitat, without
accounting for the changed context.

In the relatively sterile laboratory conditions, the am-
bient levels of noise such as stray odours may be far lower
than in the wild. In combination with a symmetrical ex-
perimental setup as above (UA = UB), this means that an
individual is less likely to observe private information of
a sufficient magnitude to contradict the apparent social
information provided by its conspecifics, and will there-
fore be more inclined to aggregate with and follow these
other individuals than it would in the wild. Conversely,
a strongly-lit laboratory environment may introduce a
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FIG. 2. Results of a two hypothetical studies of collective decision making. Panels A-C show predicted observations made
from a symmetric experimental setup (x = 0), while panels D-F show those predicted from an experiment in which option

A is superior by an amount typical in the habitual environment (x =
√

2/π): (A, D) the probability, from the perspective
of an external observer, that a focal agent will choose option A, conditioned on the number of agents, nA, nB , previously
choosing options A and B respectively; (B, E) the probability of the focal agent selecting option A against the proportion
of previous agents selecting A; red points indicate the average across all possible sequences of previous choices, while black
points indicate probabilities conditioned on specific sequences (discretised to intervals of 0.05), with larger points indicating
more likely sequences. The average trend shows the relationship that would be observed in an experiment where sequence
information was discarded; (C, F) the probability of possible aggregate outcomes, defined as the number of agents in total that
will select option A, showing the high probability of consensus decisions, and of collectively choosing the higher-utility option
in the asymmetric scenario.

greater intensity of visual noise simply by virtue of the
greater overall intensity of visual stimulation. I explic-
itly calculate the effect that experimental noise has using
equation 18, varying the ratio between experimental and
habitual noise levels. That is, I assume that the agents
continue to act rationally in the belief that noise levels
remain at those their habitual environment, while in fact
the noise levels depart from this baseline. As shown in
Figure 3, I find as expected that lower experimental noise
levels increase the tendency to follow the majority (panels
A, B), resulting in a greater aggregate consensus (panels
E, F). Higher noise levels reduce the weight of social in-
formation (panels C, D) and thus prevent consensus from
emerging (panel G, H). Conversely this means that for a
given experimental noise level, individuals from noisier

habitual environments are expected to aggregate more
strongly and behave more socially than those from habi-
tats with less noise.

Dynamic social information

As noted previously, the predictions my model makes
about the decision a focal individual will make, con-
ditioned on the available public information, depends
strongly on the precise order in which previous deci-
sions were made. To investigate this further, I now fo-
cus on the relative importance of the most recent de-
cision in particular. Using equations 16, 17 and 18, I
calculated the probability, in a symmetric experimental
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FIG. 3. The effect of varying the experimental noise level. Panels A-D show the social response function for hypothetical
experiments with noise levels in the ratios η = 1/3, 2/3, 3/2 and 3 relative to the habitual environment. As in Figure 2, red
points indicate the average observed response, while black points indicate specific sequences of past decisions, with size indicating
the relative probability of each sequence. Panels E-H show the corresponding aggregate outcome for each experimental noise
level. Social response and aggregate cohesion is stronger in experiments with noise levels lower than the habitual environment
(η < 1), and correspondingly weaker in experiments with greater noise levels (η > 1).

setup, that a focal individual will choose option A, con-
ditioned on previous sequences of decisions of the form
C = {−1,−1, . . . , 1}. That is, sequences in which the
most recent previous decision was option A, after a series
of individuals choosing B. In most models such sequences
– with many individuals choosing B and only one choos-
ing A – would result in a high probability that the focal
individual would choose B, following the majority. By
contrast, as shown in figure 4, I predict that the focal
individual is most likely to choose A, regardless on the
weight of the majority for B. While longer series of earlier
choices for B do make the probability to select A some-
what lower, this nonetheless always remains above 0.5.
This result might initially appear counter-intuitive: why
should the social information provided by a large major-
ity of other individuals be outweighed by one recent de-
cision? However, this neatly illustrates the consequences
of taking seriously the idea of identical, rational agents.
The focal individual, observing the most recent decision,
must conclude that the individual making that decision
has observed private information which is sufficient to
outweigh all the previous public social information. The
focal individual cannot observe this private information
directly, but since the agents are identical it can infer that
had it seen this information itself, it would have made
the same decision. Therefore it must conclude, prior to
observing its own private information, that the available
public information is now in favour of A. Since, in a sym-
metric implementation of the model with UA = UB , the

focal individual’s private information is equally likely to
favour either choice, the observational prediction is that
the most-recent decision will be followed on the majority
of occasions, regardless of the overall number of previous
choices made for either option.

Conflicting information

I considered a scenario of 10 individuals that receive
conflicting private information according to equation 20.
I evaluated the probability of each possible aggregate out-
come at each of twenty different magnitudes of conflict
between z = 0 and z = 10, and five different experimen-
tal noise levels of η = 1/3, 2/3, 1, 3/2 and 3. The results,
shown in Figure 5, show the degree of group consensus
for each scenario, between zero (individuals split between
two options equally) and one (all individuals choosing the
same option). As already shown above, consensus is not
guaranteed even when conflict is zero, and noisier ex-
perimental setups tend to reduce consensus. Increasing
the magnitude of conflict decreases the expected degree
of consensus. With sufficient conflict consensus breaks
down entirely and each individual simply follows its own
private information, leading to consensus values in line
with those expected from a binomial distribution (dashed
line). For high noise conditions the decline of consensus
is gradual from an initially low value, whereas in low
noise conditions there is a clearer transition from con-
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FIG. 4. Predicted probability for a focal individual to choose
option A, conditioned a sequence of past decisions of the form:
B,. . . , B,A, evaluated for a range of experimental to habitual
noise ratios (labelled by line). In all cases the probability
to choose A remains above 0.5, regardless of the size of the
majority choosing B.

sensus to independent decision making. When training
information is highly reliable compared to that found in
the habitual environment (η = 1/3) this transition is very
sharp, and the intermediate range between full consensus
and completely independent decisions is very narrow.

DISCUSSION

I have developed a model of collective animal decision
making based on perfectly rational individual decisions
by identical individuals in the context of private and pub-
lic information. Using this model I have explored the con-
sequences of rational decision making, from the perspec-
tive of an observer who also has only partial information
about individuals under observation. The results shown
here demonstrate fundamental similarities both to ear-
lier models of collective decision making, and to the key
features of observed behaviour across a variety of taxa
[20].

Formulating this model focused attention on the
under-appreciated role of the observer and experimen-
tal context in understanding why animals under study
make particular observed choices. Specifically, I have
shown that even when agents themselves are purely ratio-
nal (and therefore act deterministically on their own in-
formation), their actions appear random to the observer
as a result of the agents’ private information. Further-
more, the observer potentially influences both the be-
haviour of the individuals under study (through their
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FIG. 5. The degree of consensus in groups when individuals
receive conflicting information, as a function of the magni-
tude of information conflict and the experimental noise level
(η). The dashed line shows the expectation from a binomial
distribution where each individual chooses independently

control of experimental conditions) and the interpreta-
tion of behaviour observed (through their choice of what
to measure). Both of these aspects of observation are
under-appreciated in the collective behaviour literature,
and are potentially responsible for a substantial propor-
tion of the variance in empirical observations. It should
be noted that this perspective does not imply that the
actual process being observed is dependent on the ob-
server. Two different observers making measurements of
the same experiment will observe the same decisions be-
ing made, but they may come to different conclusions
depending on what they know about the experimental
setup, and what they choose to measure.

This model predicts that the decision-making process
is context specific. To the degree that laboratory con-
ditions represent a lower noise environment than the
wild, I anticipate that observed social tendencies will be
more pronounced than in the wild. In human behaviour,
this offers an explanation for why individuals exposed
to social information in laboratory experiments exhibit
stronger effect sizes than those exposed in more naturalis-
tic environments [16]; the laboratory environment is sub-
ject to less spurious information that can contradict the
social information presented. A recent study of context-
dependent collective behaviour in sticklebacks also found
that these fish were more cohesive in featureless environ-
ments than those with more distractions such as food
or plant cover. The model also offers an ecological ex-
planation for the differing social behaviours observed in
different species in similar contexts. For example, Aron
et al. [37] found that Argentine ants (L. humile) showed
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a stronger preference for social information over private
information compared to garden ants (L. niger), and re-
flected that this may be explained by the differing ecology
of these two species: Argentine ants are restless migrators
feeding on novel food sources (a high noise/signal envi-
ronment), while garden ants are sedentary and feed on
well-established food sources (a low noise/signal environ-
ment). In similar laboratory conditions, L. humile there-
fore arguably experiences a greater reduction in noise
relative to its habitual environment, leading to a pre-
diction of stronger social behaviour. Similarly, Wright
et al. [38] found that wild-strain zebrafish exhibited a
stronger shoaling tendency than laboratory-strain speci-
mens when both were tested in the same laboratory en-
vironment. This was attributed to differences in preda-
tion risk but could also reflect informational differences
in each strain’s habitual environment.

One should, therefore, be careful when interpreting dif-
ferences in laboratory behaviour between species from
different environments, as this may betoken differing con-
trasts between the laboratory and the wild, rather than
different habitual levels of sociality. With the develop-
ment of increasingly advanced tracking technology, re-
searchers have recently re-oriented towards studying an-
imal behaviour in the wild [39–41], and to studying hu-
man social behaviour outside of the laboratory [42–44].
This study supports this trend; collective behaviour in
the wild may vary significantly from that in the lab, and
understanding natural behaviour thus requires studying
the animals in their habitual environment. An interest-
ing corollary of this finding is that social behaviour may
be expected to change and become more apparently ra-
tional in the laboratory over time in cognitively-plastic
species such as humans, as they habituate to the new
environment. Indicative results of such an effect in a
related domain have been shown for example by Burton-
Chellew, Nax & West [45], who found that initially ‘irra-
tional’ pro-social behaviour by players in a public goods
game become more ‘rationally’ self-serving as the game
was repeated many times under the same laboratory con-
ditions. Whether or not similar plasticity is seen in the
laboratory use of social information is worthy of further
study.

I also investigated how context specificity affects be-
haviour when individuals are given conflicting informa-
tion, for example through training prior to the experi-
ment. I found that in laboratory conditions where com-
plete consensus decision making is the norm (low noise
relative to the habitual environment), the reaction of in-
dividuals to conflicting information is predicted to be
strongly non-linear with respect to the magnitude of the
conflict, with a sharp transition between consensus and
independent decision making. However, this transition,
which might be observed as a critical threshold in the
laboratory, would be less clearly observed in more natu-
ral conditions (η = 1), where the model predicts a more
gradual decline in the degree of consensus achieved as
the magnitude of conflict is increased. Again, this high-

lights how behaviours observed in laboratory experiments
may not be directly translatable to wild behaviour. Fur-
thermore, I have shown that collective decision making
with conflicting information depends on both the magni-
tude and reliability of the information individuals receive,
whereas previous studies have often treated these distinct
informational features ambiguously in force-based mod-
els of collective decision making (e.g. [46, 47]).

Comparing the model predictions and experimental
studies highlighted a further important data analysis con-
sideration. I measured how individual decisions varied
in the context of how many others had previously cho-
sen different options, but without any information about
the sequence of those choices. In the symmetric case,
agents exhibited an apparent social interaction that de-
pended linearly on the number of other individuals choos-
ing either option – a Weber’s law response function. The
linearity of this relationship is apparently at odds with
the strong tendency to consensus at the aggregate level.
Perna et al. noted the same apparent conflict in their
experimental study of trail formation in ants [3]. They
proposed that the conflict could be resolved through the
introduction of stochastic noise in the decision-making
process. In contrast, I have shown that this conflict can
be be resolved within a rational model by focusing on the
importance of ordering in the sequence of previous deci-
sions. The sequence of decisions has often been ignored
in previous work or relegated to additional material not
central to the study’s key insights; this model forces us
to recognise the central place that ordering has in under-
standing rational social behaviour. As shown by Perna,
Gregoire & Mann [48], inferred social responses depend
intimately on how social context and behaviour are mea-
sured. The results shown here should reiterate that so-
called ‘model-free’ data-driven analysis [49] is an illusion
– even when no model is specified, it is implicit in the
choices made by researchers regarding what to measure.

Looking more closely at the effect of ordering also re-
vealed testable predictions about the use of social infor-
mation for which few existing data are available. Specif-
ically, the model predicts that social information associ-
ated with the most recent decision makers should have an
overwhelming impact on the focal agent. Excluding their
own private information, a focal agent should always con-
clude that the total social information favours the most
recent decision made, precisely because they must believe
that, as identical rational agents, they would have made
the same decision given the same information. From an
observational perspective this means that we should ex-
pect to see the most recent decision being more predic-
tive of the next decision than the aggregate numbers of
previous choices. To the best of my knowledge no ex-
periment has previously tested this specific hypothesis.
However, some suggestive evidence of such an effect has
been seen in at least one previous study [50], where deci-
sions by humbug damselfish to switch between two coral
regions were best predicted by the most recent movement
of a conspecific. Preferential following of recent decision
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makers may also help to explain the sensitivity of groups
to changes of movement by relatively few initiators and
the corresponding prevalence of ‘false alarms’ in groups
of prey animals [51]. However, reliably inferring such
a behavioural rule from observational data is difficult –
potentially unknown information driving the most recent
decision-makers choice may also be influencing the focal
individual. The prediction that the most recent deci-
sions provide the most salient social information could
be tested experimentally by inducing a conflict between
the most-recently observable decision and the majority
of previous decisions, for example through the use of ar-
tificial substitute conspecifics (e.g. [52, 53]).

Real-world animal species, including humans, only ap-
proximate perfect rationality [24, 54] and typically only
in contexts in which adaptation has taken place. A model
of rational behaviour should not be mistaken for a de-

tailed understanding of biological cognition: behaviour
results from biological processes that are subject to evo-
lutionary pressure and physical constraints, and under-
standing the these biological mechanisms will be impor-
tant in gaining further understanding of how animals
cognitively represent and process social information [55].
Nonetheless, the results of this study serve an important
purpose. Assumptions of rationality and optimality are
an important tool in understanding adaptive behaviour.
These assumptions, when posited [19, 20], should be fol-
lowed to their logical conclusion. Otherwise, it is impossi-
ble to determine, by comparing predictions and empirical
data, whether or not observed behaviour supports them.
Precisely because departures from rationality are of such
profound interest to biologists, economists and psychol-
ogists, it is important to be precise in identifying what
those departures are.
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I. Fürtbauer, Trends in ecology & evolution 33, 347
(2018).

[42] N. Eagle and A. Pentland, Personal and ubiquitous com-
puting 10, 255 (2006).

[43] S. D. Levitt and J. A. List, Journal of Economic perspec-
tives 21, 153 (2007).

[44] V. Spaiser, D. Luzatti, and A. Gregoriou, Data Science
(2018), 10.3233/DS-180014.

[45] M. N. Burton-Chellew, H. H. Nax, and S. A. West, Pro-
ceedings of the Royal Society of London B: Biological
Sciences 282, 20142678 (2015).

[46] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin,

Nature 433, 513 (2005).
[47] I. Couzin, C. Ioannou, G. Demirel, T. Gross, C. Torney,

A. Hartnett, L. Conradt, S. Levin, and N. Leonard, Sci-
ence 334, 1578 (2011).
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