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ABSTRACT  7 

Recent studies have demonstrated that task success signals can modulate behavioral changes during 8 

sensorimotor adaptation tasks, primarily through the engagement of explicit processes. In a series of 9 

reaching experiments with human participants, we explore a potential interaction between reward-10 

based learning and implicit adaptation, using a method in which feedback is not contingent on task 11 

performance. We varied the size of the target to compare conditions in which visual feedback indicated 12 

an invariant angular error that either hit or missed the target. Hitting the target attenuated the behavioral 13 

changes from adaptation, an effect we attribute to the generation of an intrinsic reward signal. We 14 

evaluated two models, one in which reward and adaptation systems operate in parallel, and a second in 15 

which reward acts directly on the adaptation system. The results favor the latter, consistent with 16 

evidence showing communication, and possible overlap, between neural substrates underlying reward-17 

based learning and sensorimotor adaptation. 18 

 19 

 20 

INTRODUCTION  21 

Multiple learning systems contribute to successful goal-directed actions in the face of changing 22 

physiological states, body structures, and environments (Huberdeau, Krakauer, & Haith, 2015; 23 

McDougle, Ivry, & Taylor, 2016; Jordan A. Taylor & Ivry, 2014). Among these different learning 24 

processes, implicit sensorimotor adaptation is of primary importance for maintaining appropriate 25 

calibration of sensorimotor maps over both short and long timescales. A large body of work has 26 

focused on how sensory prediction error (SPE), the difference between predicted and actual sensory 27 

feedback, drives sensorimotor adaptation (Shadmehr, Smith, & Krakauer, 2010). In addition to 28 
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 2 

sensorimotor adaptation, there is growing awareness of how reward-based learning contributes to 29 

motor control. While several recent studies have shown that rewarding successful actions alone is 30 

sufficient for the learning of perturbations (Izawa & Shadmehr, 2011; Therrien, Wolpert, & Bastian, 31 

2016, 2018), little is known about how rewards impact implicit adaptation. Thus, a central question 32 

remains as to how learning systems tuned to SPE versus those tuned to rewards interact during motor 33 

tasks.  34 

 35 

Despite utilizing very similar task paradigms, initial studies have led to an inconsistent picture of how 36 

reward impacts performance in sensorimotor adaptation tasks. For example, in two separate 37 

visuomotor rotation studies using similar task paradigms and reward structures, the first study reported 38 

no effect of reward on adaptation rates but an enhancement of motor memory due to rewards (Galea, 39 

Mallia, Rothwell, & Diedrichsen, 2015), while the second reported a beneficial effect of rewards 40 

specifically on adaptation rate (Nikooyan & Ahmed, 2015). In a more recent study, however, 41 

manipulation of reward attenuated overall learning (Leow, Marinovic, & Carroll, 2018).  42 

 43 

One factor that may contribute to these inconsistencies is highlighted by recent work showing that, 44 

even in relatively simple sensorimotor adaptation tasks, overall behavior reflects a combination of 45 

explicit and implicit processes (Jordan A. Taylor & Ivry, 2011; Jordan A. Taylor, Krakauer, & Ivry, 2014). 46 

Unless the explicit component is directly assayed (Jordan A. Taylor et al., 2014), measures of 47 

adaptation can be confounded by explicit aiming. That is, while the SPE is thought to drive adaptation 48 

(Tseng, Diedrichsen, Krakauer, Shadmehr, & Bastian, 2007), participants are often also consciously 49 

aware of the perturbation and decide to aim in order to compensate for it, thereby improving task 50 

performance. It may be that reward promotes the activation of explicit processes, which can be more 51 

flexibly implemented depending on the task demands (Bond & Taylor, 2015). A recent study provides 52 

evidence for this hypothesis (Codol, Holland, & Galea, 2017), showing that at least one of the putative 53 

effects of reward, the strengthening of motor memories (Shmuelof et al., 2012), is primarily the result of 54 
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 3 

the re-instantiation of explicit aiming strategies as opposed to a direct modulation of adaptation. As 55 

explicit learning is much more flexibly implemented and sensitive to task demands than implicit 56 

adaptation (Bond & Taylor, 2015), differential demands on strategies are likely to contribute toward the 57 

inconsistent effects reported across studies manipulating reward (Holland, Codol, & Galea, 2018).  58 

  59 

A recently developed method, referred to as clamped visual feedback, isolates implicit adaptation from 60 

an invariant visual error signal (Morehead, Taylor, Parvin, & Ivry, 2017). During the clamp, the angular 61 

trajectory of a feedback cursor is invariant with respect to the target location and thus spatially 62 

independent of hand position (Kim, Morehead, Parvin, Moazzezi, & Ivry, 2018; Morehead et al., 2017; 63 

Shmuelof et al., 2012; Vandevoorde & Orban de Xivry, 2018; Vaswani et al., 2015). Participants’ 64 

knowledge of the visual perturbation and instructions to ignore it are intended to prevent any explicit 65 

aiming, thus allowing a clean probe of implicit adaptation (Morehead et al., 2017).  66 

 67 

Here, we employ the clamp method to better understand how rewards may affect implicit adaptation 68 

from SPE, without interference from explicit aiming strategies. In a series of three experiments, the 69 

clamp offset was held constant and only the size of the target was manipulated, affecting whether the 70 

cursor would hit or miss the target. Thus, we were able to experimentally manipulate both the putative 71 

SPE (angular offset of clamp) and the reward (hitting versus not hitting the target). We assume that 72 

hitting the target would be intrinsically rewarding (Leow et al., 2018; Xu-Wilson, Zee, & Shadmehr, 73 

2009), even though participants are explicitly aware that hitting the target is independent of their actual 74 

performance. Given this assumption, we ask how reward impacts adaptation from a constant SPE.  75 

 76 

The results of the first two experiments revealed a strong attenuation of adaptation when the cursor hit 77 

the target. Based on these results, in Experiment 3 we evaluated two hypotheses regarding the 78 

mechanism by which intrinsic rewards affect adaptation. We hypothesized that either intrinsic reward 79 

activates reward-based reinforcement in parallel to SPE-driven adaptation, with movement being the 80 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 4 

net result of these two independent processes (Movement Reinforcement model), or intrinsic reward 81 

directly modulates adaptation (Adaptation Modulation model). Our results provide support for the latter, 82 

although our model-based analyses suggest there may be a mixture of both mechanisms. 83 

 84 

RESULTS 85 

In all experiments we used clamped visual feedback, in which the angular trajectory of a feedback 86 

cursor is invariant with respect to the target location and thus spatially independent of hand position 87 

(Morehead et al., 2017; Fig. 1a). The instructions emphasized that the participant’s behavior would not 88 

influence the cursor trajectory: They were to ignore this stimulus and always aim directly for the target. 89 

This method allows us to isolate implicit learning from an invariant SPE, eliminating potential 90 

contributions from strategic changes that might be used to reduce task performance error. 91 

 92 

In Experiment 1, we asked whether hitting the target under conditions in which the feedback is not 93 

contingent on behavior would modulate adaptation, based on the assumption that this would be 94 

intrinsically rewarding. We tested three groups of participants (n=16/group) with a 3.5° clamp offset for 95 

80 cycles (8 targets per cycle). The purpose of this experiment was to examine the effects of three 96 

different relationships between the clamp and target while holding the visual error (defined as the 97 

center-to-center distance between the cursor and target) constant (Fig. 1b): Hit Target (when the 98 

terminal position of the clamped cursor is fully embedded within a 16 mm diameter target), Straddle 99 

Target (when roughly half of the cursor falls within a 9.8 mm target, with the remaining part outside the 100 

target), Miss Target (when the cursor is fully outside a 6 mm target). As seen in Fig. 1d, hitting the 101 

target reduced the overall change in behavior. Statistically, there was a marginal difference on the rate 102 

of initial adaptation (one-way ANOVA: F(2,45)=2.67, p=.08, h2=.11; Fig. 1e) and a significant effect on 103 

late learning (F(2,45)=4.44, p=.016, h2=.17; Fig. 1f). For the latter measure, the value for the Hit Target 104 

group was approximately 35% lower than for the Straddle and Miss Target groups, with post-hoc 105 
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comparisons confirming the substantial differences in late learning between the Hit Target and both the 106 

Straddle Target (95% CI [-16.13°, -2.34°], t(30)=-2.73, p=.010, d=.97) and Miss Target (95% CI [-107 

16.76°, -2.79°], t(30)=-2.86, p=.008, d=1.01) groups. The learning functions for the Straddle and Miss 108 

Target groups were remarkably similar throughout the entire clamp block and reached similar 109 

magnitudes of late learning (95% CI [-7.90°, 8.97°], t(30)=.13, p=.898, d=.05).  110 

 111 

Interestingly, these results appear qualitatively different to those observed when manipulating the 112 

clamp offset. Our previous study using clamped visual feedback demonstrated that varying clamp offset 113 

alone results in different early learning rates, but produces the same magnitude of late learning (Kim et 114 

al., 2018). The results here in Experiment 1 however, suggest that the intrinsically rewarding feedback 115 

associated with hitting the target results in small differences in early learning that are amplified in late 116 

learning. Furthermore, the effect of intrinsic reward appears to be categorical, as it was only observed 117 

for the condition in which the cursor was fully embedded within the target (Hit Target), and not when the 118 

terminal position of the cursor fell partially outside the target (Straddle Target).   119 
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 120 

 121 
 122 
Figure 1 Hitting the target attenuates adaptation from SPE. (a) During clamped visual feedback, the 123 
angular offset of the cursor feedback is held constant throughout the perturbation block. Despite 124 
participants’ knowledge of the clamp, this manipulation elicits robust changes in hand angle. (b) The 125 
clamp offset was equal across all three conditions tested in Experiment 1, with only the target size 126 
varying between conditions. (c) Block design for experiment. (d) There was attenuation of adaptation in 127 
the Hit Target condition, observed in the (e) early adaptation rate (the per cycle rate of change in hand 128 
angle during clamp cycles 3-7), and more dramatically in (f) late learning (mean hand angle over last 10 129 
clamp cycles). Dots represent individuals; shading and error bars denote SEM. 130 
 131 

Experiment 2  132 

Experiment 2 was designed to extend the results of Experiment 1 in two ways: First, to verify that the 133 

effect of hitting a target generalized to other contexts, we changed the size of the clamp offset. We 134 
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 7 

tested two groups of participants (n=16/group) with a 1.75° clamp offset. For the Hit Target group (Fig. 135 

2a), we used the large 16 mm target, and thus, the cursor was again fully embedded. For the Straddle 136 

Target group, we used the small 6 mm diameter target, resulting in an endpoint configuration in which 137 

the cursor was approximately half within the target and half outside the target. We did not test a Miss 138 

Target condition because having the clamped cursor land fully outside the target would have 139 

necessitated an impractically small target (~1.4 mm). Moreover, the results of Experiment 1 indicate 140 

that this condition is functionally equivalent to the Straddle Target group. The second methodological 141 

change was made to better assess asymptotic adaptation. We increased the number of clamped 142 

reaches to each location to 220 (reducing the number of target locations to four to keep the experiment 143 

within a 1.5 hour session). This resulted in a nearly three-fold increase in the number of clamped 144 

reaches per location. 145 

 146 

Consistent with the results of Experiment 1, the Hit Target group showed an attenuated learning 147 

function compared to the Straddle Target group (Fig. 2b). Statistically, there was again only a marginal 148 

difference in the rate of early adaptation (95% CI [-.52°/cycle, .01°/cycle], t(30)=-1.96, p=.06, d=.69; Fig. 149 

2c), whereas the difference in late learning was quite pronounced (95% CI [-11.38°, -1.25°], t(30)=-150 

2.54, p=.016, d=.90; Fig. 2d). Indeed, the 35% attenuation in asymptote for the Hit Target group 151 

compared to the Straddle Target group is approximately equal to that observed in Experiment 1. 152 

  153 
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 154 

Figure 2 The attenuation of adaptation caused by hitting the target (a) generalizes to a different clamp 155 
offset and is stable over an extended clamp block (b). There were marginal differences in (c) early 156 
adaptation rates and (d) a significant difference in the magnitude of late learning. Dots represent 157 
individuals; shading and error bars denote SEM. 158 
 159 
 160 

The results of these first two experiments converge in showing that adaptation from SPE is attenuated 161 

when the cursor hits the target, relative to conditions in which at least part of the cursor falls outside the 162 

target. This effect replicated across two experiments that used different clamp offsets.  163 

 164 

Attenuated behavioral changes are not due to differences in motor planning 165 

Although we interpret the attenuation of behavioral change as the effect of an intrinsic reward signal, 166 

generated in the Hit Target conditions, there are some alternative explanations for the effect of target 167 

size on adaptation. We aim to address these alternatives by analyzing the kinematic data in 168 

Experiments 1 and 2.  169 

 170 

One alternative is that participants in the Hit Target groups had reduced accuracy demands relative to 171 

the other groups, given that they were reaching to a larger target (Soechting, 1984). If the accuracy 172 

demands were reduced for these large targets, then the motor command could be more variable, 173 

resulting in more variable sensory predictions from a forward model, and thus a weaker SPE (Körding & 174 

Wolpert, 2004; see Fig. 3). While we do not have direct measures of planning noise, a reasonable 175 
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proxy can be obtained by examining movement variability during unperturbed baseline trials (data from 176 

clamped trials would be problematic given the induced change in behavior). If there is substantially 177 

more noise in the plan for the larger target, then the variability of hand angles should be higher in this 178 

group (Churchland, Afshar, & Shenoy, 2006). In addition, one may expect faster movement times (or 179 

peak velocities) and/or reaction times for reaches to the larger target, assuming a speed-accuracy 180 

tradeoff (Fitts' law; Fitts, 1992).  181 

 182 

Figure 3 Adaptation could be affected by different factors, such as perceptual uncertainty or greater 183 
variability in motor planning. In the case of perceptual uncertainty, the feedback signal is weakened, 184 
thus leading to a weaker SPE signal. In the case of noisy motor planning, the forward model prediction 185 
would also be more variable and effectively weaken the SPE.  186 
 187 

Examination of kinematic and temporal variables did not support this noisy motor plan hypothesis. 188 

During baseline trials with veridical feedback, mean spatial variability, measured in terms of hand angle, 189 

was actually lower for the group reaching to the larger target (Hit Target group: 3.09° ± .18°; Straddle 190 

Target group: 3.56° ± .16°; t(30)=-1.99 p=.056, d=0.70). Further supporting the argument that planning 191 

was no different across conditions, neither reaction times (Hit Target: 378 ± 22 ms; Straddle Target: 192 

373 ± 12 ms) nor movement times (Hit Target: 149 ± 8 ms; Straddle Target: 157 ± 8 ms) differed 193 

between the groups (t(30)=-0.183, p=.856, d=.06  and t(30)=0.71, p=.484, d=.25, respectively). 194 

Qualitatively similar results for baseline behavior were observed in Experiment 1 (see Supplement). 195 

 196 

One reason for not observing an effect of target size on accuracy or temporal measures could be due 197 

to the constraints of the task. Studies which observe effects of target size on motor planning typically 198 

utilize point-to-point movements (Knill, Bondada, & Chhabra, 2011; Soechting, 1984) in which accuracy 199 
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requires planning of both movement direction and extent. In our experiments, we utilized shooting 200 

movements, thus minimizing demands on the control of movement extent. Endpoint variability is 201 

generally larger for movement extent compared to movement direction (Gordon, Ghilardi, & Ghez, 202 

1994). It is possible that participants are near ceiling-level performance in terms of hand angle 203 

variability. Another reason for the absence of a speed accuracy trade-off in the current experiment 204 

could be that with the clamp method, participants do not receive task performance feedback throughout 205 

the experiment. 206 

 207 

A second alternative to the intrinsic reward hypothesis is that participants adapted less during Hit 208 

Target conditions due to perceptual uncertainty, an idea we test in a control condition in Experiment 3. 209 

 210 

Experiment 3 211 

Based on the results of Experiments 1 and 2, we considered two ways in which an intrinsic reward, 212 

generated by hitting the target, could attenuate the rate and asymptotic level of learning. First, intrinsic 213 

reward could act as a positive reinforcement signal, strengthening the representation of rewarded 214 

movements (Shmuelof et al., 2012) (Fig. 4a, Movement Reinforcement model). This would effectively 215 

operate as a resistance to the directional change in hand angle induced by SPEs, since the reward 216 

would reinforce the executed motor command. By this model, intrinsic reward has no direct effect on 217 

the adaptation process, in that reward and error-based learning are operating in parallel, with the final 218 

movement being a composite of two different processes. Alternatively, intrinsic reward might directly 219 

modulate adaptation, attenuating the trial-to-trial change induced by the SPE (Fig. 4b, Adaptation 220 

Modulation model). For example, the reward signal might serve as a gain controller, reducing the rate 221 

at which an internal model is updated, attenuating the learning drive. 222 

 223 
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 224 

Figure 4 Two models of how intrinsic reward could affect overall learning. (a) In the Movement 225 
Reinforcement model, reward signals cause reinforcement learning processes to bias future 226 
movements towards previously rewarded movements. The adaptation process is sensitive only to SPE 227 
and not reward. The overall movement reflects a composite of the two processes. (b) In the Adaptation 228 
Modulation model, reward directly attenuates adaptation to SPE. 229 
 230 
 231 

The experimental designa employed in Experiments 1 and 2 cannot distinguish between these two 232 

hypotheses because both make similar predictions when the clamp is introduced. In the Movement 233 

Reinforcement model, the attenuated asymptote arises because movements are rewarded throughout, 234 

including during early learning, biasing future movements towards baseline. The Adaptation Modulation 235 

model makes a similar prediction, but here the effect arises because the adaptation system is directly 236 

attenuated.  237 

 238 

However, a transfer design in which the target size changes after an initial adaptation phase affords an 239 

opportunity to contrast the two models. In Experiment 3, we tested a group of participants (n=12) with a 240 

1.75° clamp, using the design depicted in Fig. 5a (Straddle-to-Hit group). In an initial acquisition phase 241 

(first 120 clamp cycles), the target was small, such that the clamp always straddled the target. Based 242 

on the results of Experiments 1 and 2, we expect to observe a relatively large change in hand angle at 243 

the end of this phase. The key test comes during the transfer phase (final 80 clamp cycles), in which 244 

the target size is increased such that the invariant clamp now results in a target hit. By the Movement 245 
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Reinforcement model, hitting the target will produce an intrinsic reward signal, reinforcing the 246 

associated movement. Therefore, there should be no change in performance (hand angle) following 247 

transfer: The SPE remains the same, and with the introduction of a reward signal, the executed 248 

movements would now be reinforced (Fig. 5b). In contrast, the Adaptation Modulation model assumes 249 

that the introduction of the reward signal will directly attenuate the output of the adaptation system. As 250 

such, this model predicts a marked decay in hand angles following transfer, relative to the initial 251 

asymptote. 252 

 253 

In addition to the Straddle-to-Hit group described above, we also tested a second group (n=12) in which 254 

the large target (reward) was used in the acquisition phase and the small target (no reward) in the 255 

transfer phase (Hit-to-Straddle group). Both models make the same predictions for the Hit-to-Straddle 256 

group. At the end of the acquisition phase, there should be a relatively small change in hand angle due 257 

to the presence of an intrinsic reward signal. Following transfer, the Movement Reinforcement model 258 

predicts that, with the switch to the small target, the intrinsic reward signal will now be absent, 259 

weakening the contribution of the reward-based system to the motor output. As such, there should be 260 

an increase in hand angle following transfer. The Adaptation Modulation model predicts a similar 261 

change in behavior due to the removal of the direct inhibitory effect of the reward system on adaptation 262 

following transfer. Although this group in isolation does not discriminate between the models, it does 263 

provide a second test of each model, as well as an opportunity to rule out alternative hypotheses for the 264 

behavioral effects at transfer. For example, the absence of a change at transfer might be due to 265 

reduced sensitivity to the clamp following a long initial acquisition phase. With the Hit-to-Straddle group, 266 

both models predict a marked increase in hand angle. 267 

 268 

For our analyses, we first examined performance during the acquisition phase (Fig. 5c). Consistent with 269 

the results from Experiments 1 and 2, the Hit-to-Straddle Target group adapted slower than the 270 

Straddle-to-Hit group (95% CI [-.17°/cycle, -.83°/cycle], t(22)=-3.15, p=.005, d=1.29; Fig. 5d) and 271 
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reached a lower asymptote (95% CI [-5.25°, -15.29°], t(22)=-4.24, p=.0003, d=1.73). The reduction at 272 

asymptote was approximately 45%.  273 

 274 

We next examined performance during the transfer phase where the target size reversed for the two 275 

groups. Our primary measure of behavioral change for each subject was the difference in late learning 276 

(average hand angle over last 10 cycles) between the end of the acquisition phase and the end of the 277 

transfer phase. As seen in Fig. 5c, the two groups showed opposite changes in behavior in the transfer 278 

phase, evident by the strong (group x phase) interaction (F(2,33)=43.1, p<10-7, partial h2=.72). The 279 

results of a within-subjects t-test showed that the Hit-to-Straddle group showed a marked increase in 280 

hand angle following the decrease in target size (95% CI [4.9°, 9.1°], t(11)=7.42, p<.0001, dz=2.14; Fig. 281 

5e), consistent with the predictions for both the Movement Reinforcement and Adaptation Modulation 282 

models, assuming that transfer resulted in the removal of the intrinsic reward signal.   283 

 284 

The Straddle-to-Hit group’s transfer performance provides the critical test of the two hypotheses. 285 

Following the switch to the large target, there was a decrease in hand angle. Applying the same 286 

statistical test, the mean decrement in hand angle was 5.7° from the final cycles of the training phase to 287 

the final cycles of the transfer phase (95% CI [-3.1°, -8.2°], t(11)=-4.84, p=.0005, dz=1.40; Fig. 5e). This 288 

result is consistent with the prediction of the Adaptation Modulation model, namely that the introduction 289 

of an intrinsic reward signal attenuated the output of the adaptation system. The reduction in hand 290 

angle cannot be accounted for by the Movement Reinforcement model. For all participants in both 291 

groups, the directional changes in hand angle following transfer were consistent with the predictions of 292 

the Adaptation Modulation model (Fig. 5e).  293 

 294 
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To quantitatively evaluate the Adaptation Modulation model, we simulated the results of the transfer 295 

phase of Experiment 3 based on parameters estimated from the acquisition phase of both groups. We 296 

fit the data using a single rate state-space model of the following form:   297 

𝑥"#$ = 𝐴𝑥" + 𝑈(𝑒")    [Equation 1] 298 

where x represents the motor output on trial n, A is a retention factor, and U represents the 299 

update/correction size (or, learning rate) as a function of the error size, e. This model is mathematically 300 

equivalent to a standard single rate state-space model (Thoroughman & Shadmehr, 2000), with the 301 

only modification being the replacement of the error sensitivity term, B, with a correction size function. 302 

Unlike standard adaptation studies where error size changes over the course of learning, however, e is 303 

a constant with clamped visual feedback, and therefore U(e) can be fit as a single parameter (for further 304 

details, see Kim et al. 2018). We refer to this model as the motor correction variant of the standard 305 

state space model. 306 

 307 

To estimate A and U(e), we fit the bootstrapped samples of mean behavior, using only the data from 308 

the acquisition phase. The model provided good fits of behavioral change during the acquisition phase 309 

(Fig. 5f), with a median r-squared value of .94 (95% CI: [.86, .96]). Parameter estimates for the Hit-to-310 

Straddle group were [.952, .973] for A and [.33°, .62°] for U(e) (values represent bootstrapped 95% 311 

CIs). For the Straddle-to-Hit group, estimated A and U(e) values during acquisition were [.939 .970] and 312 

[.69° 1.37°], respectively. Using non-parametric permutation tests on the parameter estimates for 313 

individual data, reliable differences between groups were observed for U(e) (p = .012), but not A (p = 314 

.802). Thus, the analysis of the parameter estimates indicates that reward modulates the error size-315 

dependent motor correction within the adaptation system, effectively reducing the size of the trial-to-trial 316 

correction.  317 

 318 
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To further test whether the effect of intrinsic reward was better explained by a reduction in learning rate 319 

rather than a change in retention, we compared models in which only U or A were free to vary, asking 320 

how well these models fit the bootstrapped samples of the acquisition phase data. For the model in 321 

which U was a free parameter, we fixed A to its median value from the original fits (.96); for the model 322 

in which A was a free parameter, we fixed U to its median value from the original fits (.64). The free U 323 

model explained, on average, ~8% more of the variance in the data than the free A model, and also 324 

provided excellent fits of the data (95% CIs for r-squared values: free U model [.85, .96]; free A model 325 

[.61, .94]).  326 

 327 

The estimated parameters for each group’s acquisition phase data were then used to predict the 328 

transfer performance for the other group. That is, parameter estimates from the Hit-to-Straddle group 329 

were used to predict the transfer performance of the Straddle-to-Hit group. In a complementary 330 

manner, parameter estimates from the Straddle-to-Hit group were used to predict the transfer 331 

performance of the Hit-to-Straddle group. We used all 1000 sets of parameter estimates from each 332 

group to generate the mean and variance of the predicted behavior (Fig. 5f). During transfer, the model 333 

captures the qualitative change in performance for both groups, with an increase in hand angle for the 334 

Hit-to-Straddle group and decrease in hand angle for the Straddle-to-Hit group. However, the 335 

predictions of the model slightly underestimate the observed rates of change for both groups. We return 336 

to this issue in the Discussion; for now, we note that modeling results are consistent with the hypothesis 337 

that intrinsic reward directly modulates the adaptation system. 338 
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 339 

Figure 5 Intrinsic rewards directly modulate the output of the adaptation system. Using a transfer 340 
design (a), the two models diverge in their behavioral predictions for the Straddle-to-Hit group following 341 
transfer (b). The Movement Reinforcement model predicts a consistent asymptote following transfer, as 342 
the learning drive from the SPE is the same and the reward system now reinforces the movement. In 343 
contrast, the Adaptation Modulation model predicts an immediate decay in hand angle, given that the 344 
intrinsic reward attenuates the output of the adaptation system after transfer. (c) The learning functions 345 
were consistent with the predictions of the Adaptation Modulation model. The rise in hand angle for the 346 
Hit-to-Straddle group is consistent with both models. Note that during the acquisition phase, we again 347 
observed differences in the early adaptation rate (d) as well as late learning. (e) All participants in both 348 
groups demonstrated changes in late learning from acquisition to transfer phases that were consistent 349 
with Adaptation Modulation model predictions. (f) A two-parameter state-space model was able to 350 
characterize the learning functions during the acquisition phase. However, the changes in behavior 351 
during the transfer phase were somewhat slower than predicted, based on predictions made by 352 
switching parameters for both groups. Dots represent individuals; shading and error bars denote SEM. 353 
 354 
 355 

Control group for testing perceptual uncertainty hypothesis 356 

Across the three experiments, the amount of adaptation induced by clamped visual feedback was 357 

attenuated when participants reached to the large target. We considered if this effect could be due, in 358 

part, to the differences between the Hit and Straddle/Miss conditions in terms of perceptual uncertainty. 359 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 17 

For example, the reliability of the visual error signal might be weaker if the cursor is fully embedded 360 

within the target; in the extreme, failure to detect the angular offset might lead to the absence of an 361 

SPE on some percentage of the trials. 362 

 363 

To evaluate this perceptual uncertainty hypothesis, we tested an additional group in Experiment 3 with 364 

a large target, but modified the display such that a bright line, aligned with the target direction, bisected 365 

the target (Fig. 5a). With this display, the feedback cursor remained fully embedded in the target, but 366 

was clearly off-center. If the attenuation associated with the large target is due to perceptual 367 

uncertainty, then the inclusion of the bisecting line should produce an adaptation effect similar to that 368 

observed with small targets. Alternatively, if perceptual uncertainty does not play a prominent role in the 369 

target size effect, then the adaptation effects would be similar to that observed with large targets.  370 

 371 

Consistent with the second hypothesis, performance during the acquisition phase for the group 372 

reaching to a bisected target was similar to that of the group reaching to the standard large target (Hit-373 

to-Straddle, see Supplement). Planned pair-wise comparisons showed no significant differences 374 

between the two groups (early adapt: 95% CI [-.34°/cycle, .22°/cycle], t(22)=-.47; p=.64,; d=.19; late 375 

learning: 95% CI [-7.80° 1.19°], t(22)=-1.52; p=.14; d=.62). In contrast, the group reaching to bisected 376 

targets showed slower early adaptation rates (95% CI [-.81°/cycle, -.07°/cycle], t(22)=-2.49, p=.02, 377 

d=1.02) and lower magnitudes of late learning (95% CI [-12.58°, -1.35°], t=-2.57, p=0.017, d=1.05) 378 

when compared with the group reaching to small targets (Straddle-to-Hit). Given our analysis plan 379 

entailed multiple comparisons, we also performed an omnibus one-way ANOVA on the late learning 380 

data at the end of the acquisition phase. The effect of group was significant (F(2,33)=9.33, p=.0006, 381 

h2=.36).  382 

 383 
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During the transfer phase, the target size for the perceptual uncertainty group remained large, but the 384 

bisection line was removed. If perceptual uncertainty contributed to the Hit Target effect, we would 385 

expect to observe a decrease in hand angle (since uncertainty would increase following transfer). 386 

However, following transfer to the non-bisected large target, there was no change in asymptote (95% 387 

CI [-.87°, 2.32°], t(11)=1.0, p=.341, dz=.29). In sum, the results from this control group indicate that the 388 

attenuated adaptation observed when the cursor is fully embedded within the target is not due to 389 

perceptual uncertainty, 390 

   391 

 392 
 393 
DISCUSSION 394 

The impact of reward on sensorimotor adaptation has been the focus of recent debate and 395 

investigation. A number of studies have demonstrated, either through the direct manipulation of reward 396 

(Galea et al., 2015; Nikooyan & Ahmed, 2015), or indirectly by varying task outcomes (Leow et al., 397 

2018; Reichenthal, Avraham, Karniel, & Shmuelof, 2016; Jordan A. Taylor & Ivry, 2011), that task 398 

success signals can modulate performance changes in sensorimotor adaptation tasks. What remains 399 

unclear, however, is how to characterize the interaction of reward-based and error-based learning 400 

systems. Based on previous results and modeling work, reward signals have been hypothesized to 401 

operate on certain aspects of learning such as consolidation (e.g., Shmuelof et al., 2012 and Galea et 402 

al., 2015). Other studies suggest rewards are exploited by learning systems distinct from SPE-driven 403 

implicit adaptation (Codol, Holland, & Galea, 2018), with the resulting performance a composite of 404 

changes resulting from the independent operation of these different systems (Jordan A. Taylor & Ivry, 405 

2011; Jordan A. Taylor et al., 2014). The interpretation of the results from these studies is complicated 406 

by the fact that the experimental tasks conflate different learning processes. In the present study, we 407 

sought to avoid this complication by using a new method to study adaptation, one in which performance 408 

changes arise implicitly in response to an invariant visual error signal.   409 

 410 
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Using the visual clamp method (Morehead et al., 2017), we observed a striking difference between 411 

conditions in which the final position of the cursor was fully embedded in the target compared to 412 

conditions in which the cursor either terminated outside or straddled the target: When the cursor was 413 

fully embedded, the rate of learning was reduced and, more strikingly, the asymptotic level of learning 414 

was attenuated. Interestingly, the effect of varying the target size was qualitatively different than what 415 

we observed in previous studies in which we varied the angular direction of the clamp. In that work, 416 

small clamp angles reduced the rate of adaptation (Kim et al., 2018), but, over a large range of values, 417 

failed to produce reliable differences in asymptotic levels of learning (Kim et al., 2018; Morehead et al., 418 

2017).   419 

 420 

The difference in behavioral change as a function of relative target size was observed across different 421 

clamp sizes and did not appear to be because of differences in perceptual sensitivity or motor 422 

competence. This was supported by our control analyses, perceptual control experiment, and our 423 

finding that the Straddle group in Experiment 1 was similar to the Hit group, suggesting that the effect of 424 

target size was categorical. As such, we assume that the effect of target size on behavior arises from 425 

the generation of an intrinsic reward signal, one that is generated when the cursor lands fully within the 426 

target. In the final experiment, we explored two ways in which an intrinsic reward signal could impact 427 

performance. One hypothesis centered on the idea that reward modulates the strength of movement 428 

representations associated with task success, a variant of the idea that reward and SPE engage 429 

distinct representations and learning systems (Shmuelof et al., 2012). The other hypothesis considered 430 

a more direct modulatory impact on the adaptation process. The results showed that the differences in 431 

asymptote cannot be attributed solely to strengthening of rewarded movements. Rather, intrinsic 432 

reward directly attenuates the operation of the adaptation system. 433 

 434 

We recognize that our interpretation of the results rests on the assumption that “hitting” the target with 435 

the cursor is intrinsically rewarding (Huang et al., 2011; Leow et al., 2018). If correct, this assumption 436 
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holds despite the participants’ awareness that the angular motion of the cursor is causally unrelated to 437 

their behavior. Our earlier work with clamped feedback had shown that adaptation can be driven by a 438 

task-irrelevant error signal, the SPE defined by the difference between the cursor and target. Here we 439 

see the automatic operation of an intrinsic reward signal. Of course we do not have evidence, 440 

independent of the behavior, that hitting a target is rewarding; this might require using methods such as 441 

fMRI (Daw, Gershman, Seymour, Dayan, & Dolan, 2011) or pupillometry (Manohar, Finzi, Drew, & 442 

Husain, 2017) to assess the presence of well-established signatures of reward.  443 

 444 

State space models have provided a concise computational account of sensorimotor adaptation 445 

(Huang, Haith, Mazzoni, & Krakauer, 2011; Smith, Ghazizadeh, & Shadmehr, 2006; Tanaka, Krakauer, 446 

& Sejnowski, 2012; Thoroughman & Shadmehr, 2000). In the simplest version, these models entail two 447 

parameters, a memory term, A, representing the retention of the current state from trial to trial, and a 448 

learning rate term, B, representing how the state is updated based on the error from the current trial 449 

(the A and U(e) terms in Eq. 1, respectively). Given this framework, we can consider how reward might 450 

modulate adaptation. One possibility is that reward modulates retention. This hypothesis is consistent 451 

with the results of a recent visuomotor adaptation study comparing groups that either received only 452 

cursor feedback or cursor feedback and a monetary reward, scaled to their accuracy. The latter showed 453 

greater retention during a washout block in which the feedback was removed (Galea et al., 2015). 454 

When the data were fit with the standard  state space model, this effect was accounted for by an 455 

increase in the retention term, A, interpreted as indicating that rewarded movements are better 456 

consolidated.   457 

 458 

A retention-based account, however, does not accord well with the current results. If the memory term 459 

was larger in conditions with intrinsic reward (i.e., Hit Target conditions), then we should have observed 460 

a higher asymptote when the cursor was embedded in the target compared to when it missed (or 461 

straddled) the target, since the SPE is invariant and more of the current state is retained from trial to 462 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 21 

trial. The behavior went in the opposite direction of this prediction: The Hit Target conditions 463 

consistently resulted in lower asymptotic values. Thus, a retention-based account of the intrinsic reward 464 

effect would mandate lower values of A, a situation in which the memory term results in the adaptation 465 

system being resistant to learning from errors. We suspect that the washout results observed in Galea 466 

et al. (2015) are not due to a change in the adaptation process, but rather reflect the residual effects of 467 

an aiming strategy induced by the reward. That is, the monetary rewards might have reinforced a 468 

strategy during the rotation block, and this carried over into the washout block. Indeed, the idea that 469 

reward impacts strategic processes has been advanced in studies comparing conditions in which the 470 

performance could be enhanced by re-aiming (Codol et al., 2018; Holland et al., 2018). 471 

 472 

Alternatively, intrinsic reward could influence overall learning by modulating the learning rate 473 

parameter. A priori, one might suppose that reward would enhance learning (Nikooyan & Ahmed, 474 

2015), either by increasing the sensitivity and responsiveness to error, or by promoting exploratory 475 

behavior to generate appropriate compensatory strategies. The latter would be a case where the 476 

learning rate parameter encompasses the effects of both implicit and explicit learning processes, 477 

especially relevant in standard adaptation studies where the task outcome is contingent on the 478 

participant’s behavior and the perturbation is large (Bond & Taylor, 2015; Jordan A. Taylor & Ivry, 2011; 479 

Jordan A. Taylor et al., 2014).  480 

 481 

In contrast, the clamp method, by eliminating the contribution of strategic processes, allows us to 482 

directly examine how reward might influence estimated rates of implicit learning. Here we see that the 483 

effect would suggest that reward reduces the learning rate, made salient by the parameter estimates 484 

from the acquisition phase of Experiment 3 (see also, Leow et al., 2018). A reduction in the learning 485 

rate can be conceptualized as a gain factor attenuating the system’s response to error. In terms of the 486 

standard state space model, this would translate into reducing the system’s sensitivity to error; in the 487 

motor correction variant of the state space model, this would translate into reducing the amount of 488 
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change induced by an error of a given size. In either conceptualization, the end result is that in the 489 

presence of an intrinsic reward signal, the error-dependent drive is reduced.  490 

 491 

The hypothesis that reward attenuates the learning rate within the adaptation system provides a 492 

parsimonious account of the data from all three experiments. Following the introduction of the clamped 493 

feedback, a lower asymptote was observed in Experiments 1-3 when the cursor hit the target. 494 

Assuming the memory process is unaffected, the reduced error-dependent drive will result in a lower 495 

asymptote. Moreover, the rate of change in behavior, operationalized here by the early learning rate, 496 

should also be lower, a pattern evident in all three experiments, although only statistically significant in 497 

Experiment 3. Moreover, a change in learning drive can account for the behavioral effects observed in 498 

the transfer phase of Experiment 3. The loss of an intrinsic reward signal (Hit-to-Straddle group) would 499 

increase the error-dependent learning drive, resulting in an increase in hand angle. Conversely, the 500 

introduction of an intrinsic reward signal (Straddle-to-Hit group) would decrease the learning drive, 501 

resulting in a drop in hand angle. 502 

 503 

Although the results indicate that reward directly modulates adaptation, the observed changes in 504 

behavior during the transfer phase of Experiment 3 were more gradual than predicted based on 505 

parameter estimates derived from the initial acquisition phase data. The quantitative predictions here 506 

assume that the adaptation system is time-invariant. This assumption may be too rigid; for example, 507 

learning parameters may change with increased exposure to a perturbation (Mawase, Shmuelof, Bar-508 

Haim, & Karniel, 2014; Zarahn, Weston, Liang, Mazzoni, & Krakauer, 2008) or change as a function of 509 

the context (Herman, Harwood, & Wallman, 2009).  510 

 511 

We also recognize that behavioral changes here may reflect the operation of multiple processes 512 

(Krakauer & Mazzoni, 2011), and the composite effects of these processes might account for why the 513 

observed changes were more gradual than predicted. For example, intrinsic reward may not only 514 
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directly modulate adaptation, but may also reinforce an executed movement (Castro, Monsen, & Smith, 515 

2011), a combination of the Movement Reinforcement and Adaptation Modulation models sketched in 516 

Figure 4. For example, in the Straddle-to-Hit condition, the introduction of intrinsic reward at transfer 517 

would reinforce movements at the initial asymptote, resisting the effect of reduced learning drive.  518 

 519 

Studies involving non-human primates and rodents have provided insights into possible neural 520 

substrates supporting the interaction of systems involved in reward- and error-based learning. 521 

Converging evidence points to a critical role for the cerebellum in sensorimotor adaptation (Butcher et 522 

al., 2017; Izawa, Criscimagna-Hemminger, & Shadmehr, 2012; J A Taylor, Klemfuss, & Ivry, 2010; 523 

Tseng et al., 2007), including the observation that patients with cerebellar degeneration show a 524 

reduced response to visual error clamps (Morehead et al., 2017). Reward-based learning is associated 525 

with a more distributed network of cortical and subcortical areas, including a prominent role for 526 

dopaminergic signals in the basal ganglia (Schultz, 2015). Neuroanatomical studies have identified di-527 

synaptic reciprocal connections between the basal ganglia and cerebellum (Bostan, Dum, & Strick, 528 

2010), as well as direct connections between the cerebellum and dopaminergic nuclei in the brainstem 529 

(Perciavalle, Berretta, & Raffaele, 1989; Watabe-Uchida, Zhu, Ogawa, Vamanrao, & Uchida, 2012). 530 

These connections might provide a relatively direct pathway for reward signals to modulate cerebellar 531 

activity. Alternatively, or perhaps complementary, recent work has indicated that both simple (Wagner, 532 

Kim, Savall, Schnitzer, & Luo, 2017) and complex (Ohmae & Medina, 2015) spike activity in the 533 

cerebellum may signal information about rewards or anticipated rewards. This work suggests a more 534 

expansive view may be required to understand cerebellar function, one in which error-based learning is 535 

modulated by contextual factors. The current study provides a striking example of how intrinsic reward 536 

signals, in the form of persistent target hits, may serve as one such contextual factor that can modulate 537 

cerebellar-dependent sensorimotor adaptation. 538 

 539 

 540 
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METHODS 701 

Participants: Healthy, young adults (N=116, 69 females, age = 20.9 ± 2.1 years old) were recruited from 702 

the University of California, Berkeley, community. Each participant was tested in only one experiment. 703 

All participants were right-handed, as verified with the Edinburgh Handedness Inventory (Oldfield, 704 

1971). Participants provided informed consent and received financial compensation for their 705 

participation. The Institutional Review Board at UC Berkeley approved all experimental procedures.  706 

 707 

Experimental Apparatus: The participant was seated at a custom-made tabletop housing an LCD 708 

screen (53.2 cm by 30 cm, ASUS), mounted 27 cm above a digitizing tablet (49.3 cm by 32.7 cm, 709 

Intuos 4XL; Wacom, Vancouver, WA). The participant made reaching movements by sliding a modified 710 

air hockey "paddle" containing an embedded stylus. The position of the stylus was recorded by the 711 

tablet at 200 Hz. The experimental software was custom written in Matlab, using the Psychtoolbox 712 

extensions26. 713 

 714 

Reaching Task: Center-out planar reaching movements were performed from the center of the 715 

workspace to targets positioned at a radial distance of 8 cm. Direct vision of the hand was occluded by 716 

the monitor, and the lights were extinguished in the room to minimize peripheral vision of the arm. The 717 

start location and target location were indicated by white and blue circles, respectively (start circle: 6 718 

mm in diameter; target: either 6, 9.8 or 16 mm depending on condition).  719 

 720 

To initiate each trial, the participant moved the digitizing stylus into the start location. The position of the 721 

stylus was indicated by a white feedback cursor (3.5 mm diameter). Once the start location was 722 

maintained for 500 ms, the target appeared. For Experiments 1 and 3, the target could appear at one of 723 

8 locations, placed in 45° increments around a virtual circle (0°, 45°, 95°, 135°, 180°, 225°, 270°, 315°). 724 

For Experiment 2, the target could appear at one of four locations placed in 90° increments around a 725 

virtual circle (45°, 135°, 225°, 315°). We reduced the number of targets from 8 to 4 in this experiment in 726 
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order to increase the overall number of training cycles with the clamp, while keeping the experiment 727 

under 1.5 hours, and so that participants would reach a stable asymptote. Participants were instructed 728 

to accurately and rapidly "slice" through the target, without needing to stop at the target location. Visual 729 

feedback, when presented, was provided during the reach until the movement amplitude exceeded 8 730 

cm. As described below, the feedback either matched the position of the stylus (veridical) or followed a 731 

fixed path (clamped). If the movement was not completed within 300 ms, the words “too slow” were 732 

generated by the sound system of the computer.  733 

 734 

After the hand crossed the target ring, endpoint cursor feedback was provided for 50 ms either at the 735 

position in which the hand crossed the virtual target ring (veridical feedback) or at a fixed distance 736 

determined by the size of the clamp. During the return movement, the feedback cursor reappeared 737 

when the participant’s hand was within 1 cm of the start.  738 

 739 

Experimental Feedback Conditions:  Across the experimental session, there were three types of visual 740 

feedback. On no-feedback trials, the cursor disappeared when the participant‘s hand left the start circle 741 

and only reappeared at the end of the return movement. On veridical feedback trials, the cursor 742 

matched the position of the stylus during the 8 cm outbound segment of the reach. On clamped 743 

feedback trials, the feedback followed a path that was fixed along a specific hand angle. The radial 744 

distance of the cursor from the start location was still based on the radial extent of the participant's 745 

hand during the 8 cm outbound segment, but the angular position was fixed relative to the target (i.e., 746 

independent of the angular position of the hand).  747 

 748 

The primary instructions to the participant remained the same across the experimental session:  749 

Specifically, that they were to reach directly towards the visual target. Prior to the introduction of the 750 

clamped feedback trials, participants were briefed about the feedback manipulation. They were 751 

informed that the position of the cursor would now follow a fixed trajectory and that the angular position 752 
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would be independent of their movement. They were explicitly instructed to ignore the cursor and 753 

continue to reach directly to the target. Participants also performed three instructed trials with the clamp 754 

perturbation on. During these practice trials, a target appeared at the 90 deg location (straight ahead), 755 

and the experimenter instructed the participant to first “reach straight to the left” (ie, 180 deg). For the 756 

second practice trial, the participant was instructed to “reach straight to the right” (0 deg). For the last 757 

trial, the participant was instructed to “reach straight down (towards your torso)” (ie, 270 deg). The 758 

purpose of these trials was to familiarize the participant with the exact clamp condition they were about 759 

to experience. Following these three practice trials, the experimenter confirmed with the participant they 760 

understood now what was meant by clamped visual feedback. These practice trials were removed from 761 

future analyses.  762 

 763 

The same instructions in abbreviated form (“Ignore the cursor and move your hand directly to the target 764 

location”) were repeated verbally and with onscreen text at every block break during the clamp 765 

perturbation. Participants were debriefed at the end of the experiment and asked whether they ever 766 

intentionally tried to reach to locations other than the target. All subjects reported aiming to the target 767 

throughout the experiment.  768 

 769 

We counterbalanced clockwise and counterclockwise clamp offsets within each group for all three 770 

experiments.  771 

 772 

Experiment 1 773 

Participants (n=48, 16/group) were randomly assigned to one of three groups, each training with a 3.5° 774 

clamp but differing only in terms of the size of the target: 6mm, 9.8, or 16 mm diameter. These sizes 775 

were chosen so that at an 8 cm radial distance the clamped cursor would be adjacent to the target 776 

without making any contact (Target Miss group), straddling the target by being roughly half inside and 777 

half outside the target (Straddle Target group), or fully embedded within the target (Hit Target group). 778 
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The Euclidean distance for this clamp offset, measured from the centers of cursor and target, was 4.9 779 

mm.  780 

 781 

The session began with two baseline blocks, the first comprised of 5 movement cycles (40 total 782 

reaches to 8 targets) without visual feedback and the second comprised of 10 cycles with a veridical 783 

cursor displaying hand position. The experimenter then informed the participant that the visual 784 

feedback would no longer be veridical and would now be clamped at a fixed angle from the target 785 

location. Immediately following these general instructions, the experimenter continued providing 786 

instructions for the three practice trials which immediately followed (see Experimental Feedback 787 

Conditions). After the practice trials and confirming the participant’s understanding of the task, the 788 

clamp block ensued for a total of 80 cycles. A short break (<1 min), as well as a reminder of the task 789 

instructions, was provided after 40 cycles (i.e., at the halfway point of this block). Immediately following 790 

the perturbation block, there were two washout blocks, first a 5 cycle block in which there was no visual 791 

feedback, followed by 10 cycles with veridical visual feedback. These blocks were preceded by 792 

instructions regarding the change in experimental condition and participants were reminded to always 793 

aim for the target and to attempt to slice through it with their hand.  794 

 795 

Experiment 2 796 

In Experiment 2 we assessed adaptation over an extended number of clamped visual feedback trials. 797 

The purpose of extending the perturbation block was to ensure that participants reached asymptotic 798 

levels of learning. In order to achieve a greater number of training cycles, we reduced the number of 799 

target locations within the set from 8 to 4.  800 

 801 

Participants (n=32, 16/group) trained with a 1.75° clamp (2.4 mm distance between target and cursor 802 

centers) and were assigned to either a small (Straddle) or large (Hit) target condition. The session 803 

started with two baseline blocks, 10 cycles (40 reaches) without visual feedback and then 10 cycles 804 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 32 

with veridical feedback. Following 3 practice trials with the clamp, the number of cycles in the clamped 805 

visual feedback block was nearly tripled from that of Experiment 1 to 220 cycles, with breaks provided 806 

after every 70 cycles. Following 220 cycles of training with a 1.75° clamp, there were two washout 807 

blocks, first a 10 cycle block in which there was a 0° clamp, followed by 10 cycles with veridical visual 808 

feedback. Prior to washout, participants were again instructed to always aim directly to the target.  809 

 810 

Experiment 3 811 

We assume that with the large targets, an intrinsic reward is generated when the cursor lands within the 812 

target. This could serve as a positive reinforcement signal, strengthening the representation of 813 

rewarded movements, and operating as a resistance to the learning drive associated with an SPE 814 

(Movement Reinforcement model). Alternatively, intrinsic reward may directly modulate the output of 815 

the adaptation system (Adaptation Modulation model). As a test of these hypotheses, we tested two 816 

main groups (n=12/group) in Experiment 3, using a 1.75° clamp in a transfer design. The session 817 

started with two baseline blocks, 5 cycles (40 reaches) without visual feedback and then 5 cycles with 818 

veridical feedback. After the baseline blocks, clamp instructions and three practice trials were provided 819 

to all participants. The first clamp block lasted 120 cycles, with participants training with either a small 820 

or large target. Following the first 120 cycles, the target sizes were reversed for the next 80 (Straddle-821 

to-Hit or Hit-to-Straddle conditions). Our main predictions focused on the transfer phase, comparing the 822 

behavior to the predictions of both Movement Reinforcement and Adaptation Modulation models. 823 

Breaks of < 1 min were provided after every 35 cycles of training. On the break preceding the transfer 824 

(15 cycles before target switch), participants were told that everything would continue on as before, 825 

except that the target size would change at some point during the block. The purpose of staggering the 826 

break with the transfer was to mitigate any change in adaptation due to temporal decay that could result 827 

from a break in training (Hadjiosif & Smith, 2013).  828 

 829 

Control group 830 
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A third group (n=12) was added to test whether the attenuation of adaptation in the large target 831 

condition was due to perceptual uncertainty. Here, the block structure was identical to the first two 832 

groups. We used a modified large target (16mm), one which had a bright green bisecting line through 833 

the middle, aligned with the target direction. The clamped cursor always fell within one half of the target 834 

(either clockwise or counter-clockwise depending on the condition), thus providing a clear indication 835 

that the cursor was off center. At the transfer, the bisecting line was removed and participants trained 836 

for 80 cycles with the standard large target. 837 

 838 

Data Analysis  839 

All statistical analyses and modeling were performed using Matlab 2015b and the Statistics Toolbox. 840 

The primary dependent variable in all experiments was hand angle at peak radial velocity, defined by 841 

the angle of the hand relative to the target at the time of peak radial velocity (i.e., angle between lines 842 

connecting start position to target and start position to hand). Throughout the text, we refer to this 843 

variable as hand angle. Additional analyses were performed using hand angle at “endpoint” (angle of 844 

the hand as it crossed the invisible target ring) rather than peak radial velocity. The results were 845 

essentially identical for the two dependent variables; as such, we only report the results of the analyses 846 

using peak radial velocity.  847 

 848 

Outlier responses were removed from the analyses. For the sole purpose of identifying outliers, the 849 

Matlab “smooth” function was used to calculate a moving average (using a 5-trial window) of the hand 850 

angle data for each target location. Outliers were trials in which the observed hand angle was greater 851 

than 90° or deviated by more than 3 standard deviations from the moving average. In total, less than 852 

0.8% of trials overall were removed, and the most trials removed for any individual across all three 853 

experiments was 2%. 854 

 855 
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Individual baseline biases for each target location were subtracted from all data. Biases were defined 856 

as the average hand angles across cycles 2-10 (Experiments 1 and 2) or 2-5 (Experiment 3) of the 857 

feedback baseline block. These same cycles were used to calculate mean RTs, MTs, and movement 858 

variability (SD). To calculate each participant’s baseline RT or MT, we took the average of median 859 

values at each target location. To calculate each participant’s movement variability, we took the 860 

average of the standard deviations of hand angles at each target location.  861 

 862 

In order to pool all of the data and to aid visualization, we flipped the hand angles for all participants 863 

clamped in the counterclockwise direction. 864 

 865 

For Experiments 1 and 3, movement cycles consisted of 8 consecutive reaches (1 reach/target); for 866 

Experiment 2, we only used four targets, thus a movement cycle consisted of 4 consecutive reaches (1 867 

reach/target). Early adaptation rate was quantified by averaging the hand angle values over cycles 3-7 868 

of the clamp, and dividing by the number of cycles (i.e., 5) to get an estimate of the per trial rate of 869 

change in hand angle. We opted to use this measure of early adaptation rather than obtain parameter 870 

estimates from exponential fits since the latter approach gives considerable weight to the asymptotic 871 

phase of performance and, therefore would be less sensitive to early differences in rate. This would be 872 

especially problematic in Experiment 2, which utilized 220 clamp cycles. Asymptotic adaptation was 873 

defined as the last 10 cycles within a clamp block. In Experiment 1, the aftereffect was quantified by 874 

using the data from the first no-feedback cycle following the last clamp cycle. We also performed a 875 

secondary analysis of early adaptation rates using cycles 2-11 (Krakauer, 2005), rather than 3-7. 876 

Results from using this alternate metric were consistent with the reported analyses (i.e., slower rates for 877 

Hit Target groups), only they resulted in larger effect sizes due to the gradually increasing divergence of 878 

learning functions. 879 

 880 
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All t-tests were two-tailed. Posthoc pairwise comparisons following significant ANOVAs were performed 881 

using two-tailed t-tests. Cohen’s d, eta squared (h2), partial eta squared (for mixed model ANOVA), and 882 

dz (for within-subjects design) values are provided as standardized measures of effect size (Lakens, 883 

2013). Values in main text are reported as 95% CIs in brackets and mean ± SEM. 884 

 885 

 886 

Modeling 887 

For our model fitting and simulation procedures we applied standard bootstrapping techniques, 888 

constructing group-averaged hand angle data 1000 times by randomly resampling with replacement 889 

from the pool of participants within each group. Using Matlab’s fmincon function, we started with ten 890 

different initial sets of parameter values and estimated the retention and learning parameters which 891 

minimized the least squared error between the bootstrapped data and model output (xn). 892 

 893 

We also fit the model to the acquisition phase data of each participant in Experiment 3 in order to 894 

compare parameter values between groups using a non-parametric permutation test. We first 895 

calculated our two test statistics, the average difference in A values and the average difference in U 896 

values between groups. Then, we randomly shuffled the group assignments using 10000 Monte Carlo 897 

simulations in order to create the null distributions for mean A and U parameter values, separately. We 898 

then calculated exact p-values by summing the proportion of each respective null distribution that was 899 

at least as or more extreme than our test statistic values (i.e., using 2-sided tests). 900 

 901 

No statistical methods were used to predetermine sample sizes. The chosen sample sizes were based 902 

on our previous study using the clamp method (Kim et al., 2018; Morehead et al., 2017), as well as 903 

prior psychophysical studies of human sensorimotor learning (Galea et al., 2015; Gallivan, Logan, 904 

Wolpert, & Flanagan, 2016; Huang et al., 2011; Vaswani et al., 2015). 905 

 906 
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SUPPLEMENTAL INFORMATION 907 
 908 
Kinematic variables 909 
 910 
Experiment 1 911 
 912 
Average movement variability across the eight targets during cycles 2-10 of the veridical feedback 913 

baseline block were not different between groups (variability: F(2,45)=0.2.32, p=.110, h2=.093). 914 

Movement times across groups were not different (F(2,45)=2.19, p=.123, h2=.089). However, we did 915 

observe a difference in baseline RTs (F(2,45)=4.48, p=.017, h2=.166), with post hoc Tukey-Kramer 916 

tests confirming that the large target (Hit) group had faster RTs (325 ± 7 ms)  than the small target 917 

(Miss) group (387 ± 22 ms). The medium target (Straddle) group’s RTs (362 ± 12 ms) were not reliably 918 

different from either group. This baseline difference in RTs was only observed in this experiment (see 919 

below), and there was no correlation between baseline RT and late learning for the large target group (r 920 

= .09, p = .73), suggesting that RTs are not associated with the magnitude of adaptation.  921 

 922 

Experiment 2 923 

Baseline movement variability was marginally less for the group reaching to the larger target (Hit Target 924 

group: 3.09° ± .18°; Straddle Target group: 3.56° ± .16°; t(30)=-1.99 p=.056, d=0.70). Further 925 

supporting the argument that planning was no different across conditions, neither reaction times nor 926 

movement times differed between the groups (t(30)=-0.183, p=.856, d=.06  and t(30)=0.71, p=.484, 927 

d=.25, respectively). 928 

 929 

Experiment 3 930 

Baseline movement variability was not different across all three groups, including the control group 931 

trained with the bisected target (F(2,33)=1.38, p=.267, h2=.077). Also, no differences across groups 932 

were observed for either RTs (F(2,33)=1.51, p=.236,  h2=.0084) or MTs (F(2,33)=.46, p=.634, h2=.027). 933 

 934 
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Control group from Experiment 3 935 

The behavior of the control group reaching to a large target bisected by a line (aligned with the target 936 

direction) during the acquisition phase is shown in magenta. The change in hand angle was not 937 

significantly different than that observed for the group that was tested with the large target in the 938 

acquisition phase of Experiment 3 (replotted here in green), suggesting that perceptual uncertainty did 939 

not make a substantive contribution to the effects of hitting the target. We omitted the transfer behavior 940 

of the large target group as this was when the large target was replaced with the small target.  941 

 942 
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