bioRxiv preprint doi: https://doi.org/10.1101/363564; this version posted July 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Genetic evidence for two carbon fixation pathways in symbiotic and free-living bacteria: The
2 Calvin-Benson-Bassham cycle and the reverse tricarboxylic acid cycle

3  Maxim Rubin-Blum'?, Nicole Dubilier'?, Manuel Kleiner*

4 'Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
5 ‘Israel Limnology and Oceanography Research, Tel Shikmona, 3108000, Haifa, Israel

6 *MARUM, University of Bremen, 28359 Bremen, Germany

7  ‘Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, USA

8  *Corresponding authors
9  mrubin@ocean.org.il

10  manuel _kleiner@ncsu.edu


https://doi.org/10.1101/363564
http://creativecommons.org/licenses/by-nc-nd/4.0/

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35

36

bioRxiv preprint doi: https://doi.org/10.1101/363564; this version posted July 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Abstract: Very few bacteria are able to fix carbon via both the reverse tricarboxylic acid (rTCA)
and the Calvin-Benson-Bassham (CBB) cycles, such as symbiotic, sulfur-oxidizing bacteria that
are the sole carbon source for the marine tubeworm Riftia pachyptila, the fastest growing
invertebrate. To date, this co-existence of two carbon fixation pathways had not been found in a
cultured bacterium and could thus not be studied in detail. Moreover, it was not clear if these two
pathways were encoded in the same symbiont individual, or if two symbiont populations, each
with one of the pathways, co-existed within tubeworms. With comparative genomics, we show
that Thioflavicoccus mobilis, a cultured, free-living gammaproteobacterial sulfur oxidizer,
possesses the genes for both carbon fixation pathways. Here, we also show that both the CBB and
r'TCA pathways are likely encoded in the genome of the sulfur-oxidizing symbiont of the
tubeworm Escarpia laminata from deep-sea asphalt volcanoes in the Gulf of Mexico. Finally, we
provide genomic and transcriptomic data suggesting a potential electron flow towards the rTCA
cycle carboxylase 2-oxoglutarate:ferredoxin oxidoreductase, via a rare variant of NADH
dehydrogenase/heterodisulfide reductase. This electron bifurcating complex, together with
NAD(P)+ transhydrogenase and Na+ translocating Rnf membrane complexes may improve the

efficiency of the rTCA cycle in both the symbiotic and the free-living sulfur oxidizer.

Importance: Primary production on Earth is dependent on autotrophic carbon fixation, which
leads to the incorporation of carbon dioxide into biomass. Multiple metabolic pathways have
been described for autotrophic carbon fixation, but most autotrophic organisms were assumed to
have the genes for only one of these pathways. Our finding of a cultivable bacterium with two
carbon fixation pathways in its genome opens the possibility to study the potential benefits of
having two pathways and the interplay between these pathways. Additionally, this will allow the
investigation of the unusual, and potentially very efficient mechanism of electron flow that could
drive the rTCA cycle in these autotrophs. Such studies will deepen our understanding of carbon
fixation pathways and could provide new avenues for optimizing carbon fixation in

biotechnological applications.
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Observation

Primary production by autotrophic organisms drives the global carbon cycle. Currently, seven
naturally occurring pathways for inorganic carbon fixation are known in autotrophic organisms
(1). The dominant carbon fixation pathway used by plants, algae, and many bacteria is the
Calvin-Benson-Bassham (CBB) cycle. The six more efficient, alternative pathways are limited to
autotrophic microbes that live in reducing habitats, due to the oxygen sensitivity of these
alternative pathways (2, 3). Only a handful of autotrophic organisms have more than one carbon
fixation pathway: The sulfur-oxidizing symbionts of marine tubeworms such as Riftia, Escarpia,
Tevnia and Lamellibrachia (the symbionts of these hosts are closely related to each other) have
and express both the oxygen-tolerant CBB cycle and the oxygen-sensitive reverse tricarboxylic
acid (r'TCA) cycle (4-8). Only a few free-living bacteria may have the genes for both cycles, such
as the large sulfur bacteria, Beggiatoa and Thiomargarita spp., in which all CBB cycle genes and
some r'TCA cycle genes were found to co-exist in their genomes (9-11). The CBB cycle in the
symbionts and the large sulfur bacteria is potentially more energy efficient than the classical
version of the CBB cycle based on the replacement of the fructose-1,6-bisphosphatase with a
pyrophosphate dependent enzyme (9, 10, 12, 13). In addition, it is likely that the interplay
between the CBB and rTCA cycle under fluctuating redox conditions contributes to the high
efficiency of carbon fixation in tubeworm symbioses (4, 5, 14), and consequently to the extremely

high growth rates of tubeworms, which grow faster than any other known invertebrate (15).

Given that tubeworm symbionts and large sulfur bacteria could not yet be cultivated, it was not
possible to investigate the co-occurrence of two carbon fixation cycles in detail to better
understand the biochemical and physiological mechanisms that enable the interplay between
these two pathways. In this study, we sequenced the genome and transcriptome of the symbiont
from the tubeworm Escarpia laminata and compared its genome to those of other tubeworm
symbionts and free-living microbes. These comparisons led us to discover the presence of co-

occurring CBB and rTCA cycles in the genome of a cultured bacterium.
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Co-occurrence of rTCA cycle genes with RuBisCo in symbiotic and free-living
gammaproteobacteria. Genes for enzymes that are specific to the rTCA pathway, that is the ATP
citrate lyase (aclAB genes), 2-oxoglutarate:ferredoxin oxidoreductase (OGOR, korABCD genes),
and a putative fumarate reductase (¢{frAB genes, homologs of genes encoding a thiol:fumarate
reductase from Methanobacterium thermoautotrophicum (16)), were assumed to occur in only a
few symbiotic Gammaproteobacteria. We discovered, using comparative genomics, that these
r'TCA cycle enzymes also occur in some Chromatiaceae, including the cultivated sulfur oxidizer
Thioflavicoccus mobilis and a gammaproteobacterial genome from an environmental
metagenome(17), (Fig. 1). The type II ATP citrate lyases of tubeworm symbionts and T. mobilis
were likely acquired via horizontal gene transfer from other bacterial clades (Suppl. Fig. S1), (6).

These gammaproteobacteria also encode either Form I or II RuBisCO, or both (Suppl. Note 1).

Presence of the rTCA and the CBB pathways in the genome of a single bacterium: Due to the
fragmented nature of the previously available genomes of tubeworm symbionts, past studies
could not determine whether the genes for both pathways are present in a single genome or if the
two pathways are distributed in a strain-specific manner, i.e. only one of the two pathways is
present in the genome of a single cell (3). Here, we provide two lines of evidence that both
pathways can co-occur in the genome of a single organism. First, sequencing coverage for the
genes of both pathways in the E. laminata symbiont was similar to that of single-copy marker
genes (Suppl. Table 1). Since genes that are strain specific are expected to have lower coverage
than the rest of the genome (18), the similar coverage of genes encoding the two pathways and
single-copy genes suggests that in the E. laminata symbiont both pathways are present in all cells.
Second, in the closed genome of the cultured T. mobilis, both the genes encoding the rTCA and

the CBB cycle co-occur, providing evidence that these genes co-exist in a single genome.

Our transcriptomic analyses of E. laminata tubeworm symbionts revealed high expression levels
of both the rTCA and the CBB cycle genes (Fig. 2). This observation is consistent with previous

proteomic analyses of the Riftia symbiont (4, 5). The high expression levels of genes from the
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89  rTCA and the CBB cycle suggests that both pathways play an important metabolic role in these
90  symbionts. It is, however, not clear whether these cycles function simultaneously within single

91  symbiont cells, or are differentially expressed within the symbiont population (3).

92  The rTCA gene clusters are conserved among the tubeworm symbionts and some

93  Chromatiaceae bacteria. In the tubeworm symbionts, the cultivated T. mobilis and the

94  gammaproteobacterial genome from an environmental metagenome, there was a considerable

95  level of conservation of the rTCA gene clusters, at the sequence and synteny levels (Fig. 2). The

96  aclAB genes that encode the two subunits of the ATP citrate lyase were accompanied by those

97  that encode bidirectional TCA cycle enzymes, including acn (aconitase), idh (isocitrate

98  dehydrogenase), and mdh (malate dehydrogenase). The other rTCA specific genes korABCD

99  (four-subunit OGOR) and #frAB (putative thiol:fumarate reductase ), were also present in the
100  rTCA gene cluster. Similar to the ATP citrate lyase, the four-subunit OGOR, as well as the thiol:
101  fumarate reductase are very rare among Gammaproteobacteria, and were probably acquired via a
102  single horizontal gene transfer event from a distant bacterial clade (Fig. 1, Suppl. Fig. S2 and
103 S3). A dimeric OGOR (korAB genes), more common than the four-subunit enzyme among
104 gammaproteobacterial autotrophs, yet absent in T. mobilis, was located elsewhere in the genome
105  ofthe E. laminata symbiont. The korAB genes were co-localized with genes that encode

106  additional rTCA cycle enzymes (Suppl. Note 2, Suppl. Fig. S4).

107 An array of genes that encode several electron translocating complexes were integrated into the
108  rTCA cycle gene clusters. These complexes included an electron-bifurcating NADH

109  dehydrogenase/heterodisulfide reductase complex (flxABCD-hdrABC genes, Suppl. Note 3), a
110  NAD(P)+ transhydrogenase and Na+ translocating Rnf membrane complex (pntAB and

111  rnfABCDGE genes, Suppl. Note 4). Most interestingly, the conserved interspersing of the

112 korABCD and tfrAB genes with the fIxABCD-hdrABC genes hints at the possibility that these

113 proteins form a complex that efficiently shuttles electrons directly to the OGOR and the thiol:
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114  fumarate reductase (Suppl. Figure S5). If this is the case, the carbon fixation efficiency of the

115  rTCA cycle would be most likely considerably higher than the canonical rTCA cycle.

116  Conclusions. Until now, the only bacteria known to possess two carbon fixation pathways were
117 sulfur-oxidizing, tubeworm symbionts, and possibly also large sulfur bacteria, all of which are
118  currently not amenable to cultivation-based studies. With the discovery of the co-existence of the
119  CBBand rTCA cycle in the cultivable T. mobilis, experimental studies are now feasible. Such

120  studies would reveal if these pathways are expressed under different physicochemical conditions,
121  and potentially allow the biotechnological optimization of efficiency and yield in production

122 processes that rely on autotrophic carbon fixers. To our knowledge, the use of organisms with

123 multiple carbon fixation pathways has not been used as a design principle for these applications.
124  Methods: Comparative genomics and transcriptomics. Publically available genomes from

125  NCBI and JGI-IMG collections, as well as de-novo assembled genomes of Escarpia laminata
126  symbionts (estimated completeness 99.5%), were used for genomic comparison (see

127  Supplementary Methods). To verify presence/absence of target gene homologs in sequenced
128  organisms we used NCBI's BLAST against the nucleotide collection and non-redundant protein
129  database (19). E. laminata symbiont genomes were used as a template for genome-centered

130  transcriptomics (sequences available under the BioProject accession number PRJNA471406).

131  Phylogenetic and phylogenomic analyses. Phylogenomic treeing was performed using scripts
132 available at phylogenomics-tools (DOI:10.5281/zenod0.46122). Twenty-three marker proteins
133 that are universally conserved across the bacterial domain were extracted from genomes using
134  the AMPHORA?2 pipeline (20). Twenty-three single-copy markers were used for alignment with

135  MUSCLE (21). The marker alignments were concatenated into a single partitioned alignment,
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136  and poorly aligned regions were removed. Functional protein sequences were aligned with
137  MAFFT (22). Maximum Likelihood trees were calculated with 1Q-tree (23) and MEGA7 (24),

138  using the best-fitting model.
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Figure 1: Phylogenomic tree showing occurrence of RuBisCO (CbbM/CbbL), ATP citrate

lyase (AclAB), 4-subunit 2-oxoglutarate:ferredoxin oxidoreductase (KorABCD), putative

thiol:fumarate reductase (TfrAB) and 2-subunit 2-oxoglutarate:ferredoxin oxidoreductase

(KorAB) in the genomes of tubeworm symbionts (green), purple sulfur bacteria (purple) and
other related bacteria (58 organisms total, alignment of 2526 amino-acid sites from 23 single-
copy markers). The maximum likelihood tree was built with IQ-tree using the LG+R6 model

of substitution (20). The tree is unrooted although outgroup “thiotrophic symbionts of

bathymodiolin mussels and clams” is drawn at root. Branch labels are SH-aLRT support (%) /

ultrafast bootstrap support (%). Accession numbers are provided in Supplementary Table 2.

* Was not included in the tree due to several missing single-copy marker genes or multiple

versions of these genes, making an accurate phylogenomic placement challenging.
** Only the aclB gene was present.
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Figure 2: The rTCA cycle gene clusters in symbiotic and free-living bacteria, and the respective
transcriptomic gene expression levels in the symbionts of Escarpia laminata tubeworm (aclA, log
(TPM)=3.6; korA, log (TPM)=3.3; hdrA, log (TPM)=2.9; for comparison - atpB, log (TPM)=2.0;
cbbM, log (TPM)=5.0. TPM, transcripts per kilobase million. rbr, rubrerythrin. dsr*,
oxidoreductase related to the NADPH-dependent glutamate synthase small chain, clustered with
sulfite reductase. The dotted line is the median expression value for E. laminata genes.
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