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Abstract   

The continuous flash suppression (CFS) task can be used to investigate what limits our 

capacity to become aware of visual stimuli. In this task, a stream of rapidly changing mask 

images to one eye initially suppresses awareness for a static target image presented to the 

other eye. Several factors may determine the breakthrough time from mask suppression, one 

of which is the overlap in representation of the target/mask categories in higher visual cortex. 

This hypothesis is based on certain object categories (e.g., faces) being more effective in 

blocking awareness of other categories (e.g., buildings) than other combinations (e.g., 

cars/chairs). Previous work found mask effectiveness to be correlated with category-pair 

high-level representational similarity. As the cortical representations of hands and tools 

overlap, these categories are ideal to test this further, as well as to examine alternative 

explanations. For our CFS experiments, we predicted longer breakthrough times for 

hands/tools compared to other pairs, due to the reported cortical overlap. In contrast, across 

three experiments, participants were generally faster at detecting targets masked by hands or 

tools compared to other mask categories. Exploring low-level explanations, we found that the 

category average for edges (e.g., hands have less detail compared to cars) was the best 

predictor for the data. This low-level bottleneck could not completely account for the specific 

category patterns and the hand/tool effects, suggesting there are several levels at which object 

category-specific limits occur. Given these findings, it is important that low-level bottlenecks 

for visual awareness are considered when testing higher-level hypotheses.  
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Introduction 

We live in a rich and complex world and are typically surrounded by many different types of 

objects. However, our ability to perceive and become aware of visual stimuli is limited 

(Cohen, Dennett, & Kanwisher, 2016; C. Y. Kim & Blake, 2005; Treisman & Gelade, 1980; 

Wolfe, Cave, & Franzel, 1989). The mechanisms that underlie these limitations have 

typically been associated with perceptual inhibitory interactions in low-level visual cortex 

(Tong, Meng, & Blake, 2006) or with limited attentional capacities in the fronto-parietal 

network (Desimone & Duncan, 1995). Understanding how our capacity limits are generated 

is a key question in understanding awareness. 

The continuous flash suppression (CFS) task can be used to investigate what limits our 

capacity to become aware of visual stimuli. This paradigm has been used by several 

researchers to study processing across different visual object types (Almeida, Mahon, 

Nakayama, & Caramazza, 2008; Cohen, Nakayama, Konkle, Stantic, & Alvarez, 2015; 

Hesselmann, Darcy, Ludwig, & Sterzer, 2016; Ludwig, Kathmann, Sterzer, & Hesselmann, 

2015; Stein, Sterzer, & Peelen, 2012). The CFS task involves presenting a stream of rapidly 

changing mask images to one eye and a static target image to the other eye (Tsuchiya & 

Koch, 2005; Tsuchiya, Koch, Gilroy, & Blake, 2006). The separate images are fused in the 

brain and participants tend to experience a continuous stream of the flashing mask images. 

This initially suppresses awareness for the static target image, but this may become visible 

after some time.  

Several factors may determine the time it takes targets to break through mask suppression. 

One proposed factor is the categorical similarity in higher visual cortex. This hypothesis is 

based on the finding that in the CFS task certain object categories (e.g., faces) are more 

effective in blocking awareness of other categories (e.g., buildings) than other combinations 

(e.g., cars/chairs), which was found to correlate with category-pair representational similarity 

in higher visual cortex (Cohen et al., 2015). Typically, the mask images in CFS tasks are 

Mondrian-style patterns because these are highly effective in target suppression. Cohen et al. 

(2015), however, used object stimuli as masks, which allows a nice measure of how long it 

takes targets to break through the visual suppression for different types of category 

combinations (e.g., a building target breaking through suppression from masking faces). This 

approach can therefore be used to explore the factors that determine breakthrough times in 

CFS. 
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Cohen and colleagues conducted a series of experiments using a range of paradigms that 

involve the presentation of multiple object stimuli either spatially separated (visual search 

paradigm: Cohen, Alvarez, Nakayama, & Konkle, 2017; visual memory paradigm: Cohen, 

Konkle, Rhee, Nakayama, & Alvarez, 2014) or overlapping (visual masking and continuous 

flash suppression paradigms: Cohen et al., 2015). In each experiment, they found that certain 

category combinations (e.g., faces/buildings) were more effective in interfering with target 

processing than others (e.g., cars/chairs). Reduced performance for specific category pairs 

was in each case predicted by more representational similarity in higher visual cortex for the 

paired objects (Cohen et al., 2014, 2015, 2017). Thus, they made a general proposal that the 

extent to which high-level visual categories (such as faces, bodies and chairs) have spatially 

separable neural representations predicts the capacity to simultaneously process multiple 

visual stimuli. This high-level representational architecture theory thus offers one mechanism 

for our limitations on processing object information in the context of competing visual input. 

This may therefore be one contributor to the limits on visual awareness in the CFS paradigm. 

As hand and tool representations in higher visual cortex are close to each other and partly 

overlap (Bracci, Cavina-Pratesi, Ietswaart, Caramazza, & Peelen, 2012), these categories 

provide ideal stimuli to test the idea that neural overlap might contribute to CFS breakthrough 

times. On the basis of the high-level representational architecture model, we can make 

specific predictions about the behavioural task performance for paradigms involving hands 

and tools stimuli. Although Cohen et al. (2015) quantified neural similarity in a separate 

fMRI experiment, here, we used existing neural data showing the overlap of hands and tools 

to predict breakthrough times for hand/tool pairs compared to other pairs (e.g. hands/cars). 

Further, previous representational similarity analyses have shown that neural representation 

of hands is somewhat closer to that for small than large objects (Kriegeskorte et al., 2008). 

Thus, the high-level representational architecture model also predicts reduced task 

performance for hands and small objects compared to hand and large object pairs.  

Hands are commonly involved in our interactions with the external world. To be successful in 

these interactions we have to be able to quickly and dynamically update our representations 

of target objects in the context of competing visual input. Each interaction involves at least 

two objects - at least one effector (e.g. a hand or a hammer) and one target (e.g. a phone or a 

nail). Thus, finding out more about the visual perceptual limitations for processing of objects 

in the context of bodily information is also important for understanding perceptual factors 

that play a role in interactions between body and environment.  
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One of the crucial aspects of comparing category-level interactions is to select stimuli that 

have similar variability. Our hand category consisted of just one type of stimulus (basic 

category level) with many different exemplars of hands (Rosch, Mervis, Gray, Johnson, & 

Boyes-Braem, 1976). In other higher-level category sets of tools, small objects and large 

objects (superordinate categories), there is a much greater variability between category 

exemplars (e.g., a tool could be a hammer, pliers, screwdriver etc). We therefore also 

included other basic category sets that consisted of only one type of object (hammers, phones 

and cars) to provide an appropriate control for category-level and variance in the hand 

condition. 

We tested if the high-level neural representational architecture model can predict CFS 

breakthrough time rank-orders. Following Cohen et al. we tested pairs of stimuli in the CFS 

paradigm. Here, we use ‘hands/tools’ to indicate a hand target competing with tool masks as 

well as a tool target competing with hand masks. Neural hand and tool representations 

overlap (Bracci et al., 2012) and neural representations for small objects are further away 

from hand and tool representations then they are from each other; large object representations 

are even further away in neural representational similarity space (Kriegeskorte et al., 2008). 

Thus, we derived and tested the following simple models of rank-order predictions (also see 

Figure 2): 1st Rank: The fastest breakthrough times for hand/large object and tool/large object 

pairs. 2nd Rank: Somewhat slower breakthrough times for hand/small objects, tool/small 

object and small object/large object pairs because these representations are closer together. 

3rd Rank: Even slower breakthrough times for hand/tool pairs due to the overlap and 4th Rank: 

slowest breakthrough times for within-category pairs because the high-level neural 

architecture model predicts the most overlap for stimuli from the same category. 

In addition to predictions based on neural representation, we can also test the contribution of 

other factors to CFS breakthrough times using this paradigm. Here, again, hands provide 

useful stimuli. Although we globally matched (i.e., for the entire image) characteristics such 

as size, colour, contrast, luminance and spatial frequency content across all images, there are 

still category-specific local image characteristics that could influence breakthrough times. For 

example, hands, due to their shape, might not cover the entire target area, which could 

facilitate target breakthrough from suppression. We calculated the average percentage of 

object across the target area and also across the entire image for each mask category, 

allowing us to create object-coverage models as predictors for breakthrough times for 

different category masks. 
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A further image characteristic that could influence breakthrough times is the amount of edges 

(local clustering of contrast changes). In fact, it has previously been suggested that the 

amount of edges could determine CFS because increased spatial density of Mondrian masks 

result in longer breakthrough times (Drewes, Zhu, & Melcher, 2018). However, in this 

previous study, their manipulation of spatial density changed both edge content and global 

spatial frequency content, contrast and luminance. Thus, it was not possible to disentangle if 

increased CFS breakthrough times were due to increased edge content or due to increased 

contrast energy. Here we used images with matched global spatial frequency content, contrast 

and luminance, which allowed us to specifically test the effect of edge content. 

In summary, we used CFS to test the contribution of different factors, ranging from high-

level neural representation to low-level object coverage and edge content models, to 

breakthrough times for different object category pairs. The results have implications for our 

understanding of visual awareness and multiple object perception. 
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Methods Experiment 1 

In Experiment 1 we tested if known characteristics of neural high-level object representations 

predict CFS breakthrough times for the categories of: hands, tools, hammers, small objects, 

phones, large objects and cars.  

Participants 

As in Cohen et al. (2015), we tested 20 participants. Our sample consisted of 17 females and 

3 males (M = 21.05 years, SD=2.65, range 18-27 years, 2 left-handed according to self-

report, 12 right-dominant eye). All participants had normal or corrected-to-normal vision 

(contact lenses only) and received $20 for their participation. The data of one participant had 

to be replaced due to technical difficulties that resulted in an incomplete data set. This 

research was conducted in accordance with the ethical standards laid down in the 1964 

Declaration of Helsinki and was approved by the Macquarie University Ethics Review 

Committee (Human Research). Written informed consent was obtained from all participants 

prior to the start of the experiment.  

Stimuli  

We prepared our stimuli in line with the steps in Cohen et al. (2015) to minimize low-level 

differences between stimulus sets. We selected visually variable stimuli (see Figure 1A and 

1B, the complete set of stimuli is available here: https://bit.ly/2Krq7Ab) and, also in the 

interest of high stimulus set variability, selected 60 stimuli per category (Cohen et al. 2015 

used 30 stimuli) and presented these in both mirrored and non-mirrored versions. Stimuli for 

all three experiments were prepared at the same time and selected from our own databases as 

well as from the Bank of Standardized Stimuli (BOSS, sites.google.com/site/bosstimuli/, 

Brodeur, Dionne-Dostie, Montreuil, & Lepage, 2010), Konklab image sets 

(http://konklab.fas.harvard.edu/#, Konkle & Oliva, 2012) and the Tarrlab (www.tarrlab.org, 

Stimulus images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition and 

Department of Psychology, Carnegie Mellon University. Funding provided by NSF award 

0339122). All stimuli were centred and gray-scaled. We normalized the intensity histogram 

(i.e., contrast and luminance) across all images and power at all spatial frequencies and 

orientations using the SHINE toolbox (Willenbockel et al., 2010).    
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Continuous Flash Suppression Task 

Using the CSF task, we measured the time for target categories to break through suppression 

from distracting mask categories. We determined eye dominance for each participant before 

the experiment using the Miles test (Miles, 1930). We used a mirror stereoscope 

(ScreenScope, Stereoaids, Albany, Australia, stereoaids.com.au) to present mask stimuli to 

the dominant eye and target stimuli to the non-dominant eye (Figure 1C). Before running the 

task, we presented a frame and fixation dot to each eye and asked participants if these were 

clearly visible with each eye and if they overlapped when both eyes were open. We adjusted 

the stereoscope mirror angles as needed. The mask images were large (16.5° visual angle) 

and centred in the middle of the screen. The target images were small (3° visual angle) and 

presented in the centre of the screen either just above or below a small central fixation dot. To 

facilitate fusion of target and mask images, the target image was presented through a square 

Gaussian aperture (i.e., the outer 5% of the image was smoothed) and a thin black frame with 

the size of the mask image was presented to both eyes. This differed slightly from Cohen et 

al. (2015), who used a circular aperture, to ensure that we did not cut off any part of the target 

stimuli (particularly for the hands). A new mask image was shown every ~167 ms (6 Hz). 

This has been shown to be the optimal temporal frequency for suppression in other CFS 

studies (Drewes et al., 2018; Zhu, Drewes, & Melcher, 2016), but is actually a slower rate 

than Cohen et al. (2015), who used ~117 ms (8.5 Hz); nevertheless we found comparable 

breakthrough times (see Experiment 3). A trial started with the presentation of the black 

fixation dot for 250 ms which then turned red for 200 ms to alert participants that the trial 

was about to start. From the start of the trial, the static target gradually became more visible 

(0% to 100% opacity in 13 steps with each new mask presentation) over ~2170 ms. After 

that, the mask gradually became less visible (100% to 40% opacity in 37 steps with each new 

mask presentation) over ~6180 ms. If there was no response, the trial ended after ~8350 ms. 

Over the course of the trial, up to 50 different mask images were randomly selected from the 

set of 120 options (mirrored and non-mirrored versions of our 60 unique stimuli per 

category). 

Participants were instructed to detect the appearance of the small target item and respond 

with the space bar when they detected it. This stopped the stimulus presentation, and they 

then gave a forced choice response indicating if the target was presented above or below 

fixation by pressing one of two keyboard keys (‘1’ or ‘2’). Participants were instructed to 

give the first response as fast as possible and the second response as accurately as possible. 
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Participants completed 10 practice trials before each block and received visual feedback 

(‘correct’, ‘incorrect’ or ‘no response’) for 1 s after every trial. The next trial started 

immediately after the feedback screen.  

Mask stimuli were presented in blocks – separately for each of the seven category sets 

(hands, tools, hammers, small objects, phones, large objects, cars). For 10 participants we 

used a random order of the 7 conditions, and for the other 10 participants, we used the reverse 

of those 10 orders. In each mask block, there were 20 target trials for each category; in 

contrast to Cohen et al. 2015, we also presented targets from the same category as the mask. 

For each category, in half of the trials (10 target trials) the target appeared above and in the 

other half below fixation. In total, there were 140 trials within each block; target categories 

and target locations presented in a random order. There were two breaks within each mask 

block and a break between mask blocks. The experiment took approximately 75 minutes to 

complete. Stimulus presentation was controlled with MATLAB (The MathWorks, Natick, 

MA) and the Psychtoolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on an ASUS 

monitor with a refresh rate of 60 Hz and a screen resolution of 1920 x 1080. The eye to 

monitor distance was approximately 57 cm. 
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Figure 1. Stimuli and Continuous Flash Suppression (CFS) trial design. A) In Experiments 1 

and 2, we presented hands, tools, hammers, small objects, phones, large objects and cars. 

Three stimulus exemplars for each set are depicted. B) In Experiment 3, we presented hands, 

faces, bodies, houses, cars and chairs. Three stimulus exemplars for each set are depicted. C) 

On each CFS task trial, mask images were presented in the dominant eye and target images 

in the non-dominant eye.  

 

Data Analysis 

Our variable of interest was the breakthrough reaction time, which is how long it took 

participants to press the space bar to indicate target detection. Trials without a response were 

excluded from analysis (0.30% of trials). We then also excluded trials on which the 

subsequent location response was incorrect: participants were 98.60% (SD=1.07) correct 

across all trials. Finally, trials with response times < 300 msec or > three standard deviations 

from the participant’s mean across all trials were also excluded, leading to the removal of a 

further 1.64% of the trials. 

We developed a novel version of analysis methods that are frequently used in the context of 

neuroimaging data representational similarity analyses (RSA, Nili et al., 2014). First, we used 

2D mosaic plots for visualisation of the breakthrough reaction times (see Figures 2-5). This 
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allows display of the matrix of breakthrough reaction times for all mask and target 

combinations in one plot and facilitates examination of the data pattern. Second, we 

employed correlation analyses to assess the similarity between specific models and the data. 

This allowed us to assess and compare the relatedness of different candidate models. Because 

our model predictions did not specify linear relationships but instead simply a rank order for 

category pairs (e.g., slower breakthrough times for hand/tool pairs compared to hand/large 

object pairs), we used rank-order correlations. Specifically, we used Kendall’s rank 

correlation coefficient τA (‘tau-a’), which is the proportion of values that are consistently 

ordered in both variables and is suitable for comparisons of models that predict tied ranks 

(Nili et al., 2014). We programmed and ran these analyses in MATLAB. In addition to the 

paired data-model correlation tests, we also ran partial correlation analyses to test data-model 

correlations while controlling for other variables. To run partial nonparametric (Kendall’s 

rank) correlation analyses we used the R package ppcor (S. Kim, 2015). In addition, as a 

sanity check, we also ran these correlation and partial-correlation analyses using the available 

MATLAB functions for nonparamatric (Spearman’s rank) correlations and found somewhat 

higher correlation coefficients but overall a consistent pattern of results. 

We used permutation tests for statistical inference. To estimate the sampling distribution of 

the correlation coefficients under the null hypothesis, we randomly shuffled trial labels for 

each participant’s data set of target/mask pair breakthrough times and then calculated 

condition means and data-model correlation coefficients for 10,000 times. We calculated 

two-sided p-values as the proportion of absolute sampled correlation coefficients that were 

greater or equal to the absolute observed correlation coefficient. Exact p-values were 

calculated with the R function permp (statmod package) (Phipson & Smyth, 2010). We 

corrected our analyses for multiple comparisons using Bonferroni adjusted alpha significance 

levels. 

Results Experiment 1 

The breakthrough time data pattern for all mask and target combinations did not resemble the 

predicted high-level representational architecture model (Figure 2A). Hand and tool 

combinations did not lead to slower breakthrough times compared to other hand and object 

categories. In contrast, they resulted in some of the fastest breakthrough times (dark colours). 

Overall, we did not find significant data-model correlations for the high-level representational 

architecture model (tau-a mean=-0.002, p=0.93). 
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What can be clearly seen is that there are general mask effects: hand and tool masks resulted 

in the fastest mean breakthrough time across different target combinations (hands mean 

RT=1447 ms, SD=434 ms; tools mean RT=1526 ms, SD=508 ms; hammers mean RT=1475 

ms, SD=488 ms; small objects mean RT=1712, SD=517 ms; phones mean RT=1694, 

SD=450 ms; large objects mean RT=1759, SD=782 ms; cars mean RT=1695, SD=510 ms). 

This suggests that hands and tools both are relatively inefficient masks. This is not just due to 

the category level (basic vs supraordinate) as it is present for both levels (e.g., the tool 

category as well as the hammer) compared to all other categories. If we test a post-hoc model 

that has hands and tools as relative inefficient masks, there is a significant data-model 

correlation (exploratory analysis; Bonferroni corrected significance threshold of p=0.025, 

tau-a mean=0.191, p<0.001). These correlations were significantly higher than the 

correlations for the high-level representational architecture model (permutation test p-values 

for the difference: p<0.001). 

These results show that target stimuli reach awareness faster when competing with hands or 

tools than when competing with other stimuli. We conducted a second experiment to further 

understand the mechanism for this effect and to test if we can replicate this pattern. It is 

possible that the effect is not due to differences in mask efficiency per se. Instead, it could be 

due to the strong association between hands or tools and controlling manual actions. Thus, 

viewing hands and tools over several seconds in the CFS paradigm could speed up manual 

motor breakthrough times (Longo & Haggard, 2009). This would then result in quicker 

reaction times to targets when these masks are used. In Experiment 2, we therefore used 

vocal (non-manual) responses to test if these hand and tool relative inefficient mask effects 

replicate.  
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Figure 2. Results for high-level category-specific models Experiment 1 (A) and Experiment 2 

(B). Mosaic data plots depict breakthrough times for all mask and target combinations. 

Darker colours are faster and lighter colours slower breakthrough times. Across both 

experiments fast breakthrough times are found for targets when hands were masks. Mosaic 

model plots depict the predictions for the rank order of mask and target combinations (e.g., 

hands & cars fastest and hands & hands slowest breakthrough times). We found no 

significant data-model correlations for the high-level representational architecture model. 

We found significant correlations for the hand/tool inefficient mask model. Asterisks indicate 

significance of individual models and lines significant pairwise comparisons, both assessed 

using permutation tests. Multiple model comparison was accounted for using Bonferroni 

corrections. Error bars represent 95% confidence intervals.   
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Experiment 2 

In Experiment 2, participants gave vocal responses. We tested if the speed up of breakthrough 

reaction times in the context of hand and tool mask that we found in Experiment 1 replicates 

when using a non-manual response modality. 

Methods  

We implemented the same methods as in Experiment 1 with the exceptions that we obtained 

vocal reaction times (see details below) and that we tested the predictions of both the high-

level representational architecture and the hands/tools inefficient mask model (see Figure 

2B). 

Participants 

We tested 20 new participants (18 female, M = 20.25 years, SD=1.48, range 18-24 years, 2 

left-handed according to self-report, 13 right-dominant eye). All participants had normal or 

corrected-to-normal vision (contact lenses only) and received $20 for their participation. One 

participant had to be replaced due to technical difficulties.  

Vocal Responses in the Continuous Flash Suppression Task 

In Experiment 2, participant gave vocal instead of manual responses to indicate target 

detection and location. To this end we used a voice key. Participants were instructed to 

respond with a ‘ba’ sound as soon as the small target was detected, followed by a location 

categorization with another ‘ba’ sound or no sound. For half of the participants a second ‘ba’ 

sound indicated above fixation and for the other half it indicated below fixation. We used ‘ba’ 

as this gave a consistent sharp consonant sound to trigger the voice key reliably. 

Participants were 97.48% (SD=3.06) correct across trials; in 0.63% of trials there was no 

response, and data trimming as described for Experiment 1 led to the removal of a further 

1.56% of the trials.  

Results Experiment 2 

Vocal reaction times in Experiment 2 were generally slower compared to the manual reaction 

times in Experiment 1. This is in line with other studies comparing these response modalities 

(Eimer & Schlaghecken, 2001). As can be seen in Figure 2B, we found the fastest reaction 

times for the hand masks (hands mean RT= 1733 ms, SD=643 ms). We also found relatively 

fast reaction times again for the tool masks (tools mean RT=1863 ms, SD=855 ms; hammers 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2019. ; https://doi.org/10.1101/363515doi: bioRxiv preprint 

https://doi.org/10.1101/363515
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

mean RT=1788 ms, SD=781 ms). In this experiment, the reaction times in the large object 

conditions were also similar to the tool conditions (large objects mean RT=1813 ms, SD=598 

ms; small objects mean RT=1919 ms, SD=606 ms; phone mean RT=2054 ms, SD=782 ms; 

car mean RT=2119 ms, SD=763 ms). Nevertheless, we found significant data-model 

correlations for the hands/tools inefficient mask model (Bonferroni corrected significance 

threshold of p=0.025, tau-a mean=0.212, p<0.001). These correlations were significantly 

higher than the high-level representational architecture model correlations (permutation test 

p-values for the difference: p<0.001), for which we did not find significant data-model 

correlations (Bonferroni corrected significance threshold of p=0.025, tau-a mean=-0.0003, 

p=0.99). Overall, even with a non-manual response modality, we found the fastest 

breakthrough times for the hand masks ruling out a simple manual response facilitation 

explanation. Furthermore, we found no significant correlations for the high-level 

representational architecture model and found that the hand/tool inefficient mask model 

yielded better data-model correlations.  

 

Results for local category-specific image characteristics (Experiments 1 and 2) 

 

As we found the lowest CFS breakthrough times for hands and tools, it is possible that these 

categories contain the lowest edge content of our stimuli. To estimate the number of edges in 

each image, we used the Matlab edge detection function. We employed the widely used 

Canny method with the low and high thresholds 0.1 and 0.2 (Canny, 1986). We also analysed 

the edges employing the prewitt method (Prewitt, 1970) and found comparable results, 

suggesting that the pattern of results was not dependent on the particular choice of edge 

detector. We calculated the average percentage of edges for all images across each category. 

We used these edge-content mean values to create edge-content models as predictors for 

breakthrough times for different category masks (Figure 3). 

Although hammers and tools had the lowest object coverage in the target area, most likely 

due to their elongated shape, this was not the case for hands. We obtained significant data-

model correlations for object coverage models (considering comparisons for five models, 

Bonferroni corrected significance threshold of p=0.01; Experiment 1 %object entire image 

tau-a mean=0.085, p<0.001, %object target image tau-a mean=0.148, p<0.001; Experiment 2: 

%object entire image tau-a mean=0.065, p=0.003, %object target image tau-a mean=0.178, 
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p<0.001). However, our analysis also revealed that the data-model correlations for the object 

coverage for the entire image were significantly smaller compared to the hand/tool inefficient 

mask model (Experiment 1: tau-a mean=0.191; Experiment 2: tau-a mean=0.212, 

permutation test p-values for the difference, considering all four paired comparisons for 

object coverage and edge content models Bonferroni corrected significance threshold of 

p=0.0125: Experiment 1:  %object entire image p<0.001, %object target area p=0.023; 

Experiment 2: %object entire image p<0.001, %object target area p=0.076).  

Hands had the least amount of edges both across the entire image and specifically in the 

target area. Tools and hammers also had a lower edge content compared to several other 

categories. The correlations between data and edge-content models for both experiments were 

significantly above zero (considering comparisons for five models Bonferroni corrected 

significance threshold of p=0.01; Experiment 1 %edge entire image tau-a mean=0.231, 

p<0.001, %edge target area =0.217, p<0.001; Experiment 2: %edge entire image tau-a 

mean=0.303, p=0.002, %edge target area tau-a mean=0.292, p<0.001). The edge-content 

model correlation coefficients (except for the edge-target area model in Experiment 1) were 

also significantly larger than for the hands/tools inefficient mask model (Experiment 1: tau-a 

mean=0.191; Experiment 2: tau-a mean=0.212, permutation test p-values for the difference, 

considering all four paired comparisons for object coverage and edge content models 

Bonferroni corrected significance threshold of p=0.0125: Experiment 1: %edge entire image 

p<0.001, %edge target area p=0.088; Experiment 2: %edge entire image p<0.001, %edge 

target area p<0.001). Thus, this exploratory analysis suggests that the category-specific edge 

content provides the best predictor for the data and could underlie the hand and tool specific 

effects.  

To further investigate if category-specific image characteristics can account for the hand and 

tool specific effects, we also ran partial correlation analyses. These allowed us to test data-

model correlations for the hands/tools inefficient mask model while controlling for other 

variables such as object coverage and edge content. For both Experiment 1 and Experiment 2, 

we found that the correlation coefficients were reduced (Experiment 1: tau-a mean=0.154, 

p<0.001; Experiment 2: tau-a mean=0.120, p<0.001) but still significant when taking all four 

variables (object coverage entire image and target area, edge content entire image and target 

area) into account. This was also the case when we ran partial-correlation analyses for all four 

variables separately (Bonferroni corrected significance threshold of p=0.0125, Experiment 1: 

%object entire image tau-a mean=0.264, p<0.001;   %object target area tau-a mean=0.237, 
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p<0.001; %edge entire image tau-a mean=0.141, p<0.001; %edge target area tau-a 

mean=0.169, p<0.001; Experiment 2: %object entire image tau-a mean=0.305, p<0.001; 

%object target area tau-a mean=0.248, p<0.001; %edge entire image tau-a mean=0.102, 

p<0.001; %edge target area tau-a mean=0.148, p<0.001). This analysis suggests, that 

category-specific image characteristics such as edge content cannot fully explain the hand 

and tool specific effects.       

In Experiment 3 we tested whether the edge-content explanation could contribute to the 

results of Cohen et al. (2015) by using the same categories as they employed. 
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Figure 3. Results for local category-specific image characteristics for Experiments 1 (A) and 

2 (B). We calculated category specific values for the amount of edges (local luminance 

changes) as well as the amount of image covered by the object both specifically in the target 

area and also for the entire image. For the amount of edges we found very similar or higher 

data-model correlations compared to the hands/tools inefficient mask model. Asterisks 

indicate significance of individual models and lines significant pairwise comparisons, both 

assessed using permutation tests. Multiple model comparison was accounted for using 

Bonferroni corrections. Error bars represent 95% confidence intervals. 
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Experiment 3 

In Experiment 3, we asked whether we also find relative inefficiency of hand masks when 

including other object categories such as those employed by Cohen et al. (2015). This also 

allowed us to test the edge-content model on another set of categories. Furthermore, we could 

test if we can find a comparable CFS breakthrough time pattern as reported by Cohen et al. 

(2015) and investigate to what extent it might be related to the amount of category-specific 

edge content.  

Participants 

We tested 20 new participants (18 female, M = 23.55 years, SD=4.57, range 18-36 years, all 

right-handed according to self-report, 10 right-dominant eye). All participants had normal or 

corrected-to-normal vision (contact lenses only) and received Euro 7.50 for their 

participation. This research was conducted in accordance with the ethical standards laid down 

in the 1964 Declaration of Helsinki and was approved by the Ethics Committee of the Faculty 

for Social and Behavioural Sciences, Friedrich Schiller University Jena. Written informed 

consent was obtained from all participants prior to the start of the experiment. 

Methods 

In Experiment 3, we employed the same methods as in Experiment 1 with a few exceptions. 

First, the study was conducted in Germany and thus we translated the instructions and 

feedback into German. Stimuli were presented on a BENQ monitor with a refresh rate of 60 

Hz and a screen resolution of 1680 x 1050. In addition to the hand category, we included 

face, body, building, car and chair category sets.  

Participants were 98.66% (SD=0.91) correct across trials; in 0.20% of trials there was no 

response, and data trimming as described above led to the removal of 1.56% of the trials. 

Results Experiment 3 

First, we present our behavioural data as in Cohen et al. (2015; Figure 4), including only the 

categories of faces, bodies, buildings, cars and chairs, but separating masks and targets as in 

our previous experiments. As can be seen in Figure 4A, there are general mask effects (car 

masks have overall longer breakthrough times compared to other masks) and also general 

target effects (face targets have overall shorter breakthrough times compared to other targets). 

This suggest that the data pattern is not symmetrical across different mask and target pair 
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combinations (e.g. face mask and body target pairs longer breakthrough times compared to 

body mask and face target pairs). We then transformed our data so it had the same format as 

Cohen et al. (2015): We excluded within-category mask and target pairs and collapsed across 

mask and target pairs (e.g., face mask and body target averaged with body mask and face 

target) (Figure 4A). The general effects between different masks and targets are no longer 

obvious in the collapsed data but they may nevertheless underlie the pair rank order. This 

highlights the importance of showing mask /target pairs separately in a non-collapsed format 

(for example, using our mosaic plots). 

The collapsed pairs can be seen in a bar graph (Figure 4B) as in Cohen et al. (2015, Figure 

4B). Our data showed a similar range of breakthrough times (from 1724 to 2010 ms). They 

also show a similar pattern with faces/buildings, faces/bodies and faces/ chairs among the 

lowest and cars/bodies, cars/buildings and cars/chairs among the highest breakthrough times. 

In contrast, we found longer breakthrough times for bodies & buildings compared to Cohen 

et al. (2015). We correlated the rank order of our data with theirs and found a significant 

correlation (Spearman’s rho = 0.71, p=0.019).   

We then derived a model based on the rank order of the data by Cohen et al. (2015) with 

faces/buildings the highest rank (1st rank = fastest breakthrough times) and car/chair pairs the 

lowest rank (10th rank = slowest breakthrough times) (see Figure 4C). We derived the 

corresponding edge content and object coverage models by collapsing values across mask 

and target pairs. Using a correlation analysis between the models and our data (considering 

comparisons for five models Bonferroni corrected significance threshold of p=0.01) we found 

significant correlations between our data and the Cohen et al. order model (tau-a mean=0.2, 

p< 0.001). We also found significant correlations for the edge-content models (for both tau-a 

mean =0.2, p<0.001), but not the object-coverage models (%object entire image tau-a mean=-

0.044, p=0.435 %object target area tau-a mean=-0.053, p=0.350). The edge-content model 

correlation coefficients were numerically and statistically not different to the Cohen et al. 

(2015) order model correlations (permutation test p-values for the model differences, 

Bonferroni corrected significance threshold of p=0.025: Cohen et al. versus %edge entire 

image p = 0.9774, Cohen et al. versus %edge target area p = 0.9774). This suggests that both 

the specific category order (related to category neural similarity) and the edge content are 

able to account for the data pattern in Experiment 3.   
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We also ran partial correlation analyses. These allowed us to test data-model correlations for 

the Cohen et al. order model while controlling for other variables such as object coverage and 

edge content. We found that the correlation coefficient was reduced (tau-a mean=0.173, 

p=0.002) but still significant when taking all four variables (object coverage entire image and 

target area, edge content entire image and target area) into account. This was also the case 

when we ran partial-correlation analyses for all four variables separately (Bonferroni 

corrected significance threshold of p=0.0125, %object entire image tau-a mean=0.210, 

p<0.001; %object target area tau-a mean=0.204, p<0.001; %edge entire image tau-a 

mean=0.180, p<0.001; %edge target area tau-a mean=0.180, p<0.001). This analysis suggests 

that category-specific image characteristics such as edge content cannot fully explain the 

category-specific effects. Thus it remains plausible that additional high-level representational 

or other factors influence visual awareness in CFS.          

Overall, we found a similar pattern to the behavioural findings of Cohen et al. (2015) and 

found that edge-content was a good predictor for this pattern. These category-specific low-

level image characteristics could not completely account for the behavioural data pattern, 

suggesting high-level factors can also contribute to the limitations on visual awareness.  
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Figure 4. Data and models for Experiment 3 as in Cohen et al. (2015). A) Only includes 

categories of faces, bodies, buildings, cars and chairs; within-category mask and target pairs 

are excluded and we collapsed data across mask and target pairs (e.g., face mask and body 

target averaged with body mask and face target) as in Cohen et al. (2015). B) The collapsed 

mask and target pairs as ordered in Cohen et al. (2015). We found a significant correlation 

with the rank-order Cohen et al. (2015) reported previously (Spearman´s rho = 0.71, 

p=0.019). C) Cohen et al. (2015) order model (which previously showed high correlations 

with the high-level neural category representations), edge-content and object-coverage 

models as well as data-model correlations. The Cohen et al. (2015) model and edge content 

models had the highest data-model correlation coefficients and were not significant different. 

Asterisks indicate significance of individual models assessed using permutation tests. 

Multiple model comparison was accounted for using Bonferroni corrections. Error bars 

represent 95% confidence intervals.  
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In a second analysis, we included the data for the hand category. In line with Experiments 1 

and 2, we found that hands were the most inefficient masks (shortest mean breakthrough 

times, RT mean for hands=1548 ms, SD = 473 ms; mean mask breakthrough times for other 

categories: faces mean RT= 1831, SD=473 ms; bodies mean RT=1798, SD=575 ms; 

buildings mean RT=1866, SD=531 ms; cars mean RT=2086, SD=746 ms; chairs mean 

RT=1815, SD=508 ms) and numerically had the lowest edge content in the context of the 

object categories employed by Cohen et al. (2015). In our first analysis (Figure 5), we 

compared the full data set (including hands) to hands-inefficient, edge-content and object-

coverage models. We found the largest data-model correlations for the edge-content models 

(considering comparisons for five models Bonferroni corrected significance threshold of 

p=0.01; %edge target area tau-a mean=0.240, p<0.001; %edge entire image tau-a 

mean=0.226, p<0.001; %edge hand inefficient mask model tau-a mean =0.148, p<0.001; 

%object entire image tau-a mean=-0.002, p=0.945, %object target area tau-a mean=0.079, 

p=0.002). These were significantly larger than the correlations for the hands-inefficient mask 

model (permutation test p-values for the model differences, Bonferroni corrected significance 

threshold of p=0.025: %edge entire image p<0.001, %edge target area p<0.001). Thus, in line 

with the previous experiments edge-content models were the best predictor for the mask 

category reaction time order. 

As in previous analyses, we also investigated if category-specific image characteristics could 

account for hand-specific effects using a partial correlation analysis. Again, we found that the 

correlation coefficient was still significant (tau-a mean=0.134, p<0.001) when taking all four 

image-specific variables (object coverage entire image and target area, edge content entire 

image and target area) into account. This was also the case when we ran partial-correlation 

analyses for all four variables separately (Bonferroni corrected significance threshold of 

p=0.0125, %object entire image tau-a mean=0.294, p<0.001; %object target area tau-a 

mean=0.282, p<0.001; %edge entire image tau-a mean=0.176, p<0.001; %edge target area 

tau-a mean=0.165, p<0.001). In line with the previous analyses, this suggests that category-

specific image characteristics cannot fully explain the hand-specific effects.  
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Figure 5. Data, models and correlation analyses for Experiment 3. Models include the hand 

inefficient mask model and models for category specific edge content as well as the amount of 

image covered by the object both specifically in the target area and also for the entire image. 

The edge-content models showed the highest data-model correlations of all the models. 

Asterisks indicate significance of individual models and lines significant pairwise 

comparisons, both assessed using permutation tests. Multiple model comparison was 

accounted for using Bonferroni corrections. Error bars represent 95% confidence intervals. 
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Discussion 

We conducted three CFS experiments to explore the contributing factors to suppression of 

visual awareness across different object categories. In particular, we investigated this in the 

context of hand and tool stimuli. These stimuli form a particularly useful test category for 

testing the hypothesis that overlapping neural representations result in greater competition 

(Cohen et al., 2015) because neural representations for hands and tools have been shown to 

overlap (Bracci et al., 2012). We predicted longer CFS breakthrough times for hand/tool pairs 

compared to hand/other object pairs due to their neural overlap. We also explored the 

contribution of lower-level factors such as image coverage and edges.  

In contrast to the predictions from the high-level neural representational architecture 

hypothesis, in Experiment 1, we found that participants were generally faster at detecting 

targets when paired with either hand or tool CFS masks, compared to other object category 

masks. These data did not correlate with a model based on higher-level neural 

representational architecture, but instead seemed to indicate a model where hands and tools 

were inefficient masks relative to other categories. We then tested this inefficiency model 

against new data in Experiment 2 and found significant positive correlations. We also found 

support for hands to be relatively inefficient masks in the context of those stimuli used in a 

previous CFS experiment by Cohen et al. (2015), finding a similar pattern as their 

behavioural CFS findings (Experiment 3).  

When investigating the underlying mechanisms for these effects in more detail, we verified 

that the relative inefficiency of hands and tools was not due to facilitation of manual 

responses: we replicated the effect using vocal responses (Experiment 2). Analysis of 

category-specific local image characteristics showed that edge content (i.e., average 

percentage of mask image that is edge) but not object coverage (i.e., average percentage of 

mask image that is covered by a visual object) was the best predictor for category differences 

in breakthrough times across all analyses. Hand stimuli had, on average, the lowest edge 

content and this might be the underlying factor as to why hands are relatively inefficient 

masks. Edge content was also a good predictor for the data analysed without hands and 

collapsed across category pairs as in Cohen et al. (2015). Thus, our findings show that edge 

content is a relevant source for limitation in the CFS task with stimuli for which other low-

level factors have been carefully controlled (e.g., luminance, contrast and colour).  
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In previous work, increased spatial density was related to increased CFS breakthrough times 

but it was not possible to tease apart effects of edge content and general contrast energy 

(Drewes et al., 2018). Here we used images with matched global spatial frequency content, 

contrast and luminance (Willenbockel et al., 2010) and found that edge content significantly 

correlated with breakthrough times across different category sets. This demonstrates that 

increased edge-detection workload itself can be linked to CFS breakthrough times. Edge 

detection happens very early in the visual processing stream both at the subcortical level 

(lateral geniculate nucleus in the thalamus) and in early visual cortex (Hubel & Wiesel, 

1962). Thus, the specific mechanism that links edge content and suppression times is likely 

related to a low-level visual mechanism. Overall, our findings provide novel evidence for a 

low-level perceptual bottleneck for visual awareness in the CFS task. 

Our findings in Experiments 1 and 2 do not provide evidence for a high-level mechanism 

limiting visual awareness for competing objects. In Experiment 3, we found a similar CFS 

pattern as reported by Cohen et al. (2015) using the same category sets. These authors 

showed high correlations between this pattern and the neural category similarity in high-level 

visual cortex. However, in Experiments 1 and 2 we were not able to predict, based on known 

neural similarity, the CFS pattern for a different set of categories involving hand, tool and 

object stimuli. A limitation of our study was that we based our sample size on the study by 

Cohen et al. (2015) and not on a statistical power analysis. We developed a novel method to 

analyse category-specific CFS breakthrough times which involves correlating our CFS data 

pattern with several different models. To determine whether these correlations are statistically 

significant we used permutation tests. Power analyses for these permutation tests would 

require large simulation studies and computing times beyond a feasible timeframe. Thus, 

although with our methods we were able to detect certain effects, including a similar pattern 

as reported in Cohen et al. (2015), it is still possible that our study may have not had enough 

statistical power to detect smaller effects. We note, however, that the average correlation 

coefficient and effect size for the high-level representational architecture model correlation 

was very close to zero (Experiment 1 tau-a mean=-0.002, Experiment 2 tau-a mean=-0.0003), 

suggesting that any effect we may have missed is likely to be very small. 

Instead of support for the neural representational architecture model, we found general mask 

effects that correlated with edge content across all experiments. Our new visualisation and 

correlation methods allowed us to detect and investigate such general mask effects, whereas 

previous work used averages across mask and target pairs (e.g. face mask and body target 
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averaged with body mask and face target; Cohen et al., 2015), which means there is no 

potential to detect differences between specific category masks or targets.  

Although the edge account had good explanatory power, there was additional variance not 

explained by the edge model, leaving room for additional contributing factors. Our partial 

correlation analyses testing if category-specific image characteristics could account for the 

Cohen et al. (2015) category pattern or for the hand /tool effects resulted in reduced, but still 

significant, data-model correlation coefficients when controlling for edge content. This 

suggests that there may be both low- and high-level object category-specific limits for visual 

awareness. These might include contributions from high-level neural representational 

architecture (although we were not able to find any support for this model using hand/tool 

categories here), category-specific edge content and also special mask effects for specific 

categories such as hand and tool stimuli. Alternatively, it may be the case that using category 

means for edge content is not ideal to estimate the influence of edge content on the reaction 

time data, as edge content could also vary substantially within and between trials. To fully 

test for high-level contributions to the limits on visual awareness, it would be necessary to 

control edge content across categories or model it for individual trials. 

Our lack of evidence for the high-level representational architecture model in Experiments 1 

and 2 could also be stimulus- and task-specific. The CFS paradigm involves fast 

presentations of large masks over a relatively long trial time. This would challenge 

processing capacity in early visual cortex, which could then result in large effects of edge 

content on reaction time measures (Drewes et al., 2018), especially when using stimuli with 

relative high or low edge-content such as hands and tools. This could, in turn, mask other 

potential effects due to the representational architecture. Evidence for a link between the 

high-level representational architecture and visual processing of object stimuli has also been 

reported in paradigms where the object stimuli were spatially distributed (visual search 

paradigm: Cohen et al., 2017; visual memory paradigm: Cohen et al., 2014). It is possible that 

these multiple object tasks tap mostly into selective attention mechanisms that are indeed 

influenced by the neural high-level spatial distribution of the processing of visual categories. 

However, it is important to investigate the role of edge content also for these tasks to rule out 

low-level perceptual explanations.  

It is also important to note that we only indirectly tested the high-level representational 

architecture based on what is known about the overlap between hand and tool areas and 
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previous paired-category findings by Cohen et al. (2015). We used existing neural data to 

derive predictions in line with the predictions of the high-level architecture theory. In the 

future, it will be important to test behaviour-brain correlations of category-pair specific 

breakthrough times and neural similarity, but the current findings are important in showing 

such investigations should take edge content into account, and consider mask and target 

effects separately.  

In this study we also found out more about the perceptual factors that might play a role in 

interactions between body and environment. We found that hands were less efficient masks 

compared to other categories, and that this is at least partly driven by the relative edge-

content in these stimuli. Similarly, our tool stimuli tended to be less efficient masks and had 

relatively few edges compared to other categories. This could be specific to our exemplars 

but it seems unlikely, as generally hands and tools tend to have fewer details compared to 

many other categories of stimuli; this could be investigated in future studies including other 

stimulus sets. If it is true, due to visual object statistics, a low-level perceptual bottleneck 

could indirectly facilitate perception in body and tool interactions. And vice versa, such a 

potential mechanism could be taken into account when designing new artificial extensions for 

our bodies to be used for interactions. For example, artificial extensions should minimize any 

visible edges and details that are functionally not relevant.  

Overall, our findings using hand stimuli as well as a range of other categories show that 

category-specific edge content influences the limits for visual awareness in the CFS paradigm 

with stimuli for which other low-level factors have been controlled (e.g., luminance, contrast, 

colour). In addition to these low-level limits, there may also be object category-specific high-

level influences on visual awareness such as the neural representational architecture in higher 

visual cortex and hand- and tool-specific effects, but we need further research taking edge 

content into account to fully tease potential low- and high-level effects apart.  
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