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Abstract 
 
 
Modern improvement of complex traits in agricultural species relies on successful 
associations of heritable molecular variation with observable phenotypes. Historically, 
this pursuit has primarily been based on easily measurable genetic markers. The recent 
advent of new technologies allows assaying and quantifying biological intermediates 
(hereafter endophenotypes) which are now readily measurable at a large scale across 
diverse individuals. The potential of using endophenotypes for dissecting traits of interest 
remains underexplored in plants. The work presented here illustrated the utility of a large-
scale (299 genotype and 7 tissue) gene expression resource to dissect traits across 
multiple levels of biological organization. Using single-tissue- and multi-tissue-based 
transcriptome-wide association studies (TWAS), we revealed that about half of the 
functional variation for agronomic and seed quality (carotenoid, tocochromanol) traits is 
regulatory. Comparing the efficacy of TWAS with genome-wide association studies 
(GWAS) and an ensemble approach that combines both GWAS and TWAS, we 
demonstrated that results of TWAS in combination with GWAS increase the power to 
detect known genes and aid in prioritizing likely causal genes. Using a variance 
partitioning approach in the independent maize Nested Association Mapping (NAM) 
population, we also showed that the most strongly associated genes identified by 
combining GWAS and TWAS explain more heritable variance for a majority of traits, 
beating the heritability captured by the random genes and the genes identified by GWAS 
or TWAS alone. This improves not only the ability to link genes to phenotypes, but also 
highlights the phenotypic consequences of regulatory variation in plants.  
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Author summary 
 
We examined the ability to associate variability in gene expression directly with terminal 
phenotypes of interest, as a supplement linking genotype to phenotype. We found that 
transcriptome-wide association studies (TWAS) are a useful accessory to genome-wide 
association studies (GWAS). In a combined test with GWAS results, TWAS improves 
the capacity to re-detect genes known to underlie quantitative trait loci for kernel and 
agronomic phenotypes. This improves not only the capacity to link genes to phenotypes, 
but also illustrates the widespread importance of regulation for phenotype.  
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Introduction 
 
Discovery of variation that underlies quantitative traits remains central to the genetic 
improvement of agricultural species. Functional variation can alter coding sequence or 
act to regulate an intermediate phenotype. Regulating the abundance of phenotypic 
intermediates, like mRNA expression or protein level, provides a more spatially and 
temporally subtle target for selection than coding sequence changes, which are more 
likely to be pleiotropic and therefore maladaptive [1]. Thus, regulatory variation is the 
frequent target of both natural and artificial selection that shapes genomes across life, 
including domesticated plants [1-3]. It is likely that about half of functional variation is 
regulatory [4-7]. It should also be noted that regulation can take place at any biological 
level of organization from the epigenetic state [8], to gene expression [4,9,10], to 
ribosome occupancy [11], to metabolites [12], to protein abundance [13,14], furnishing 
multiple levels at which intermediate and terminal phenotypes can be associated.  
 
 In standard genetic mapping approaches, like association or linkage mapping, 
associations between genetic markers and terminal phenotypes of interest are tested for 
significance (black arrow, Fig 1). However, multiple levels of biological organization 
exist between the DNA sequence and the terminal observed phenotypic outcomes, 
enabling trait dissection to be done between intermediate levels of biological organization 
(hereafter endophenotypes, designated by an orange and red arrow in Fig. 1). Associating 
endophenotypes with terminal phenotypes predates the use of molecular genetic markers 
for mapping. The use of linked observable traits and isozyme migration patterns are 
examples of tying markers from biological intermediates to terminal phenotypes of 
interest. Similarly, just as relationships between individuals can be calculated from 
molecular genetic markers [15], endophenotypic similarity from isozyme markers can 
also be used to quantify relatedness [16]. These same principles have recently been 
extended to phenotypic prediction guided by metabolites [12] or by expression 
dysregulation [17]. However, the use of molecular intermediates, which are now readily 
measurable at large scale across diverse individuals, remains underexplored in plants for 
the inverse task of causal inference.  
 

Associating endophenotypes with terminal phenotypes has multiple distinct 
advantages. First, while genetic mapping is dominated by the covariance structure of 
neighboring SNPs and complex haplotypes, endophenotype provides orthogonal 
information that often permits inference about biological mechanism, which may not be 
possible from genetic variants alone. Second, genetic mapping often points to intergenic 
[18] regulatory variants that are not within the coding sequence of the gene that alters the 
phenotype [4]. Therefore, an association signal cannot directly be tied to a corresponding 
gene and may even be in the body of a second unrelated gene [19] or in the case of 
synthetic association, between multiple true causal variants affecting different genes. 
Association tests with intermediate expression phenotypes do not suffer from these 
limitations. Third, the abundance of endophenotypes is largely independent of linkage 
disequilibrium (LD), unlike in the case of genetic markers. In other words, even multiple 
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genes that are perfectly linked, and thus not independently observable in separate 
individuals, can be prioritized for association with a trait because their expression 
patterns are independent. This is of greatest utility in species where linkage 
disequilibrium is extensive or where making high-resolution mapping populations is not 
feasible. 

 
Intermediate phenotypes, like expression, can also integrate the signal from 

changes in multiple components of a network, which may not be individually detectable 
either because their effects are small or changes to the peripheral network components 
occur at low frequencies. Similarly, intermediate phenotypes can integrate a phenotypic 
signal from underlying genetic variants for which low frequencies preclude direct 
detection. The most deleterious of variants are expected to segregate at the lowest 
frequencies [20,21] and, thus, escape detection by mapping without prohibitively large 
sample sizes. However, rare deleterious variants can be expected to drive common 
maladaptive patterns in intermediate phenotypes that are thus more easily detected 
through endophenotype association tests like transcriptome-wide association studies 
(TWAS) [22,23]. It is precisely the shared effect of different alleles on intermediate 
phenotypes like expression that is exploited in expression-based prognoses for cancers 
[24,25] and which TWAS can also leverage.  

 
Here, we illustrate the power of using gene expression endophenotypes measured 

in a large 299-individual, seven-tissue gene expression resource [17] collected from the 
Goodman maize diversity panel [15]. Expression levels are correlated with terminal 
phenotypes in TWAS [22,23] and then combined with genotype-based associations from 
GWAS. The method is proven here in a maize inbred diversity panel [15], which has 
been widely used to dissect the architecture of dozens of traits of varying complexity [26-
29], and is now made more powerful to detect loci at the gene level through the 
integration of transcriptome-wide with genome-wide associations.  

 
Related work in maize that relies on associating expression differences directly 

with phenotype using a Bayesian method, called expression read depth GWAS (eRD-
GWAS), has been published recently [30]. This work used 369 maize samples from 
which shoot apex RNA was collected.  Beyond the difference in frequentist vs Bayesian 
approaches, our study also exploits expression measurements from seven tissues in a 
multiple-regression-based TWAS and integrates the signal from TWAS and GWAS into 
a more powerful combined test which can be readily visualized as a Manhattan plot. We 
also compare the power of each model based on the ability to detect known genes, and 
the capacity to explain variance in a separate population, which differs from the approach 
of the previous study [30]. To make this comparison we use the maize NAM population 
[31], which has the advantage of being largely independent of the diversity panel [15] in 
which detection was performed. 

 
We assess the efficacy of TWAS by quantifying the capacity to identify 

previously identified genes, and by the fraction of phenotypic variance explained [5,6] by 
the most strongly associated genes, and compared the TWAS results with GWAS and an 
ensemble approach combining both TWAS and GWAS.  We illustrate that the results of 
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TWAS are a valuable supplement to GWAS mapping that aids in prioritizing likely 
causal genes when both methods are used in a combined test.  
 
Results 
 
To test the utility of expression data in dissecting quantitative traits in maize, we 
performed single-tissue-based and multi-tissue-based TWAS [22] and compared these 
results with GWAS results, and an ensemble approach combining GWAS and TWAS 
results using the Fisher's combined test. In TWAS, expression levels across seven tissues 
from a maize diversity panel [15] were used individually and together in a multiple 
regression as independent variables and correlated with previously measured phenotypes 
for maize kernel traits, including 30 grain carotenoid abundance traits [28], 20 
tocochromanol abundance traits [27], and 22 field-measured agronomic traits [32].  

 
Integrating TWAS with GWAS improves power for identifying and prioritizing 
known genes 
To assess the relative power of each method to detect known genes, we counted the 
number of known genes identified in the top 1% ranked genes (based on p-values) found 
by each method for each trait. This identification of known genes among the top 1% of 
hits for each method measures how often known genes appear in the tail of the 
distribution of detected genes and avoids direct comparisons of p-values between 
differently powered and structured tests that rely on continuous (TWAS) or discrete 
(GWAS) independent variables.  
 

As shown in Tables 1, 2, S1, S2, the combined test performs better than either 
genotype-based or expression-based tests alone for both classes of traits, with 30 total 
detections of known genes among the top 1% of associations across tocochromanol and 
75 detections of putative carotenoid related genes [28] when using the carotenoid traits. 
Using the tocochromanol and carotenoid lists from [25, 36] genes are detected more often 
in each of the tocochromanol and carotenoid trait classes when using the combined 
method. However, the Fisher's combined test of GWAS results with the multi-tissue 
TWAS results did not perform better. The detection rate was consistently higher for 
kernel-based TWAS over the multi-tissue TWAS, most likely because the tocochromanol 
and carotenoid traits are predominantly controlled by gene expression in the kernel.  

 
We also compared the methods at the level of single traits. To determine how the 

combined method prioritizes genes that are not detected in the individual TWAS and 
GWAS methods and aggregates genes that are detected by only one method, we plotted 
the results across models for each individual trait. In Fig. 2 we plotted the signals mapped 
for the zeaxanthin trait by (a) the mixed linear model (MLM) GWAS, (b) TWAS in 
kernels, (c) GWAS colored by TWAS significance, (d) the Fisher's combined test of 
MLM GWAS and single tissue (kernel), and (e) Fisher's combined test of MLM GWAS 
and multi-tissue TWAS results (see methods). Note that points representing SNPs from 
the MLM GWAS model in (c) and (a) are identically placed, but in (c) they are colored 
by TWAS significance. The top five genes detected by each method are labeled (a is not 
individually labeled because the points and top five genes are identical to those in plot c) 
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and previously detected genes found by [28] are highlighted in red. As shown by the 
TWAS results plotted in Fig.2 b, the known expression-regulated gene crtRB1 has 
expression which is most strongly correlated (r=0.309, p=2.84e-5) with zeaxanthin 
abundance in our TWAS model that includes genetic and expression-derived covariates 
[see methods]. crtRB1 is not among the top MLM GWAS-detected genes in our study, 
but the detection of crtRB1 by kernel TWAS is consistent with previous results [28,33], 
highlighting this gene's role as a principle determinant of grain carotenoids which acts 
through variable expression.  

 
As is clear in Fig.2a,c another zeaxanthin-implicated gene, zeaxanthin epoxidase, 

zep1, is detected by GWAS in our study [28]. zep1 expression is correlated (r= 0.232, 
p=0.0014) with zeaxanthin abundance, but it is not among the fifty most significantly 
associated genes in our TWAS results, and would not be prioritized by TWAS alone. 
However, within the peak covering zep1 in Fig.2 a,c the markers most strongly associated 
with zeaxanthin from the MLM GWAS results prioritize a different gene first, 
GRMZM2G127123, which lacks a known function. The linkage-independent kernel 
TWAS results also show nearly equal support for both genes, providing evidence that 
GRMZM2G127123 (r= 0.218, p=0.0025) and zep1 (r= 0.232, p=0.0014) both affect 
zeaxanthin abundance. Both Fisher's combined models using the single-tissue and multi-
tissue TWAS results also support the importance of both genes. 

 
To test the capacity of the TWAS, GWAS and combined methods to re-identify 

genes known to underlie QTL for another trait class, we examined the detected genes for 
the total tocotrienol trait measured by [27]. In Fig. 3 the most strongly associated variant 
identified by GWAS is on chromosome 9 nearest a gene of unknown function, 
GRMZM2G431524. However, as is illustrated in the MLM GWAS Manhattan plot in 
which points are colored by TWAS significance (c), the other points in the chromosome 
9 peak are near other genes known to underlie QTL whose expression is variably 
associated with total tocotrienol abundance. These second and third most strongly 
associated genes based on proximity to the most significant markers identified by GWAS 
are GRMZM2G345544 (function unknown) and hggt1, which has been previously tied to 
total tocotrienol content [27], and is essential for tocotrienol biosythesis. However, 
because hggt1 expression is most strongly correlated with total tocotrienol measurements 
from among these first three genes in the chromosome 9 peak, the combined test using 
single tissue and multiple tissues of expression data prioritizes the known gene hggt1 
suggesting it is the functional gene in this region, consistent with previous evidence. This 
illustrates how the supplementary information from expression associations prioritizes 
likely causal genes that are not among the top hits of either individual expression or 
genotype-based methods. 

 
Variance component estimation from TWAS- and GWAS-detected genes 
To further assess the capacity of each method to correctly identify genes affecting each 
trait, an independent variance partitioning approach [5,6,35] was also performed. Using 
variants in a 1 Mb window around the ten top ranked genes identified in the Goodman 
diversity panel [15] by GWAS alone, TWAS alone and the combined method, separate 
kinship matrices were calculated. These relationship matrices were fit as random effects 
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in separate models of phenotypic variance explained for traits measured in the NAM 
population, which is independent of the Goodman diversity panel in which the various 
mapping strategies were performed. The additive genetic variance explained by the 
variants underlying each kinship matrix was calculated providing an estimate of 
heritability explained by the genes identified by each method. 
 
               Using variance partitioning across all NAM families, we found some advantage 
for including expression data in detecting likely functional regions of the genome (Fig. 
4). Among the tocochromanol kernel traits (Fig. 4a), eight out of ten traits exist in which 
TWAS or the Fisher's combined method is superior to GWAS alone (Fig. 4a). Heritable 
variance explained on a per trait basis by either the TWAS or the Fisher's showed about 
25% improvement on average over the MLM GWAS, with notable advantage being for 
alpha-tocotrienol (40%), gamma-tocotrienol (41%) and total tocopherol (43%). For more 
complex field-based agronomic traits, the multi-tissue TWAS or Fisher's combined 
method also showed advantage over GWAS alone in 16 out of 22 agronomic traits (Fig. 
3b). On average, the multi-tissue TWAS had 24% improvement over GWAS alone while 
the FisherGWASmultiTWAS had notable advantage for kernel number (24%), leaf width 
(15%), and node number below ear (19%). Based on mean heritable variance across traits 
per trait class, the combined Fisher’s test explained the most heritability among the 
models; it showed 4-8% improvement for the tocochromanol kernel traits (Fig. 4a, the 
top right horizontal barplot). However, little improvement was observed for agronomic 
traits likely due to trait complexity (Fig. 4b, the top right horizontal barplot). Because 
previously known genes are more often re-identified in the top 1% of hits by combining 
GWAS and TWAS (Table 1), the variance explained by markers near detected genes also 
reflect this advantage on heritability with known oligogenic architecture.  
 
              We further tested the heritability explained by the top ten ranked genes identified 
by each method using family-based variance partitioning (Fig. 5). Heritable variance was 
decomposed for each NAM family, giving 24 independent tests of variance partitioning 
for each trait tallying a total of 3,840 independent tests (24 families * 5 models * 32 
traits). To evaluate the best winning model for each trait, we took the sum of heritable 
variation across 24 NAM families (hereafter, summed heritability). Based on the same of 
set of genes identified from each model, our results illustrate the variability on heritability 
among families for both tocochromanol (Fig. S1, Fig. 5a) and agronomic traits (Fig. S2, 
and S3; Fig. 5b). For α-tocotrienol which is an oligogenic trait, the FisherGWASTWAS 
method explained the most heritability in 18 out of 24 NAM families (Figure S1a), giving 
a four-fold advantage on summed heritability over either GWAS or TWAS alone (Figure 
S1b; Fig. 5a). As is evident in the top right horizontal barplot (Fig. 5a), the 
FisherGWASTWAS method captured the most summed heritability in 10 tocochromanol 
traits, consistent with what we found in variance partitioning using all NAM families for 
tocochromanol traits (Fig. 4a). On a per trait basis, we note that the kernel-based TWAS 
or the FisherGWASTWAS was the winning method for eight out of 10 tocochromanol 
traits. We do see a similar pattern in 19 out of 22 field-based complex traits in which 
either the multi-tissue TWAS or FISHERGWASmultiTissueTWAS explained the most 
heritability (Fig. 5b). We see greater advantage of the FISHERGWASmultiTissueTWAS 
over the GWAS MLM for tassel primary branch (54%), cob length (103%), kernel 
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number (112%), ear mass (98%) and total kernel weight (106%) (Fig. 5a). For the more 
complex traits such as plant height, the multi-tissue TWAS was the winning model, 
which explained about two-fold higher heritability than the GWAS alone (Fig. 5b, Fig. 
S3). We found that in 16 NAM families, the multi-tissue TWAS explained the most 
heritability among other models for plant height. Based on total summed heritability 
across 22 agronomic traits (top right horizontal barplot in Fig. 5b), the 
FISHERGWASmultiTissueTWAS and multi-tissue TWAS showed a 15% and 17% 
improvement in heritability explained over the GWAS MLM alone, respectively.  
 
Discussion 
 
By far the majority of efforts to dissect the architecture of terminal phenotypes have 
relied on associations with genetic variants; this capacity to link genotype to phenotype 
has recently been accelerated by the plummeting cost of sequencing. The more recent 
advent of technologies which permit the quantification of endophenotypes like mRNA, 
metabolite, or protein abundance now enable mapping and trait dissection to be done 
between intermediate levels of biological organization. Assaying and associating these 
endophenotypes with traits of interest provides insight on biological mechanisms, serves 
as an independent source of evidence of associations, and facilitates prioritizing 
potentially causal variation while linking genes directly to traits in a way that potentially 
integrates the effects of multiple independent genetic variants. Here, we illustrated the 
utility of using a large RNA-seq resource in maize [17] for transcriptome-wide 
association studies and integrating these results with associations based on genetic 
variation. 
 
              We find evidence supporting the inclusion of transcriptome-wide variation in 
addition to genetic variation in models seeking to associate traits to underlying and likely 
causal genes in diverse maize lines, especially when the goal is to infer function of genes 
underlying oligogenic traits. Across tocochromanol trait classes, the inclusion of TWAS 
results enables more frequent detection of known causal genes and helps prioritize novel 
candidate genes in the profiled panel. Crucially, transcriptional variation alone does not 
improve over genotype-based associations, but it is in combination with genotypic 
information that the power of gene detection is increased. 
 
            As we demonstrate here, TWAS in combination with GWAS enhances the 
capacity to prioritize candidate genes over the use of GWAS alone. Given that more than 
half of detections are supported by TWAS (Table 1), our results also reveal much of the 
functional variation for these traits to be regulatory. While not all previously identified 
genes are detected by TWAS, this is likely a combination of insufficient power compared 
to the previous association studies in the NAM population with >16x as many 
observations [36], the sampling of a single time point per tissue, and the fact that not all 
functional variation is regulatory. Despite these limitations, TWAS adds value to GWAS 
mapping alone and increases the power to re-detect known genes. Our finding that 
TWAS alone is a valid method for finding true gene-trait associations is consistent with 
the recent findings of Lin and colleagues despite the difference between the eRD-GWAS 
and TWAS models [30]. However, our results differ in that we demonstrate that a 
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combined test integrating TWAS and GWAS yields a more powerful test than either 
method individually when it comes to re-identifying known genes underlying oligogenic 
traits [36].  
 
          We also note that our efforts to validate our TWAS and GWAS detections differ 
from those of the previous study. In contrast to comparing the overlap of the detections 
by GWAS and TWAS in the same study, we compared our detections to previously 
known genes found in an independent set of germplasm, namely the NAM population 
[31], which was used to find tocochromanol associations [36]. Also, in contrast to the 
previously published study, we did not perform our cross-validation analysis in the same 
set of germplasm in which discovery was conducted by GWAS and TWAS to assess 
accuracy. Using variance partitioning in the independent NAM population, we found 
similar levels of variance explained by the genes detected by each method in the 
Goodman diversity panel [15], illustrating that even when the identified genes are tested 
in an outside population, the detections of the transcriptome-only and combined methods 
are found to be valid and explain similar amounts of variance to the genotype-based 
methods (Figs. 4, 5). This is roughly consistent with the cross-validation results 
comparing SNP_BayesB and eRD-GWAS presented in Table S4 by Lin and colleagues 
[30]. However, the previously published results show an advantage for eRD-GWAS for 
only one of fourteen traits, while on the basis of variance partitioning for kernel traits we 
find an advantage for the kernel based TWAS or the Fisher's combined model for nine of 
the ten kernel-based traits for which measurements in NAM exist. 
     
         In further contrast to the previously published work [30], none of the SNPs used in 
our GWAS or variance partitioning methods were derived from RNA-seq data, allowing 
for a less bias towards expressed genes and giving the genotype-based tests more 
independence from the expression-based tests. In the previous work, more than 0.9M of 
the 1.2 M genetic variants were derived from the alignment of RNA-seq reads [30,37], 
potentially confounding the ability to make associations by GWAS with the presence of 
an expressed gene, and thus limiting the power of the genotype-based GWAS to make 
associations which are independent of expression.  
      
          It is striking that even in diverse maize lines where linkage decays quickly and thus 
the power to resolve mapping peaks to individual genes is high, TWAS provides a 
valuable supplement to genetic mapping alone. This benefit of TWAS would be 
compounded in species or populations in which resolution is limited. Additionally, by 
imputing expression values based on local/cis haplotype, as has been successfully shown 
in humans [22], the utility of TWAS could potentially be extended further in maize. 
Imputing expression to a larger panel would permit the exploitation of previously 
measured phenotypes across a much larger set of individuals which have not been 
expression profiled. By imputing only the local/cis genetic component of expression, and 
implicitly averaging over trans and environmental effects, the capacity to attribute field 
phenotypes to the genetic component of expression would likely be further improved. 
 
  
      

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/363242doi: bioRxiv preprint 

https://doi.org/10.1101/363242
http://creativecommons.org/licenses/by-nc-nd/4.0/


         The lack of improvement in re-detecting known tocochromanol traits by the multi-
tissue TWAS models alone or as part of the Fisher's combined tests is notable, but 
unsurprising for these genetically simple and very tissue specific traits. This lack of 
improvement indicates that kernel-based expression alone is most predictive of the 
kernel-based metabolites and accuracy is not improved by the incorporation of all other 
tissues. Rather than comparing the inclusion of all tissues vs kernels only, in the future a 
variable (tissue) selection TWAS approach should be used in which can remove 
uninformative terms from the model rather than including them but giving them a very 
small coefficient. It is also plausible that for more genetically complex traits which are 
also affected by expression across tissues, the multi-tissue TWAS results are more likely 
to be informative. 
  
         A further cause of the limited improvement for the kernel TWAS or Fisher's 
combined test seen in the variance partitioning results is likely because GWAS identifies 
genomic regions which, when expanded to a 1 Mb window, could cover the functional 
variants.  Furthermore, while the correct functional gene may not be prioritized by 
GWAS, if the trait is affected by genetic regulation rather than coding sequence change, 
the sites near the GWAS hit may in fact be more functional than those near the 
mechanistically significant gene itself even if they are misattributed to the incorrect 
proximal gene. Using a large independent diverse panel with very low LD to assess the 
heritability explained by the SNPs identified by each method may also provide a better 
estimate as the functional variants are not as easily tagged over long distances.  
 
          While the utility of expression endophenotypes in dissecting traits has been 
demonstrated here, it should be noted that associations made between endophenotypes 
and terminal phenotypes are inherently more susceptible to environmental effects than 
genotype-based associations. This susceptibility to environmental effects likely allows us 
to associate only the environmentally independent heritable fraction of expression with 
phenotype in our study, especially because expression data were collected from separate 
plants than those for which terminal phenotypes were measured. Given that in 
endophenotype-based association studies, like TWAS, environmental variation separately 
impacts and increases error in both the independent and dependent variables, methods 
like TWAS alone may plausibly be expected to perform more poorly than genetics-based 
associations. However, this shortcoming is partially compensated for by the more direct 
link between endophenotype and terminal phenotype and the potential discovery of 
mechanism. The collection of expression data from the same plants and conditions in 
which the phenotypes are collected would likely benefit the dissection of genotype by 
environment interactions by highlighting the impact of variation in expression for a 
specific gene within an environment, but cannot be examined here as terminal 
phenotypes and expression values were calculated from separate environments and years. 
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Materials and Methods 
 
Genotypic data 
Genotypes for the Goodman diversity panel [15] used in the genome-wide association 
studies were from the unimputed maize HMP 3.2.1 called against the B73 reference 
genome [38]. Variants segregating above 5% MAF in the union of all lines were 
considered for mapping. Variance component estimation in the maize NAM population 
[31] was performed using imputed HMP 3.2.1 variants [filename: 
NAM_HM321_KNN.hmp.txt.gz].  
 
Phenotypic data 
For mapping in the Goodman diversity panel, kernel carotenoid BLUPs from 30 traits 
were from [28] and the 20 kernel tocochromanol traits BLUPs were from [27] after 
additional outliers were removed. The 22 field-based agronomic trait BLUPs were those 
calculated by [32].  Phenotypes used in variance partitioning with the maize NAM 
population were from [36] for the tocochromanol traits. Agronomic trait BLUPs were 
previously calculated by [32]. 
 
Expression data 
Expression quantifications were those created from seven diverse tissues in maize by 
aligning 3' mRNAseq reads against the AGPv3.29 maize genome as described by [17].  
 
Genome-wide association study 
Genome-wide association tests were conducted in the maize Goodman diversity panel 
[15] using a mixed linear model as implemented in FastLMM [39] accounting for kinship 
and a naive general linear model fit using MatrixEQTL [40] as implemented in TASSEL 
[41].  
 
Transcriptome-wide association study 
Transcriptome-wide association tests were conducted in the maize Goodman diversity 
panel [15] for genes that were expressed in at least half of individuals represented in a 
specific tissue. A linear model was fit individually for each phenotype*expressed gene 
combination in which the explanatory variable is the expression value of a gene across 
individuals. TWAS was attempted both without covariates and with five genetic principal 
coordinates (calculated from maize HMP3.2.1 used in [17] and 25 PEER hidden factors 
(calculated separately for each tissue) as calculated in [17]. Multi-tissue TWAS was also 
performed. First a model was fit once per trait using the 5 principal coordinates described 
above. This model was then compared by ANOVA to a model for each gene containing 
terms for each tissue and the principle coordinates. The p-value resulting from this 
ANOVA was used to determine whether the multi-tissue model is significantly better 
than the covariate-only model. This p-value was also used as the p-value in the second of 
the Fisher's combined tests below. 
 
Fisher's combined tests of TWAS and GWAS 
The GWAS p-value (mixed linear model with kinship as a random effect) of each SNP in 
the top 10% of most associated SNPs was assigned to nearest gene and then combined 
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with the TWAS p-value (linear model with MDS PCs + PEERs) for that same gene using 
Fisher's combined test as implemented in the sumlog method in the metap package [42] 
in R. TWAS p-values for genes which were not tested in TWAS (i.e. their expression was 
not observed in at least half of individuals) were set to p=1 prior to combining with 
GWAS p-values. Fisher's combined tests were performed in the same way when 
including the multi-tissue TWAS results instead of the kernel-only results. 
 
Variance partitioning 
Using the KNN imputed Nested Association Mapping population HMP3.2.1 genotypes 
described above, kinship matrices were calculated based on the top ten genes identified 
by each of the TWAS, GWAS, and combined models described in the Goodman diversity 
panel [15]. To independently assess the accuracy of detected genes, the phenotypic 
variance explained by each kinship matrix was calculated in the Nested Association 
Mapping population, within each family and across all the NAM families. For TWAS, 
the top 10 genes were taken and all SNPs within a 0.5 Mb radius of the start and end of 
the gene (maize annotation AGPv3.29) were used to calculate a single kinship matrix per 
trait using the Variance Component Annotation Pipeline in TASSEL [41]. The REML 
solver in LDAK [35] was used to calculate the variance explained by the single kinship 
matrix. For GWAS, the SNPs were ordered based on significance and assigned to their 
nearest gene. The top ten unique genes from this list were taken to calculate kinship 
matrices using the same 0.5 Mb radius around the gene. To avoid picking multiple genes 
and redundant variants from the same peak based the GWAS results, the top most 
associated gene was used within a peak and all other genes within the 0.5 Mb radius were 
excluded from selection as top genes. 
 
Overlap with known kernel metabolite genes 
Fourteen known tocochromanol biosynthetic genes identified in NAM [36] and 58 a 
priori candidate genes relevant to the biosynthesis and retention of carotenoids [28] were 
used as positive controls to test the capacity of our GWAS, TWAS, and combined 
methods to re-detect known genes. In order to avoid comparison of p-value thresholds 
across methods, positive detections were counted if a gene was detected among the top 
1% of genes associated with a trait.   
 
Author contributions 
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Tables 
 
Table 1. Summary of total and unique known gene detections in top 1% of results across 
tocochromanol traits by kernel TWAS with PEERS and PCs, multi-tissue TWAS with 
PCs, MLM GWAS, Fisher's combined test of kernel TWAS with PEERS and PCs and 
MLM GWAS, and Fisher's combined test of multi-tissue TWAS with PCs and MLM 
GWAS. There are 14 previously known tocochromanol genes in maize [36]. On the left 
half of the table the number of detections exceeds the number of known genes because a 
gene is counted as detected each time it is in the top 1% of associations for the 20 
tocochromanol component traits. 
 

 
 
 
Table 2. Summary of total and unique putative carotenoid gene [28] detections in top 1% 
of results across carotenoid traits by kernel TWAS with PEERS and PCs, multi-tissue 
TWAS with PCs, MLM GWAS, Fisher's combined test of kernel TWAS with PEERS 
and PCs and MLM GWAS, and Fisher's combined test of multi-tissue TWAS with PCs 
and MLM GWAS. On the left half of the table the number of detections exceeds the 
number of known genes because a gene is counted as detected each time it is in the top 
1% of associations for the 30 carotenoid component traits. 
 
 

Test Detections of candidate genes in top 
1% of hits across carotenoid traits 

TWAS 38 
multiTWAS 32 
GWAS 55 
FisherGWASTWAS 75 
FisherGWASmultiTWAS 58 

 
 
 
 
 
 
 
 
 

TWAS 14 5
multiTWAS 13 3
GWAS 21 8
FisherGWASTWAS 30 8
FisherGWASmultiTWAS 27 8

Test Detections of known genes in top 1% of hits 
across tocochromanol traits

Unique known gene detections in top 1% 
across tocochromanol traits
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Figures 
 
 
 
 

 
 
 
Figure 1. Levels of biological organization between the ultimate cause of genetics and 
the terminal phenotypic outcomes can be exploited individually to improve power and 
inference of biological mechanism. Genotype can be linked to endophenotype as in eQTL 
or protein QTL (pQTL), or endophenotype can be linked to terminal phenotype by 
methods like TWAS. 
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Figure 2. Manhattan plots of zeaxanthin abundance a mixed linear model GWAS 
accounting for kinship, b kernel TWAS with PEER and genetic MDS PC covariates, c 
MLM colored by TWAS significance, and d Fisher's combined model of MLM and 
TWAS p-values using kernel expression. e Fisher's combined model of MLM and multi-
tissue TWAS p-values. The top five most associated genes are labeled and previously 
identified genes [28]  are highlighted in red. 
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Figure 3. Manhattan plots of total tocotrienol abundance a mixed linear model GWAS 
accounting for kinship, b kernel TWAS with PEER and genetic MDS PC covariates, c 
MLM colored by TWAS significance, and d Fisher's combined model of MLM and 
TWAS p-values using kernel expression. e Fisher's combined model of MLM and multi-
tissue TWAS p-values. The top five most associated genes are labeled and previously 
identified genes [36]  are highlighted in red. 
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Figure 4. Variance partitioning of heritable variation using all NAM families. Vertical 
barplots represent the heritability estimated from kinship matrices made from the genetic 
regions adjacent to the top 10 ranked genes mapped by MLM GWAS, kernel-based 
TWAS, multi-tissue TWAS, the Fisher's combined test of the MLM GWAS + kernel-
based TWAS, and the Fisher's combined test of the MLM GWAS + multi-tissue TWAS. 
Horizontal barplots compare model based on mean heritability across traits per trait class. 
Heritability explained by using all SNPs for each trait was put at the top of each grouped 
barplot.  
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Figure 5. Family-based variance partitioning on individual NAM family. Heritability for 
each trait was estimated for each of 24 NAM families using kinship matrices made from 
the genetic regions adjacent to the top 10 ranked genes mapped by MLM GWAS, kernel-
based TWAS, multi-tissue TWAS, the Fisher's combined test of the MLM GWAS + 
kernel-based TWAS, and the Fisher's combined test of the MLM GWAS + multi-tissue 
TWAS. There were a total of 24 independent tests for each trait-model combination. 
Heritability estimates were then added together (hereafter, summed heritability) for a 
tocochromanol traits and b agronomic traits. Horizontal barplots compare model based on 
total summed heritability across traits per trait class. 
 

b

a

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/363242doi: bioRxiv preprint 

https://doi.org/10.1101/363242
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figures 
 

 
 
Figure S1. Family-based variance partitioning on individual NAM family for alpha-
tocotrienol. This is an example in which the Fisher's combined test of the MLM GWAS + 
kernel-based TWAS explained higher heritability relative to other models. a Heritability 
was estimated for each of 24 NAM families using kinship matrices made from the genetic 
regions adjacent to the top 10 ranked genes mapped by MLM GWAS, kernel-based 
TWAS, multi-tissue TWAS, the Fisher's combined test of the MLM GWAS + kernel-
based TWAS, and the Fisher's combined test of the MLM GWAS + multi-tissue TWAS. 
b Heritability estimates were then added together (hereafter, summed heritability). 
Different models were compared in horizontal barplot based on summed heritability 
explained in 24 NAM families. 
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Figure S2. Family-based variance partitioning on individual NAM family for tassel 
primary branch. This is an example in which the Fisher's combined test of the MLM 
GWAS + multi-tissue TWAS explained higher heritability relative to other models. a 
Heritability was estimated for each of 24 NAM families using kinship matrices made 
from the genetic regions adjacent to the top 10 ranked genes mapped by MLM GWAS, 
multi-tissue TWAS, and the Fisher's combined test of the MLM GWAS + multi-tissue 
TWAS. b Heritability estimates were then added together (hereafter, summed 
heritability). Different models were compared in horizontal barplot based on summed 
heritability explained in 24 NAM families. 
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Figure S3. Family-based variance partitioning on individual NAM family for plant 
height. This is an example in which the multi-tissue TWAS explained higher heritability 
relative to other models. a Heritability was estimated for each of 24 NAM families using 
kinship matrices made from the genetic regions adjacent to the top 10 ranked genes 
mapped by MLM GWAS, multi-tissue TWAS, and the Fisher's combined test of the 
MLM GWAS + multi-tissue TWAS. b Heritability estimates were then added together 
(hereafter, summed heritability). Different models were compared in horizontal barplot 
based on summed heritability explained in 24 NAM families. 	
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Supplementary Table 
 
Table S1. Percentile ranks from kernel-based TWAS, multi-tissue TWAS, MLM GWAS, 
Fisher's combined (kernel-based TWAS + MLM GWAS), and Fisher's combined (multi-
tissue TWAS + MLM GWAS) results for genes previously identified in NAM for 
tocochromanol traits in maize [36]. 
 
Table S2. Percentile ranks from kernel-based TWAS, multi-tissue TWAS, MLM GWAS, 
Fisher's combined (kernel-based TWAS + MLM GWAS), and Fisher's combined (multi-
tissue TWAS + MLM GWAS) results for carotenoid candidate gene list in maize as 
described by [28]. 
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