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Electrophysiological recordings of spiking activity can only access a small fraction
of all neurons simultaneously. This spatial subsampling has hindered characterizing
even most basic properties of collective spiking in cortex. In particular, two contra-
dictory hypotheses prevailed for over a decade: the first proposed an asynchronous
irregular, the second a critical state. While distinguishing them is straightforward in
models, we show that in experiments classical approaches fail to infer them correctly,
because subsampling can bias measures as basic as the correlation strength. Deploy-
ing a novel, subsampling-invariant estimator, we find evidence that in vivo cortical
dynamics clearly differs from asynchronous or critical dynamics, and instead occupies
a narrow “reverberating” regime, consistently across multiple mammalian species and
cortical areas. These results enabled us to predict cortical properties that are difficult
or impossible to obtain experimentally, including responses to minimal perturbations,
intrinsic network timescales, and the strength of external input compared to recurrent
activation.

Introduction1

When investigating spiking activity in neuronal networks, only a tiny fraction of all neurons can2

be recorded experimentally withmillisecond precision. Such spatial subsampling fundamentally3

limits virtually any recording and hinders inferences about the collective dynamics of cortical4

networks.1–4 In fact, even some of themost basic characteristics of cortical network dynamics are5

not known with certainty, such as the population Fano factor, or the fraction of spikes generated6

internally versus those triggered by input.7

In particular, two contradicting hypotheses to describe network dynamics have competed for8

more than a decade, and are the subjects of ongoing scientific debate: One hypothesis suggests9

that collective dynamics are “asynchronous irregular”5–7 (AI), i.e. neurons spike independently10

of each other and in a Poisson manner, which may reflect a balanced state.8,9 The other hy-11

pothesis proposes that neuronal networks operate at criticality10–17 and thus in a particularly12

sensitive state close to a phase transition. These hypotheses have distinct implications for the13

coding strategy of the brain. The typical balanced state minimizes redundancy,18–22 supports14

fast network responses,8 and shows vanishing autocorrelation time (𝜏 → 0). In contrast, crit-15

icality in models optimizes performance in tasks that profit from extended reverberations of16

activity in the network,23–29 because it is characterized by long-range correlations in space and17

time (𝜏 → ∞). It has been proposed that 𝜏 reflects an integration window over past activity,18

thereby allowing brain networks to operate on specific timescales.30–33 Timescales estimated19

from single neurons span hundreds of milliseconds,34 but it is unclear how timescales of the full20

network can be inferred in the face of subsampling.21
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Surprisingly, there is experimental evidence for both AI and critical states in cortical net-22

works, although both states are clearly distinct. Evidence for the AI state is based on char-23

acteristics of single neuron spiking resembling a Poisson process, i.e. exponential inter spike24

interval (ISI) distributionss and Fano factors 𝐹 close to unity.35 Moreover, spike count cross-25

correlations36,37 are small. Evidence for criticality was typically obtained from a population26

perspective instead, and assessed neuronal avalanches, i.e. spatio-temporal clusters of activ-27

ity,1,10,38–41 whose sizes are expected to be power-law distributed if networks are critical.42 Devi-28

ations from power-laws, typically observed for spiking activity in awake animals,2,3,43,44 were at-29

tributed to subsampling effects.1–4,45–47 Hence, different analysis approaches provided evidence30

for one or the other dynamical state’s dominance.31

We rely on a classic approach to probe the dynamical states of a system at steady state,32

namely applying minimal perturbations. Studying how perturbations cascade through a sys-33

tem enables the inference of numerous system properties. London and colleagues applied such34

a perturbation framework and estimated that one average 𝑚 = 28 additional postsynaptic35

spikes are triggered by one extra spike in a presynaptic neuron from intracellular recordings.4836

From their complementary extracellular spike recordings, one can equally well estimate 𝑚 ≈37

0.04Hz/neuron ⋅ 10ms ⋅ 𝑘 = 0.6: in the 10 ms subsequent to the perturbation, an increase38

of 0.04 Hz is observed for each neuron. Assuming that this 10 ms is an upper bound to di-39

rectly activate any of the 𝑘 ≈ 1500 directly connected neurons, one obtains as as upper bound40

𝑚 ≈ 0.04Hz/neuron ⋅ 10ms ⋅ 𝑘 = 0.6. This vast range for estimates of 𝑚 arises largely be-41

cause such inferences are heavily influenced by subsampling. We here build on a subsampling-42

invariant approach presented in a companion study,49 which allows us to resolve questions sur-43

rounding the contradictory results on cortical dynamics: (i) we establish an analytically tractable44

minimal model for in vivo like activity, which can interpolate from AI to critical dynamics; (ii)45

we estimate the dynamical state of cortical activity based on a novel, subsampling-invariant es-46

timator;49 (iii) we predict a number of network dynamical properties, which are experimentally47

accessible and allow to validate our approach; (iv) we predict a number of yet unknown net-48

work properties, including 𝑚, the expected number of spikes triggered by one additional spike,49

the emergent network timescale 𝜏 , the distribution of the total number of spikes triggered by50

a single extra action potential, and the fraction of activation that can be attributed to afferent51

external input to a cortical network.52

Material and Methods53

Minimal model of spike propagation54

To gain an intuitive understanding of our mathematical approach, make a thought experiment55

in your favorite spiking network: apply one additional spike to an excitatory neuron, in analogy56

to the approach by London and colleagues48. How does the network respond to that perturba-57

tion? As a first order approximation, one quantifies the number of spikes that are triggered by58

this perturbation additionally in all postsynaptic neurons. This number may vary from trial to59

trial, depending on the membrane potential of the postsynaptic neurons; however, what inter-60

ests us most is 𝑚, themean number of spikes triggered by the one extra spike. Taking a mean-field61

approximation and assuming that the perturbation indeed is small, any of these triggered spikes62

in turn trigger spikes in their postsynaptic neurons in a similar manner, and thereby the pertur-63

bation may cascade through the system. Mathematically, such cascades can be described by a64

branching process.50–5265

In the next step, assume that perturbations are started continuously at rate ℎ, for example66

through afferent input from other brain areas or sensory modalities. As neurons presumably67

do not distinguish whether a postsynaptic potential was elicited from a neuron from within the68

network, or from afferent input, all spikes are assumed to have on average the same impact69

on the network dynamics. Together, this leads to the mathematical framework of a branching70
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network,2,3,10,24,45 which can generate dynamics spanning AI and critical states depending on the71

input,53 and hence is well suited to probe network dynamics in vivo (see Supp. 1 for details). Most72

importantly, this framework allows to infer 𝑚 and other properties from the ongoing activity73

proper, because one treats any single spike as aminimal perturbation on the background activity74

of the network. Mathematical approaches to infer 𝑚 are long known if the full network is75

sampled.54,55 Under subsampling, however, it is the novel estimator described in49 that for the76

first time allows an unbiased inference of 𝑚, even if only a tiny fraction of neurons is sampled.77

After inferring 𝑚, a number of quantities can be analytically derived, and others can be obtained78

by simulating a mean-field spiking model, which is constrained by the experimentally measured79

𝑚 and the spike rate.80

The framework of branching networks can be interpreted as a stochastic description of spike81

propagation on networks, as outlined above. It can alternatively be taken as a strictly phe-82

nomenological approximation to network dynamics that enables us to infer details of network83

statistics despite subsampling. Independent of the perspective, the dynamics of the network84

is mainly governed by 𝑚 (Fig. 1a). If an action potential only rarely brings any postsynaptic85

neuron above threshold (𝑚 ⪆ 0), external perturbations quickly die out, and neurons spike in-86

dependently and irregularly, driven by external fluctuations ℎ. In general, if one action potential87

causes less than one subsequent action potential on average (𝑚 < 1), perturbations die out and88

the network converges to a stable distribution, with increasing fluctuations and variance the89

closer 𝑚 is to unity. If 𝑚 > 1, perturbations may grow infinitely, potentially leading to instabil-90

ity. The critical state (𝑚 = 1) separates the stable (subcritical) from the unstable (supercritical)91

phase. When approaching this critical state from below, the expected size ⟨𝑠⟩ and duration92

⟨𝑑⟩ of individual cascades or avalanches diverge: ⟨𝑠⟩ ∼ 1𝑚C−𝑚 . Therefore, especially close to93

criticality, a correct estimate of 𝑚 is vital to assess the risk that the network develops large, po-94

tentially devastating cascades, which have been linked to epileptic seizures,56 either generically95

or via a minor increase in 𝑚.96

Simulation. We simulated a branching network model by mapping a branching process5097

(Supp. 1) onto a fully connected network of 𝑁 = 10, 000 neurons.24 An active neuron activated98

each of its 𝑘 postsynaptic neurons with probability 𝑝 = 𝑚/𝑘. Here, the activated postsynaptic99

neurons were drawn randomly without replacement at each step, thereby avoiding that two100

different active neurons would both activate the same target neuron. Similar to the branching101

process, the branching network is critical for 𝑚 = 1 in the infinite size limit, and subcritical102

(supercritical) for 𝑚 < 1 (𝑚 > 1). We modeled input to the network at rate ℎ by Poisson103

activation of each neuron at rate ℎ/𝑁 . Subsampling1 was applied to the model by sampling the104

activity of 𝑛 neurons only, which were selected randomly before the simulation, and neglecting105

the activity of all other neurons.106

If not stated otherwise, simulations were run for 𝐿 = 107 time steps (corresponding to107

∼11 h). Confidence intervals were estimated according to49 from 𝐵 = 100 realizations of the108

network, both for simulation and experiments.109

The reverberating branching networks were defined to match the respective experimental110

recording in the number of sampled neurons 𝑛, mean activity ⟨𝑎𝑡⟩, and branching ratio 𝑚.111

Exemplarily for the cat recording, which happened to represent the median 𝑚̂, this yielded112

𝑚 = 𝑚̂ = 0.98, 𝑛 = 50, and ⟨𝑎𝑡⟩ = 1.58 per bin, from which ℎ = 0.032 ⋅ 𝑁 follows. The corre-113

sponding AI and near-critical networks were matched in 𝑛 and ⟨𝑎𝑡⟩, but set up with branching114

ratios of 𝑚 = 0 or 𝑚 = 0.9999 respectively. For all networks, we chose a full network size of115

𝑁 = 104.116

In Figs. 2c, the reverberating branching network was also matched to the length of the cat117

recording of 295 s. To test for stationarity, the cat recordings and the reverberating branching118

network were split into 59 windows of 5 s each, before estimating 𝑚 for each window. In Fig.119

1c, subcritical and critical branching networks with 𝑁 = 104 and ⟨𝐴𝑡⟩ = 100 were simulated,120
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and 𝑛 = 100 units sampled.121

Experiments122

We evaluated spike population dynamics from recordings in rats, cats and monkeys. The rat123

experimental protocols were approved by the Institutional Animal Care and Use Committee of124

Rutgers University.57,58 The cat experiments were performed in accordance with guidelines es-125

tablished by the Canadian Council for Animal Care.59 The monkey experiments were performed126

according to the German Law for the Protection of Experimental Animals, and were approved by127

the Regierungspräsidium Darmstadt. The procedures also conformed to the regulations issued128

by the NIH and the Society for Neuroscience. The spike recordings from the rats and the cats129

were obtained from the NSF-founded CRCNS data sharing website.57–60130

Rat experiments. In rats the spikes were recorded in CA1 of the right dorsal hippocampus131

during an open field task. We used the first two data sets of each recording group (ec013.527,132

ec013.528, ec014.277, ec014.333, ec015.041, ec015.047, ec016.397, ec016.430). The data-sets pro-133

vided sorted spikes from 4 shanks (ec013) or 8 shanks (ec014, ec015, ec016), with 31 (ec013), 64134

(ec014, ec015) or 55 (ec016) channels. We used both, spikes of single and multi units, because135

knowledge about the identity and the precise number of neurons is not required for the MR136

estimator. More details on the experimental procedure and the data-sets proper can be found137

in57,58.138

Cat experiments. Spikes in cat visual cortex were recorded by Tim Blanche in the laboratory139

of Nicholas Swindale, University of British Columbia.59 Weused the data set pvc3, i.e. recordings140

of 50 sorted single units in area 18.60 We used that part of the experiment in which no stimuli141

were presented, i.e., the spikes reflected spontaneous activity in the visual cortex of the anes-142

thetized cat. Because of potential non-stationarities at the beginning and end of the recording,143

we omitted data before 25 s and after 320 s of recording. Details on the experimental procedures144

and the data proper can be found in59,60.145

Monkey experiments. The monkey data are the same as in3,61. In these experiments, spikes146

were recorded simultaneously from up to 16 single-ended micro-electrodes (⌀ = 80 𝜇m) or147

tetrodes (⌀ = 96 𝜇m) in lateral prefrontal cortex of three trained macaque monkeys (M1: 6 kg148

♀; M2: 12 kg ♂; M3: 8 kg ♀). The electrodes had impedances between 0.2 and 1.2M𝛺 at 1 kHz,149

and were arranged in a square grid with inter electrode distances of either 0.5 or 1.0 mm. The150

monkeys performed a visual short term memory task. The task and the experimental procedure151

is detailed in61. We analyzed spike data from 12 experimental sessions comprising almost 12.000152

trials (M1: 5 sessions; M2: 4 sessions; M3: 3 sessions). 6 out of 12 sessions were recorded with153

tetrodes. Spike sorting on the tetrode data was performed using a Bayesian optimal template154

matching approach as described in62 using the “Spyke Viewer” software.63 On the single elec-155

trode data, spikes were sorted with a multi-dimensional PCA method (Smart Spike Sorter by156

Nan-Hui Chen).157

Analysis158

Temporal binning For each recording, we collapsed the spike times of all recorded neurons159

into one single train of population spike counts 𝑎𝑡, where 𝑎𝑡 denotes how many neurons spiked160

in the 𝑡𝑡ℎ time bin 𝛥𝑡. If not indicated otherwise, we used 𝛥𝑡 = 4ms, reflecting the propagation161

time of spikes from one neuron to the next.162

Multistep regression estimation of 𝑚̂ From these time series, we estimated 𝑚̂ using theMR163

estimator described in49. For 𝑘 = 1, … , 𝑘max, we calculated the linear regression slope 𝑟𝑘 𝛥𝑡 for164

the linear statistical dependence of 𝑎𝑡+𝑘 upon 𝑎𝑡. From these slopes, we estimated 𝑚̂ following165

the relation 𝑟𝛿𝑡 = 𝑏 ⋅ 𝑚̂𝛿𝑡/𝛥𝑡, where 𝑏 is an (unknown) parameter that depends on the higher166

moments of the underlying process and the degree of subsampling. However, for an estimation167

of 𝑚 no further knowledge about 𝑏 is required.168
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Throughout this study we chose 𝑘max = 2500 (corresponding to 10 s) for the rat recordings,169

𝑘max = 150 (600ms) for the cat recording, and 𝑘max = 500 (2000ms) for the monkey recordings,170

assuring that 𝑘max was always in the order of multiple autocorrelation times.171

In order to test for the applicability of a MR estimation, we used a set of conservative tests49172

and included only those time series, where the approximation by a branching network was con-173

sidered appropriate. For example, we excluded all recordings that showed an offset in the slopes174

𝑟𝑘, because this offset is, strictly speaking, not explained by a branching network and might175

indicate non-stationarities. Details on these tests are found in49. Even with these conservative176

tests, we found the exponential relation 𝑟𝑘 = 𝑏𝑚𝛿𝑡/𝛥𝑡 expected for branching networks in the177

majority of experimental spike recordings (14 out of 21, Fig. S1).178

Avalanche size distributions Avalanche sizes were determined similarly to the procedure
described in1,3. Assuming that individual avalanches are separated in time, let {𝑡𝑖} indicate
bins without activity, 𝑎𝑡𝑖

= 0. The size 𝑠𝑖 of one avalanche is defined by the integrated activity
between two subsequent bins with zero activity:

𝑠𝑖 =
𝑡𝑖+1

∑
𝑡=𝑡𝑖

𝑎𝑡. (1)

From the sample {𝑠𝑖} of avalanche sizes, avalanche size distributions 𝑝(𝑠) were determined179

using frequency counts. For illustration, we applied logarithmic binning, i.e. exponentially in-180

creasing bin widths for 𝑠.181

For each experiments, these empirical avalanche size distributionswere compared to avalanche182

size distributions obtained in a similar fashion from three different matched models (see below183

for details). Model likelihoods 𝑙({𝑠𝑖}) |𝑚) for all three models were calculated following64, and184

we considered the likelihood ratio to determine the most likely model based on the observed185

data.186

ISI distributions, Fano factors and spike count cross-correlations. For each experiment187

and corresponding reverberating branching network (subsampled to a single unit), ISI distribu-188

tions were estimated by frequency counts of the differences between subsequent spike times for189

each channel.190

We calculated the single unit Fano factor 𝐹 = Var[𝑎𝑡]/⟨𝑎𝑡⟩ for the binned activity 𝑎𝑡 of191

each single unit, with the bin sizes indicated in the respective figures. Likewise, single unit192

Fano factors for the reverberating branching networks were calculated from the subsampled193

and binned time series.194

From the binned single unit activities 𝑎1
𝑡 and 𝑎2

𝑡 of two units, we estimated the spike count195

cross correlation 𝑟sc = Cov(𝑎1
𝑡 , 𝑎2

𝑡 )/𝜎𝑎1
𝑡
𝜎𝑎2

𝑡
. The two samples 𝑎1

𝑡 and 𝑎2
𝑡 for the reverberating196

branching networks were obtained by sampling two randomly chosen neurons.197

Results198

Subsampling-invariant inference of the dynamical state199

In a companion study49 we showed that conventional estimators based on linear regression54,55
200

significantly underestimate 𝑚̂ when the system is subjected to subsampling (Fig. 1c), as it is201

always the case in electrophysiological recordings (Fig. 1b). The bias is considerable: For ex-202

ample, sampling 50 neurons or a single neuron in a branching network with 𝑚 = 0.99 resulted203

in the wrong estimates 𝑚̂Conv = 0.21, or even 𝑚̂Conv = 0.002, respectively (Fig. 1d). Thus a204

process close to instability (𝑚 = 0.99) is mistaken as Poisson-like (𝑚̂Conv = 0.002 ≈ 0) just205

because the estimate from subsampled activity is taken as face value for the entire population.206

The same study presented a novelmultistep regression estimator (MR estimator), which correctly207

characterizes the population dynamics via 𝑚 even under strong subsampling, in principle even208

from single neurons. Importantly, one can estimate 𝑚 even when sampling only a very small209
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Figure 1: Spatial subsampling. a. Raster plot and population rate for networks with different spike
propagation parameters. They exhibit vastly different dynamics, which readilymanifest in the population
activity. b. When assessing neuronal spiking activity, only a small subset of all neurons can be recorded.
This spatial subsampling can hinder correct inference of collective properties of the whole network; figure
created using TREES65 and reproduced from49. c. Estimated branching ratio 𝑚̂ as a function of the
simulated branching ratio 𝑚, inferred from subsampled activity (100 out of 10,000 neurons). While the
conventional estimator misclassified 𝑚 from this subsampled observation (gray, dotted line), the novel
multistep regression (MR) estimator returned the correct values d. For a reverberating branching network
with 𝑚 = 0.98, the conventional estimator inferred 𝑚̂ = 0.21 or 𝑚̂ = 0.002 when sampling 50
or 1 units respectively, in contrast to MR estimation, which returned the correct 𝑚̂ even under strong
subsampling. e. Using the novel MR estimator, cortical network dynamics in monkey prefrontal cortex,
cat visual cortex, and rat hippocampus were consistently found to exhibit reverberating dynamics, with
0.94 < 𝑚̂ < 0.991 (median 𝑚̂ = 0.98 over all experimental sessions, boxplots indicate median /
25% – 75% / 0% – 100% over experimental sessions per species). These correspond to network timescales
between 80ms and 2 s.

fraction of neurons and without knowing the network size 𝑁 , the number of sampled neurons210

𝑛, nor any moments of the underlying process.49 This robustness makes the estimator an ideal211

tool for the analysis of neuronal network recordings.212

Reverberating spiking activity in vivo213

We analyzed in vivo spiking activity fromMacaquemonkey prefrontal cortex during a short term214

memory task,61 anesthetized cat visual cortex with no stimulus,59 and rat hippocampus during215

a foraging task.57,58 We applied MR estimation to the binned population spike counts 𝑎𝑡 of the216

recorded neurons of each session (see methods). In the continuous spectrum from AI (𝑚 = 0)217

to critical (𝑚 = 1), we identified a limited range of branching values in vivo: in the experiments218

𝑚̂ ranged from 0.963 to 0.998 (median 𝑚̂ = 0.98), corresponding to autocorrelation times219

between 100ms and 2 s (median 247ms, Figs. 1e, S1). This clearly suggests that spiking activity220

in vivo is neither AI-like, nor consistent with a critical state. Instead, it is poised in a regime221
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Figure 2: Validation of themodel assumptions. The top row displays properties from a reverberating
network model, the bottom row spike recordings from cat visual cortex. a/a’. Raster plot and population
activity 𝑎𝑡 within bins of 𝛥𝑡 = 4ms, sampled from 𝑛 = 50 neurons. b/b’. Multistep regression (MR)
estimation from the subsampled activity (5min recording). The predicted exponential relation 𝑟𝛿𝑡 ∼
𝑚𝛿𝑡/𝛥𝑡 = exp(−𝛿𝑡/𝜏) provides a validation of the applicability of the model. The experimental data
are fitted by this exponential with remarkable precision. c/c’. The estimated branching parameter 𝑚̂ for
59 windows of 5 s length suggests stationarity of 𝑚 over the entire recording (shaded area: 16% to 84%
confidence intervals). The variability in 𝑚̂ over consecutive windows was comparable for experimental
recording and the matched network (𝑝 = 0.09, Levene test). Insets: MR estimation exemplified for one
example window each. d/d’. When subsampling even further, MR estimation always returns the correct
timescale ̂𝜏 (or 𝑚̂) in the model. In the experiment, this invariance to subsampling also holds, down to
𝑛 ≈ 10 neurons (shaded area: 16% to 84% confidence intervals estimated from 50 subsets of 𝑛 neurons).

that, unlike critical or AI, does not maximize one particular property alone but may combine222

features of both (see discussion). Due to the lack of one prominent characterizing feature, we223

name it the reverberating regime, stressing that activity reverberates (different from the AI state)224

at timescales of hundreds of milliseconds (different from a critical state, where they can persist225

infinitely).226

The reverberating state differs from criticality227

On first sight, 𝑚̂ = 0.98 of the reverberating state may suggest that the collective spiking228

dynamics is very close to critical. Indeed, physiologically a 𝛥𝑚 ≈ 1.6% difference to criticality229

is small in terms of the effective synaptic strength. However, this apparently small difference230

in single unit properties has a large impact on the collective dynamical fingerprint and makes231

AI, reverberating, and critical states clearly distinct: (1) This distinction is readily manifest in232

the fluctuations of the population activity, where states with 𝑚 = 0.98 and 𝑚 = 0.999 are233

clearly different (Fig. 1a). (2) Consider the sensitivity to a small input, i.e. the susceptibility234

𝜒 = 𝜕⟨𝐴𝑡⟩ / 𝜕ℎ = 1
1−𝑚 . The susceptibility diverges at criticality. A critical network is thus235

overly sensitive to input. In contrast, states with 𝑚 ≈ 0.98 assure sensitivity without instability.236

(3) Likewise, the 𝛥𝑚 ≈ 1.6% difference limits the intrinsic timescale of the dynamics to a few237

hundred milliseconds, while at criticality it approaches infinity. (4) Because of the divergences238

at criticality, network dynamics dramatically differ between 𝑚 = 0.9, 𝑚 = 0.99 or 𝑚 = 0.999:239

for example, the differences in susceptibility (sensitivity) and variance are 100-fold. Because this240

has a strong impact on network dynamics and putative network function, finely distinguishing241

between dynamical states is both important and feasible even if the corresponding differences242

in effective synaptic strength (𝑚) appear small.243
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Validity of the approach244

There is a straight-forward verification of the validity of our phenomenological model: it predicts245

an exponential autocorrelation function 𝑟𝛿𝑡 for the population activity 𝑎𝑡. We found that the246

activity in cat visual cortex (Figs. 2a,a’) is surprisingly well described by this exponential fit (Fig.247

2b,b’). This validation holds to the majority of experiments investigated (14 out of 21, Fig. S1).248

A second verification of our approach is based on its expected invariance under subsam-249

pling: We further subsampled the activity in cat visual cortex by only taking into account spikes250

recorded at a subset of 𝑛 out of all available single units. As predicted (Fig. 2d), the estimates of251

𝑚̂, or equivalently of ̂𝜏 , coincided for any subset of single units. Only if the activity of less than252

5 out of the available 50 single units was considered, the autocorrelation time was underesti-253

mated (Fig. 2d’), most likely because of the heterogeneity of cortical networks. These results254

demonstrate, however, that our approach gives consistent results from the activity of 𝑛 ≥ 5255

neurons, which were available for all investigated experiments.256

Origin of the activity fluctuations257

The fluctuations found in cortical spiking activity, instead of being intrinsically generated, could258

in principle arise from non-stationarities, which could in turn lead to misestimation of 𝑚. This259

is unlikely for three reasons: First, we defined a set of conservative tests to reject recordings that260

show any signature of common non-stationarities. Even with these tests, we found the exponen-261

tial relation 𝑟𝛿𝑡 ∼ 𝑚𝛿𝑡/𝛥𝑡 expected for branching networks not only in cat visual cortex, but in262

the majority of experiments (14 out of 21, Fig. S1). Second, recordings in cat visual cortex were263

acquired in absence of any stimulation, excluding stimulus-related non-stationarities. Third,264

when splitting the spike recording into short windows, the window-to-window variation of 𝑚̂265

in the recording did not differ from that of stationary in vivo-like branching networks (𝑝 = 0.3,266

Figs. 2c,c’). The in vivo-like branching network by definition was set up with the same branch-267

ing ratio 𝑚, spike rate ⟨𝑎𝑡⟩, number of sampled neurons 𝑛, and duration as the experimental268

recording (e.g. for the cat 𝑛 = 50, 𝑚 = 0.98, ̄𝑟 = 7.9Hz, recording of 295 s length). For these269

reasons the observed fluctuations likely reflect intrinsic timescales of the underlying collective270

network dynamics.271

Timescales of the network and single units272

The dynamical state described by 𝑚 directly relates to an exponential autocorrelation func-273

tion with an intrinsic network timescale of 𝜏 = −𝛥𝑡/ ln𝑚. Exemplarily for the cat recording,274

𝑚 = 0.98 implies a network timescale of 𝜏 = 188ms, where we here chose 𝛥𝑡 = 4ms. While275

the autocorrelation function of the full network activity is expected to show an exponential276

decay, we showed that the autocorrelation of single neuron activity rapidly decreases at the277

timescale of a bin size (Fig. 3a). This rapid decrease is typically interpreted a lack of memory,278

overlooking that single neurons do not need to be equivalent to the network in terms of auto-279

correlation strength. Our theoretical results explain how this prominent dip comes about even280

in reverberating systems: because of the strong subsampling when considering single neuron281

activity, the strength of autocorrelation is decreased by a constant factor for any lag 𝛿𝑡 ≠ 0. Ig-282

noring the value at 𝛿𝑡 = 0, the floor of the autocorrelation function still unveils the exponential283

relation. Remarkably, the autocorrelogram of single units in cat visual cortex displayed precisely284

the shape of autocorrelation predicted for single neurons (compare Figs. 3a and b).285

Although our results were largely invariant to further subsampling (provided 𝑛 ≥ 5, Fig.286

2d’), the intrinsic timescales 𝜏 (or 𝑚) of single neurons differed from the network timescale,287

as one might expect in heterogeneous systems. We found that single neuron timescales were288

typically smaller than the network timescale (Fig. 3c, median 𝜏 = 85ms for single neurons in289

cat visual cortex versus 𝜏 = 180ms for the network, Figs. 2d’, S9c). Therefore, the network290

timescale inferred by our approach contributes further information about network dynamics291

compared to previous studies which only considered single neurons.34292
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Figure 3: MR estimation and autocorrelation times. a. In a branching model, the autocorrelogram
of the population activity is exponential with decay time 𝜏 (blue dotted line). In contrast, the autocor-
relogram for single neurons shows a sharp drop from 𝑟0 = 1 at lag 𝛿𝑡 = 0 s to the next lag 𝑟±𝛥𝑡 (gray
solid line). We showed that this drop is a subsampling-induced bias. When ignoring the zero-lag value,
the autocorrelation strength is decreased, but the exponential decay and even the value of the autocor-
relation time 𝜏 of the network activity are preserved (inset). b. The autocorrelogram of single neuron
activity recorded in cat visual cortex precisely resembles this theoretical prediction, namely a sharp drop
and then an exponential decay. c. Single unit and population timescales for all experimental sessions.
The boxplots indicate the distribution of timescales inferred from single unit activity (median in red / 25%
– 75% / 2.5% – 97.5%), the blue dots the timescale inferred from the population activity of all sampled
units.

Established methods are biased to identifying AI dynamics293

On the population level, networks with different 𝑚 are clearly distinguishable (Fig. 1a). Sur-294

prisingly, single neuron statistics, namely interspike interval (ISI) distributions, Fano factors,295

conventional estimation of 𝑚, and the autocorrelation 𝑟𝛿𝑡, all returned signatures of AI activity296

regardless of the underlying network dynamics and cannot serve as a reliable indicator for the297

network’s dynamical state.298

First, exponential interspike interval (ISI) distributions are considered a strong indicator of299

Poisson-like firing. Surprisingly, the ISIs of single neurons in the in vivo-like branching network300

closely followed exponential distributions, which were determined mainly by the firing rate, and301

were almost indistinguishable from ISI distributions obtained from AI networks (Figs. 4a,a’, S2).302

This result was confirmed by coefficients of variation close to unity, as expected for exponential303

distributions (Fig. S2).304

Second, the Fano factor 𝐹 for the activity of single neurons was close to unity, a hallmark305

feature of irregular spiking,35 in any network model (Fig. 5g, analytical result: Eq. (S8)) and for306

single unit activity across all units and experiments (Figs. 4b,b’, S3). Even when increasing the307

bin size to 4 s, the median Fano factor of single unit activity did not exceed 𝐹 = 10 in any of308

the experiments, even in those with the longest reverberation. In contrast, for the full network309

the Fano factor rose to 𝐹 ≈ 104 for the in vivo-like branching network and diverged when310

approaching criticality (Fig. 5g, analytical result: Eq. (S4)).311

Third, conventional regression estimators54,55 are biased towards inferring irregular activity,312

as shown before. Here, conventional estimation yielded a median of 𝑚̂ = 0.057 for single313

neuron activity in cat visual cortex, in contrast to 𝑚̂ = 0.954 returned by MR estimation even314

from single unit recordings (Fig. S9).315

Fourth, when examining the autocorrelation function of an experimental recording (Fig. 3b)316

the prominent decay of 𝑟𝛿𝑡 prevails and hence single neuron activity appears uncorrelated in317

time.318
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Figure 4: Model validation for in vivo spiking activity. We validated our model by comparing exper-
imental results to predictions obtained from the in vivo-like, reverberating model, which was matched to
the recording in themean rate, inferred 𝑚, and number of recorded neurons. In general, the experimental
results (gray or blue) were best matched by this reverberating model (red), compared to asynchronous
irregular (AI, green) and critical (yellow) models. From all experimental sessions, best examples (top) and
typical examples (bottom) are displayed. For results from all experimental sessions see Figs. S2 to S8.
a/a’. Inter-spike-interval (ISI) distributions. b/b’. Fano factors of single neurons for bin sizes between
4ms and 4 s. c/c’. Distribution of spikes per bin 𝑝(𝑎𝑡) at a bin size of 4ms. d/d’. Same as c/c’ with a
bin size of 40ms. e/e’. In vivo avalanche size distributions 𝑝(𝑠) for all sampled units. AI activity lacks
large avalanches, near critical activity produces power-law distributed avalanches, even under subsam-
pling. f/f’. In vivo avalanche duration distributions 𝑝(𝑑) for all sampled units. textbfg/g’. Spike count
cross-correlations (𝑟sc) as a function of the bin size.

Cross-validation of model predictions319

We compared the experimental results to an in vivo-like model, which was matched to the320

recording only in the average firing rate of single neurons, and in the inferred branching ra-321

tio 𝑚. Remarkably, this in vivo-like branching network could predict statistical properties not322

only of single neurons as shown before (ISI and Fano factor, see above), but also pairwise and323
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population properties. This prediction capability further underlines the usefulness of this simple324

model to approximate the ground state of cortical dynamics.325

First, the model predicted the activity distributions, 𝑝(𝑎𝑡), better than AI or critical net-326

works for the majority of experiments (15 out 21, Figs. 4c,d,c’,d’, S5, S6), both for the exemplary327

bin sizes of 4ms and 40ms. Hence, branching networks only matched in their respective first328

moments of the activity distributions (through the rate) and first moments of the spreading be-329

havior (through 𝑚) in fact approximated all higher moments of the activity distributions 𝑝(𝑎𝑡).330

Likewise, the model predicted the distributions of neural avalanches, i.e. spatio-temporal331

clusters of activity (Figs. 4e,f,e’, f’, S7, S8). Characterizing these distributions is a classic ap-332

proach to assess criticality in neuroscience,1,10 because avalanche size and duration distributions,333

𝑝(𝑠) and 𝑝(𝑑) respectively, follow power laws in critical systems (yellow). In contrast, for AI ac-334

tivity, they are approximately exponential66 (green). Thematched branching networks predicted335

neither exponential nor power law distributions for the avalanches, but very well matched the336

distributions of the experiment (compare red and blue). Indeed, model likelihood64 favored the337

in vivo-like branching network over Poisson and critical networks for the majority experiments338

(18 out of 21, Fig. S7). Our results here are consistent with those of spiking activity in awake339

animals, which typically do not display power laws.2,3,43 In contrast, most evidence for critical-340

ity has been based on coarse measures of neural activity (LFP, EEG, BOLD; see3 and references341

therein).342

Last, the model predicted the pairwise spike count cross correlation 𝑟sc. In experiments, 𝑟sc343

is typically between 0.01 and 0.25, depending on brain area, task, and most importantly, the344

analysis timescale (bin size).37 For the cat recording the model even correctly predicted the bin345

size dependence of 𝑟sc from ̄𝑟sc ≈ 0.004 at a bin size of 4ms (analytical result: Eq. (S11)) to346

̄𝑟sc ≈ 0.3 at a bin size of 2 s (Fig. 4g). Comparable results were also obtained for some mon-347

key experiments. In contrast, correlations in most monkey experiments and rat hippocampal348

neurons showed smaller correlation than predicted (Figs. 4g’, S4). It is very surprising that the349

model correctly predicted the cross-correlation even in some experiments, as 𝑚 was inferred350

only from the temporal structure of the spiking activity alone, whereas 𝑟sc characterizes spatial351

dependencies.352

Overall, by only estimating the effective synaptic strength 𝑚 from the in vivo recordings,353

higher-order properties like avalanche size distributions, activity distributions and in some cases354

spike count cross correlations could be closely matched using the generic branching network.355

The dynamical state determines responses to small stimuli356

After validating the model using a set of statistical properties that are well accessible experimen-357

tally, we now turn to making predictions for yet unknown properties, namely network responses358

to small stimuli. In the line of London and colleagues48, assume that on a background of spiking359

activity one single extra spike is triggered. This spike may in turn trigger new spikes, lead-360

ing to a cascade of additional spikes 𝛥𝑡 propagating through the network. A dynamical state361

with branching ratio 𝑚 implies that on average, this perturbation decays with time constant362

𝜏 = −𝛥𝑡/ log𝑚. Similar to the approach in48, the evolution of the mean firing rate, averaged363

over a reasonable number of trials (here: 500) unveils the nature of the underlying spike propa-364

gation: depending on 𝑚, the rate excursions will last longer, the higher 𝑚 (Figs. 5a,b,c, S10a).365

The perturbations are not deterministic, but show trial-to-trial variability which also depends366

on 𝑚 (S10b).367

Unless 𝑚 > 1, the theory of branching networks ensures that perturbations will die out368

eventually after a duration 𝑑, having accumulated a total of 𝛥 = ∑𝑑
𝑡=1 𝛥𝑡 extra spikes in total.369

This perturbation size 𝛥 and duration 𝑑 follow specific distributions,50 which are determined370

by 𝑚: they are power law distributed in the critical state, with a cutoff for any 𝑚 < 1 (Fig. 5f,371

Supplementary Figs. S10c,d). These distributions imply a characteristic perturbation size ⟨𝛥⟩372

(Fig. 5d), which diverges at the critical point. The variability of the perturbation sizes is also373
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determined by 𝑚 and also diverges at the critical point (inset of Fig. 5d and Supplementary Fig.374

S10e).375

Taken together, these results imply that the closer a neuronal network is to criticality, the376

more sensitive it is to external perturbations and can better amplify small stimuli. At the same377

time, these networks also show larger trial-to-trial variability. For typical cortical networks, we378

found that the response to one single extra spike will on average comprise between 20 and 1000379

additional spikes in total (Figs. 5e).380

The dynamical state determines network susceptibility and variability381

Moving beyond single spike perturbations, our model gives precise predictions for the network382

response to continuous stimuli. If extra action potentials are triggered at rate ℎ in the network,383

the network will again amplify these external activations, depending on 𝑚. Provided an ap-384

propriate stimulation protocol, this rate response could be measured and our prediction tested385

in experiments (Fig. S10g). The susceptibility d𝑟/dℎ diverges at the critical transition and is386

unique to a specific branching ratio 𝑚. We predict that typical cortical networks will amplify a387

small, but continuous increase of the input rate about 50-fold (Fig. S10h, red).388

While the mean activity is determined by the network input and its susceptibility, the net-389

work activity fluctuates around this mean value. The magnitude of these fluctuations in relation390

to the mean can be described by the network Fano factor 𝐹 = Var[𝐴𝑡] /⟨𝐴𝑡⟩ (Fig. 5g). This391

quantity cannot be directly inferred from experimental recordings, because the Fano factor of392

subsampled populations severely underestimates the network Fano factor, as shown before. We393

here used our in vivo-like model to obtain estimates of the network Fano factor: for a bin size of394

4ms it is about 𝐹 ≈ 40 and rises to 𝐹 ≈ 4000 for bin sizes of several seconds.395

Distinguishing afferent and recurrent activation396

Last, our model gives an easily accessible approach to solving the following question: given a397

spiking neuronal network, which fraction of the activity is generated by recurrent activation398

from within the network, and which fraction can be attributed to external, afferent excitation?399

The branching model readily provides an answer: the fraction of externally generated activity is400

ℎ/⟨𝐴⟩ = 1 − 𝑚 (Fig. 5h). In this framework, AI-like networks are completely driven by external401

input currents or noise, while reverberating networks generate a substantial fraction of their402

activity intrinsically. For the experiments investigated in this study, we inferred that between403

0.1% and 7% of the activity are externally generated (median 2%, Fig. 5i). While this view may404

be simplistic given the complexity of neuronal network activity, keep in mind that “all models405

are wrong, but some are useful”.67 Here, the model has proven to provide a good first order406

approximation and therefore promises to make reasonable predictions on properties of spiking407

networks.408

Discussion409

Our results resolve contradictions between AI and critical states410

Our results for spiking activity in vivo suggest that network dynamics shows AI-like statistics,411

because under subsampling the observed correlations are underestimated. In contrast, typical412

experiments assessing criticality potentially overestimated correlations by sampling from over-413

lapping populations (LFP, EEG) and thereby hampered a fine distinction between critical and414

subcritical states.68 By employing for the first time a consistent, quantitative estimation, we pro-415

vided evidence that in vivo spiking population dynamics reflects a reverberating state, i.e. it lives416

in a narrow regime around 𝑚 = 0.98. This result is supported by the findings by Dahmen and417

colleagues:69 based on distributions of covariances, they inferred that cortical networks should418

operate in a regime below criticality. Given the generality of our results across different species,419

brain areas, and cognitive states, our results suggest self-organization to this regime as a general420

organization principle for neural network dynamics.421
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Figure 5: Predictions about network activity. Using our in-vivo-like, reverberating model, we can
predict several network properties, which are yet very hard or impossible to obtain experimentally. a
– c. In response to one single extra spike, a perturbation propagates in the network depending on the
branching ratio 𝑚 and can be observed as a small increase of the average firing rate of the sampled
neurons, here simulated for 500 trials (see also London et al. [48]). This increase of firing rate decays
exponentially, with the decay time 𝜏 being determined by 𝑚. The perturbation a is rapidly quenched in
the asynchronous irregular network, b decays slowly over hundreds of milliseconds in the reverberating
state, or c persists almost infinitely in the critical state. d. The average perturbation size ⟨𝛥⟩ and Fano
factor 𝐹𝛥 (inset) increase strongly with 𝑚. e. Average total perturbation sizes predicted for each spike
recording of mammalian cortex (errorbars: 5% – 95% confidence intervals). f. Distribution 𝑝(𝛥) of total
perturbation sizes 𝛥. The asynchronous irregular networks show approximately Poisson distributed,
near critical networks power-law distributed perturbation sizes. textbfg. Bin size dependent Fano factors
of the activity, here exemplarily shown for the asynchronous irregular (𝑚 = 0, green), representative
reverberating (𝑚 = 0.98, red), and near critical (𝑚 = 0.9999, yellow) networks. While the directly
measurable Fano factor of single neurons (dotted lines) underestimates the Fano factor of the whole
network, the model allows to predict the Fano factor of the whole network (solid lines). h. The fraction
of the externally generated spikes compared to all spikes in the network strongly decreases with larger
𝑚. i. Fraction of the externally generated spikes predicted for each spike recording of mammalian cortex
(errorbars as in e).

The reverberating state combines features of AI and critical regimes422

Operating in a reverberating state, which is between AI and critical, may combine the compu-423

tational advantages of the two dynamical states: (1) AI networks react to external input rapidly,424

and show very little reverberation of the input. In contrast, criticality is associated with “critical425

slowing down”, i.e. performing any computation might take overly long. The 𝑚 = 0.98 state426
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shows intermediate timescales of a few hundred milliseconds. These reverberations may carry427

short term memory and allow to integrate information over limited timescales.27,70 (2) Criti-428

cality has been associated with maximal processing capacity. However, a number of everyday429

tasks, e.g. memory recall, require only sufficient capacity for survival and reproduction rather430

than maximum capacity.71 Thus maximizing this one property alone is most likely not neces-431

sary from an evolutionary point of view. One particular example manifest from our results is432

the trade-off between sensitivity and reliability: while the critical state maximizes sensitivity by433

amplifying small stimuli (Fig. 5h), this sensitivity comes at the cost of increased trial-to-trial434

variability (Fig. 5i) and therefore may hinder reliable responses.72 (3) Criticality in a branch-435

ing process marks the transition to unstable dynamics. These instabilities have been associated436

with epilepsy.56 The prevalence of epilepsy in humans73,74 supports our results that the brain437

indeed operates biophysically still close to instability, but keeps a sufficient safety-margin to438

make seizures sufficiently unlikely.3 This is in line with our results that the effective synaptic439

strength is close to, but not at 𝑚 = 1.440

More complex network models441

Cortical dynamics is clearly more complicated than a simple branching network. For example,442

heterogeneity of neuronal morphology and function, non-trivial network topology, and the com-443

plexity of neurons themselves are likely to have a profound impact on the population dynamics.444

However, we showed that statistics of cortical networks are well approximated by a branching445

network. Therefore, we interpret branching networks as a statistical approximation of spike446

propagation, which can capture dynamics as complex as cortical activity. By using branching447

networks, we draw on the powerful advantage of analytical tractability, which allowed for basic448

insight into dynamics and stability of cortical networks.449

It is a logical next step to refine the model by including additional relevant parameters,450

guided by the results obtained from the well-understood estimator. For example, our results451

show that networks with balanced excitation and inhibition,8,75,76 which became a standard452

model of neuronal networks,77 should be extended to incorporate the network reverberations453

observed in vivo. Possible candidate mechanisms are increased coupling strength or inhomoge-454

neous connectivity. Both have already been shown to exhibit rate fluctuations with timescales455

of several hundred milliseconds.78–80456

Likewise, neuron models of spike responses typically model normally distributed network457

synaptic currents, which originate from the assumption of uncorrelated Poisson inputs. Our458

results suggest that this input should rather exhibit reverberating properties with timescales of459

a few hundred milliseconds to reflect input from cortical neurons in vivo.460

Deducing network properties from the tractable model461

Using the tractable model, we could predict and validate network properties, such as distribu-462

tions of avalanche sizes and durations, interspike intervals, or activities. Given the experimental463

agreement with these predictions, we deduced further properties, which are impossible or dif-464

ficult to assess experimentally and gave insight into more complex questions about network465

responses: how do perturbations propagate within the network and how susceptible is the net-466

work to external stimulation?467

One particular question we could address is the following: which fraction of network activ-468

ity is attributed to external or recurrent, internal activation? We inferred that about 98% of the469

activity are generated by recurrent excitation. However, note that this result likely depends on470

the brain area and cognitive state investigated: For layer 4 of primary visual cortex in awake471

mice, Reinhold and colleagues81 concluded that the fraction of recurrent cortical excitation rises472

to only about 72% and cortical activity dies out with a timescale of about 12ms after thalamic473

silencing. Their numbers agree perfectly well with our phenomenological model: a timescale474

of 12ms implies that the fraction of recurrent cortical activation is 𝑚 ≈ 0.71, just as found475

experimentally. Under anesthesia, in contrast, they report timescales of several hundred mil-476
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liseconds, in agreement with our results. These differences show that the fraction of external477

activation may strongly depend on cortical area, layer, and cognitive state. The novel estima-478

tor can in future contribute to a deeper insight into these differences, because it allows for a479

straight-forward assessment of afferent versus recurrent activation without the requirement of480

thalamic or cortical silencing.481
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Supplementarymaterial for “Inference, validation and predictions635

about statistics and propagation of cortical spiking in vivo” by J.636

Wilting and V. Priesemann637

Supp. 1 Branching processes638

In a branching process (BP) with immigration50–52 each unit 𝑖 produces a random number 𝑦𝑡,𝑖639

of units in the subsequent time step. Additionally, in each time step a random number ℎ𝑡 of640

units immigrates into the system (drive). Mathematically, BPs are defined as follows:50,51 Let641

𝑦𝑡,𝑖 be independently and identically distributed non-negative integer-valued random variables642

following a law 𝑌 with mean 𝑚 = ⟨𝑌 ⟩ and variance 𝜎2 = Var[𝑌 ]. Further, 𝑌 shall be non-643

trivial, meaning it satisfies P[𝑌 = 0] > 0 and P[𝑌 = 0] + P[𝑌 = 1] < 1. Likewise, let644

ℎ𝑡 be independently and identically distributed non-negative integer-valued random variables645

following a law 𝐻 with mean rate ℎ = ⟨𝐻⟩ and variance 𝜉2 = Var[𝐻]. Then the evolution of646

the BP 𝐴𝑡 is given recursively by647

𝐴𝑡+1 =
𝐴𝑡

∑
𝑖=1

𝑦𝑡,𝑖 + ℎ𝑡, (S1)

i.e. the number of units in the next generation is given by the offspring of all present units and648

those that were introduced to the system from outside.649

The stability of BPs is solely governed by the mean offspring 𝑚. In the subcritical state, 𝑚 <650

1, the population converges to a stationary distribution 𝐴∞ with mean ⟨𝐴∞⟩ = ℎ/(1 − 𝑚).651

At criticality (𝑚 = 1), 𝐴𝑡 asymptotically exhibits linear growth, while in the supercritical state652

(𝑚 > 1) it grows exponentially.653

We will now derive results for the mean, variance, and Fano factor of subcritical branching
processes. Following previous results, taking expectation values of both sides of Eq. (S1) yields
⟨𝐴𝑡+1⟩ = 𝑚⟨𝐴𝑡⟩ + ℎ. Because of stationarity ⟨𝐴𝑡+1⟩ = ⟨𝐴𝑡⟩ = ⟨𝐴∞⟩ and the mean activity
is given by

⟨𝐴∞⟩ = ℎ
1 − 𝑚. (S2)

In order to derive an expression for the variance of the stationary distribution, observe that by the654

theorem of total variance, Var[𝐴𝑡+1] = ⟨Var[𝐴𝑡+1 |𝐴𝑡]⟩ + Var[⟨𝐴𝑡+1 |𝐴𝑡⟩], where ⟨⋅⟩ denotes655

the expected value, and 𝐴𝑡+1 |𝐴𝑡 conditioning the random variable 𝐴𝑡+1 on 𝐴𝑡. Because 𝐴𝑡+1656

is the sum of independent random variables, the variances also sum: Var[𝐴𝑡+1 |𝐴𝑡] = 𝜎2 𝐴𝑡 +657

𝜉2. Using the previous result for ⟨𝐴∞⟩ one then obtains658

Var[𝐴𝑡+1] = 𝜉2 + 𝜎2 ℎ
1 − 𝑚 + Var[𝑚𝐴𝑡 + ℎ] = 𝜉2 + 𝜎2 ℎ

1 − 𝑚 + 𝑚2Var[𝐴𝑡].

Again, in the stationary distribution Var[𝐴𝑡+1] = Var[𝐴𝑡] = Var[𝐴∞] which yields659

Var[𝐴∞] = 1
1 − 𝑚2 (𝜉2 + 𝜎2 ℎ

1 − 𝑚) , (S3)

The Fano factor 𝐹𝐴𝑡
= Var[𝐴𝑡] / ⟨𝐴𝑡⟩ is easily computed from (S2) and (S3):660

𝐹𝐴𝑡
= 𝜉2

ℎ(1 + 𝑚) + 𝜎2

1 − 𝑚2 . (S4)
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Interestingly, the mean rate, variance, and Fano factor all diverge when approaching criticality661

(given a constant input rate ℎ): ⟨𝐴∞⟩ → ∞, Var[𝐴∞] → ∞, and 𝐹𝐴𝑡
→ ∞ as 𝑚 → 1.662

These results were derived without assuming any particular law for 𝑌 or 𝐻 . Although the663

limiting behavior of BPs does not depend on it,50–52 fixing particular laws allows to simplify these664

expressions further.665

We here chose Poisson distributions with means 𝑚 and ℎ for 𝑌 and 𝐻 respectively: 𝑦𝑡,𝑖 ∼
Poi(𝑚) and ℎ𝑡 ∼ Poi(ℎ). We chose these laws for two reasons: (1) Poisson distributions allow
for non-trivial offspring distributions with easy control of the branching ratio 𝑚 by only one
parameter. (2) For the brain, one might assume that each neuron is connected to 𝑘 postsynaptic
neurons, each of which is excited with probability 𝑝, motivating a binomial offspring distribution
with mean 𝑚 = 𝑘 𝑝. As in cortex 𝑘 is typically large and 𝑝 is typically small, the Poisson limit is
a reasonable approximation. Choosing these distributions, the variance and Fano factor become

Var[𝐴𝑡] = ℎ / ((1 − 𝑚)2(1 + 𝑚)),
𝐹𝐴𝑡

= 1 / (1 − 𝑚2). (S5)

Both diverge when approaching criticality (𝑚 = 1).666

Supp. 2 Subsampling667

A general notion of subsampling was introduced in Wilting and Priesemann [49]. The subsam-668

pled time series 𝑎𝑡 is constructed from the full process 𝐴𝑡 based on the three assumptions: (i)669

The sampling process does not interfere with itself, and does not change over time. Hence the re-670

alization of a subsample at one time does not influence the realization of a subsample at another671

time, and the conditional distribution of (𝑎𝑡|𝐴𝑡) is the same as (𝑎𝑡′ |𝐴𝑡′) if 𝐴𝑡 = 𝐴𝑡′ . However,672

even if 𝐴𝑡 = 𝐴𝑡′ , the subsampled 𝑎𝑡 and 𝑎𝑡′ do not necessarily take the same value. (ii) The673

subsampling does not interfere with the evolution of 𝐴𝑡, i.e. the process evolves independent of674

the sampling. (iii)On average 𝑎𝑡 is proportional to 𝐴𝑡 up to a constant term, ⟨𝑎𝑡 |𝐴𝑡⟩ = 𝛼𝐴𝑡+𝛽.675

In the spike recordings analyzed in this study, the states of a subset of neurons are observed676

by placing electrodes that record the activity of the same set of neurons over the entire record-677

ing. This implementation of subsampling translates to the general definition in the following678

manner: If 𝑛 out of all 𝑁 neurons are sampled, the probability to sample 𝑎𝑡 active neurons out679

of the actual 𝐴𝑡 active neurons follows a hypergeometric distribution, 𝑎𝑡 ∼ Hyp(𝑁, 𝑛, 𝐴𝑡). As680

⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝑗 𝑛 / 𝑁 , this representation satisfies the mathematical definition of subsam-681

pling with 𝛼 = 𝑛 / 𝑁 . Choosing this special implementation of subsampling allows to derive682

predictions for the Fano factor under subsampling and the spike count cross correlation. First,683

evaluate Var[𝑎𝑡] further in terms of 𝐴𝑡:684

Var[𝑎𝑡] = ⟨Var[𝑎𝑡 |𝐴𝑡]⟩ + Var[⟨𝑎𝑡 |𝐴𝑡⟩]

= 𝑛⟨𝐴𝑡
𝑁

𝑁 − 𝐴𝑡
𝑁

𝑁 − 𝑛
𝑁 − 1 ⟩ + Var[ 𝑛

𝑁 𝐴𝑡]

= 1
𝑁

𝑛
𝑁

𝑁 − 𝑛
𝑁 − 1 (𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴2

𝑡 ⟩) + 𝑛2

𝑁2 Var[𝐴𝑡]

= 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1 (𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2) + ( 𝑛2

𝑁2 − 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1 )Var[𝐴𝑡]. (S6)

This expression precisely determines the variance Var[𝑎𝑡] under subsampling from the proper-685

ties ⟨𝐴𝑡⟩ and Var[𝐴𝑡] of the full process, and from the parameters of subsampling 𝑛 and 𝑁 . We686

now show that the Fano factor approaches and even falls below unity under strong subsampling,687

regardless of the underlying dynamical state 𝑚. In the limit of strong subsampling (𝑛 ≪ 𝑁 ) Eq.688

(S6) yields:689
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Var[𝑎𝑡] ≈ 𝑛
𝑁2 (𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2) + 𝑛2 − 𝑛

𝑁2 Var[𝐴𝑡]. (S7)

Hence the subsampled Fano factor is given by690

𝐹𝑎𝑡
= Var[𝑎𝑡]

⟨𝑎𝑡⟩ ≈ 1 − ⟨𝐴𝑡⟩
𝑁 + 𝑛 − 1

𝑁
Var[𝐴𝑡]

⟨𝐴𝑡⟩ = 1 −
⟨𝐴𝑡⟩ − (𝑛 − 1)𝐹𝐴𝑡

𝑁 . (S8)

Interestingly, when sampling a single unit (𝑛 = 1) the Fano factor of that unit becomes com-691

pletely independent of the Fano factor of the full process:692

𝐹𝑎𝑡
= 1 − ⟨𝐴𝑡⟩/𝑁 = 1 − ⟨𝑎𝑡⟩/𝑛 = 1 − 𝑅, (S9)

where 𝑅 = ⟨𝑎𝑡⟩/𝑛 is the mean rate of a single unit.693

Based on this implementation of subsampling, we derived analytical results for the cross-694

correlation between the activity of two units on the time scale of one time step. The pair of695

units is here represented by two independent samplings 𝑎𝑡 and ̃𝑎(𝑡) of a BP 𝐴𝑡 with 𝑛 = 1,696

i.e. each represents one single unit. Because both samplings are drawn from identical distri-697

butions, their variances are identical and hence the correlation coefficient is given by 𝑟sc =698

Cov(𝑎𝑡, ̃𝑎(𝑡)) /Var[𝑎𝑡]. Employing again the law of total expectation and using the indepen-699

dence of the two samplings, this can be evaluated:700

Cov(𝑎𝑡, ̃𝑎(𝑡)) = ⟨⟨𝑎𝑡 ̃𝑎(𝑡) | 𝐴𝑡⟩⟩𝐴𝑡
− ⟨⟨𝑎𝑡 |𝐴𝑡⟩⟩2

𝐴𝑡
= 1

𝑁2 Var[𝐴𝑡], (S10)

with the first inner expectation being taken over the joint distribution of 𝑎𝑡 and ̃𝑎(𝑡). Using Eq.
(S7), one easily obtains

𝑟sc = Var[𝐴𝑡]
𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2 =

𝐹𝐴𝑡

𝑁 − ⟨𝐴𝑡⟩ =
𝐹𝐴𝑡

𝑁 (1 − 𝑅) (S11)

with the mean single unit rate 𝑅 = ⟨𝐴𝑡⟩/𝑁 . For subcritical systems, the Fano factor 𝐹𝐴𝑡
701

is much smaller than 𝑁 , and the rate is typically much smaller than 1. Therefore, the cross-702

correlation between single units is typically very small.703
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Figure S1: MR estimation for individual recording sessions. Reproduced from49. MR estimation
is shown for every individual animal. The consistency checks are detailed in49. Data from monkey were
recorded in prefrontal cortex during an working memory task. The third panel shows a oscillation of 𝑟𝑘
with a frequency of 50 Hz, corresponding to measurement corruption due to power supply frequency.
Data from anesthetized cat were recorded in primary visual cortex. Data from rat were recorded in
hippocampus during a foraging task. In addition to a slow exponential decay, the slopes 𝑟𝑘 show the
𝜗-oscillations of 6 – 10 Hz present in hippocampus.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363085doi: bioRxiv preprint 

https://doi.org/10.1101/363085


0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

ISI / ms

10−5

10−4

10−3

10−2

10−1

100

p
(I

S
I)

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

0 200 400 600

10−5

10−4

10−3

10−2

10−1

100

Experiment (single units)
Experiment
AI
In vivo-like BN
Near critical

M
on

ke
ys

R
at

s
C

at

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

C
V

10−1
100
101
102

10−1
100
101
102

10−1
100
101
102

Figure S2: Interspike interval distribution for individual recording sessions. Interspike interval
(ISI) distributions are shown for individual units of each recording (gray), for the average over units of
each recording (blue), as well as for thematchedmodels, either AI (green), in vivo-like (red), or near critical
(yellow). The insets show the corresponding coefficients of variation (CV). For every experiment AI and
in vivo-like models are virtually indistinguishable by the ISI distributions.
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Figure S3: Fano factors for individual recording sessions. Fano factors are shown for individual
single or multi units of every recording (gray boxplots, median / 25% – 75%, 2.5% – 97.5%), as well as for
the matched models, either AI (green), in vivo-like (red), or near critical (yellow).
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Figure S4: Cross correlations for individual recording sessions. Spike count cross correlations (𝑟sc)
are shown for every neuron pair (gray) and the ensemble average (blue) of each recording, for bin sizes
from 1 ms to 2s. Cross correlations are also shown for the matched models, either AI (green), in vivo-like
(red), or near critical (yellow).
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Figure S5: Activity distributions (4 ms bin size). Activity distributions are shown for every recording
for a bin size of 4 ms (blue). Activity distributions for the matched models, either AI (green), in vivo-like
(red), or near critical (yellow) are also shown. The color of the asterisk indicates which of the three models
yielded the highest likelihood for the data following64.
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Figure S6: Activity distributions (40 ms bin size). Activity distributions are shown for every record-
ing, for a bin size of 40 ms (blue). Activity distributions for the matched models, either AI (green), in
vivo-like (red), or near critical (yellow) are also shown. The color of the asterisk indicates which of the
three models yielded the highest likelihood for the data following64.
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Figure S7: Avalanche size distribution for individual recording sessions. Avalanche size distribu-
tions are shown for every recording (blue) and for matched models, either AI (green), in vivo-like (red), or
near critical (yellow). The color of the asterisk indicates which of the three models yielded the highest
likelihood for the data following64.
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Figure S8: Avalanche duration distribution for individual recording sessions. Avalanche duration
distributions are shown for every recording (blue) and for matched models, either AI (green), in vivo-like
(red), or near critical (yellow).
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Figure S9: MR estimation from single neuron activity (cat). Modified from49. MR estimation is
used to estimate 𝑚̂ from the activity 𝑎𝑡 of a single units in cat visual cortex. a. Each panel shows MR
estimation for one of the 50 recorded units. Autocorrelations decay rapidly in some units, but long-term
correlations are present in the activity of most units. The consistency checks are detailed in49. b. His-
togram of the single unit branching ratios 𝑚̂, inferred with the conventional estimator and using MR
estimation. The difference between these estimates demonstrates the subsampling bias of the conven-
tional estimator, and how it is overcome by MR estimation. c. Histogram of single unit timescales with
their median (gray dotted line) and the timescale of the dynamics of the whole network (blue dotted line).
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Figure S10: Further predictions about network activity. a. Themodel predicts that the perturbation
decays exponentially with decay time 𝜏 = −𝛥𝑡/ log𝑚. b The variance across trials of the perturbed
firing rate has a maximum, whose position depends on 𝑚. c. Depending on 𝑚, the model predicts the
distributions for the total number of extra spikes 𝛥 generated by the network following a single extra
spike. d. Likewise, the model predicts distributions of the duration 𝑑 of these perturbations. e. Variance
of the total perturbation size as a function of 𝑚. f. Variance of the total perturbation duration as a
function of 𝑚. g. Increase of the network firing rate as a function of the rate of extra neuron activations
for different 𝑚. h. Amplification (susceptibility) d𝑟/dℎ of the network as a function of the branching
ratio 𝑚.
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