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Abstract

Collective systems such as fish schools, bird flocks, and neural networks are comprised
of many mutually-influencing individuals, often without long-term leaders, well-defined hier-
archies, or persistent relationships. The remarkably organized group-level behaviors readily
observable in these systems contrast with the ad hoc, often difficult to observe, and complex
interactions among their constituents. While these complex individual-level dynamics are ul-
timately the drivers of group-level coordination, they do not necessarily offer the most parsi-
monious description of a group’s macroscopic properties. Rather, the factors underlying group
organization may be better described at some intermediate, mesoscopic scale. We introduce
a novel method from information-theoretic first principles to find a compressed description of
a system based on the actions and mutual dependencies of its constituents, thus revealing the
natural structure of the collective. We emphasize that this method is computationally tractable
and requires neither pairwise nor Gaussian assumptions about individual interactions.

1 Introduction

Collective behavior is an emergent property of the actions and interactions of a system’s con-
stituents. Typically, these individual actions are readily observable, while interactions are hidden:
they can only be inferred indirectly, and in many cases only with great difficulty. A growing body
of research on collective systems is devoted to exactly this problem (see e.g. Ballerini et al., 2008;
Lukeman et al., 2010; Nagy et al., 2010; Katz et al., 2011; Herbert-Read et al., 2011; Bialek et al.,
2012; Strandburg-Peshkin et al., 2013; Rosenthal et al., 2015; Harpaz et al., 2017; Torney et al.,
2018). In general, methods for inferring interactions fall into one of two categories. Many make
strong, system-specific simplifying assumptions about the nature of the interactions, e.g. requiring
linearity and/or pairwise interaction topologies, thus limiting their widespread applicability. Other
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solutions relax these constraints but at the cost of tractability as systems scale in size to more than
a few individuals. Even once accomplished, the problem of inferring all dependencies between
all elements of a system at every moment is only the first step in the analysis of collective behav-
ior. The overarching goal is to then understand how the dependencies between elements determine
group-level coordination.

We will call this focus on characterizing the moment-to-moment interactions of a group the
‘bottom-up’ approach to quantifying collectivity. At the other end of the scale, the ‘top-down’ ap-
proach is to simply measure one or more bulk properties of the system, such as average alignment
(when such a property makes sense; e.g. for locusts or fish in Buhl et al., 2006; Tunstrøm et al.,
2013, respectively). However, for nest-site selection in honeybees (Seeley & Visscher, 2004), bridge
formation (Reid et al., 2015) or foraging decisions (Greene & Gordon, 2007) in ants, social conflict
policing in Macaques (Flack et al., 2006), quorum sensing in bacteria (Papenfort & Bassler, 2016),
or neuronal avalanches in slices of neocortex (Beggs & Plenz, 2003), average alignment would not
be the most meaningful aggregate measure of collectivity. In general, the choice of what bulk prop-
erty to measure, and even what bulk properties may be sensible to measure, is system dependent.

The top-down and bottom-up views of collectivity are not mutually exclusive. On the contrary,
ideally they are complementary, and it may be necessary to employ either or both depending on the
system and the question asked. Here, we introduce a third approach to the problem of quantify-
ing collectivity with the aim of unifying these two views, while addressing some of their practical
and fundamental issues. First, building from information-theoretic first principles, we introduce a
measure of aggregate collectivity based directly on the observable actions of a system’s individual
elements. This measure quantifies the relative degree of statistical dependence shared by a set of
elements and in principle is valid for any system of any size. The degree of macroscopic collectivity
and its variation over time can thus be productively quantified and compared across systems. Sec-
ond, we show that this measure allows us to find a natural decomposition of a system into simpler
components. This decomposition provides a mesoscale description of a system that may offer a
simpler basis on which to make inferences about the causal system-wide interactions that underly
group-level organization. Finally, in addition to a rigorous theoretical foundation, we show that this
approach is readily applicable to both observed and simulated experimental data in practice.

1.1 Redundancy

Let S = {1, 2, . . . , n} be the indices of a set of random variables, {Xi}i∈S , which in general may
be neither identically distributed nor independent. In the context of a fish school or a bird flock, this
could be the set of all the velocity vectors of the individuals in the group; for neurons, this could
be the state of each neuron (firing or silent). In general, it could be any heterogeneous assemblage
of the microscopic observables of a system. If we were asked to faithfully record the current state
of the whole group, one strategy would be to simply write down a description of each element
separately. One of the foundational results from information theory is that no lossless description
of a random variable can be shorter on average than the tight lower bound given by its entropy
(Shannon, 1948). Thus a description of the system given by recording every element separately
would require on average a minimum of

∑
i∈S H(Xi) bits, where H(Xi) is the entropy of Xi.

Alternatively, another strategy would be to instead write down a shared (or ‘joint’) description
of all elements at once. A joint description can capitalize on the dependencies among a set of
variables to reduce the overall description length needed. For example, to characterize the state of
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both a lamp and the light switch that controls it, one could simply record the on/off state of one of
the two components. Knowing the state of either the switch or the lamp automatically tells us the
state of the other, under perfect operating conditions. For less than perfect operating conditions it
will be necessary to include additional information about the state of the other component, but only
as frequently as the light switch fails to determine the state of the lamp. In either case, the joint
entropy of the lamp and the light switch together determines the lower bound on the lossless joint
description of the system. Thus the smallest lossless joint description requires H({Xi}i∈S) bits on
average, where we are guaranteed that H({Xi}i∈S) ≤∑i∈S H(Xi).

In fact, the only way in which the joint description is as costly as the sum of the individual (or
‘marginal’) descriptions is if all Xi’s are independent. The difference between the marginal and
joint descriptions, given by

I({Xi}i∈S) =
∑

i∈S
H(Xi)−H({Xi}i∈S), (1.1)

gives us a natural measure of how much we reduce the fundamental representation cost by using
a joint, rather than a marginal, description. Another way to think about Eq. 1.1 is as a measure
of redundancy: the amount of information that is made redundant (unnecessary) when describing
{Xi}i∈S as a whole rather than by parts. A similar interpretation can be found in Watanabe (1960)’s
original investigation of Eq. 1.1 as a general measure of multivariate correlation.1

Notably, redundancy in the absolute sense given by Eq. 1.1 scales in magnitude with the size
of the system. For example, if we take n identical copies2 of the same random variable, X , then
we have I({Xi}i∈S) ∝ H(X) with the constant of proportionality equal to n − 1. If H(X) > 0,
then in the limit as n → ∞, I({Xi}i∈S) → ∞. To compare redundancies between systems or
subsystems of different sizes, it can be useful to instead consider the relative redundancy, i.e.

r =
I({Xi}i∈S)∑
i∈S H(Xi)

= 1− H({Xi}i∈S)∑
i∈S H(Xi)

= 1− s, (1.2)

where s is then the proportion of non-redundant, or incompressible, information in the set. Taking
the same example as before, for n identical copies of X , as n→∞, r → 1, and s→ 0 (see Fig. 1).
At the other extreme, if instead of n identical copies we have n mutually independent Xi’s, then as
n→∞, r = 0 and s = 1. In general, 0 ≤ r < 1 for any finite set of random variables with at least
one variable having non-zero entropy, and, correspondingly, 0 < s ≤ 1.

2 Method

While relative redundancy, or equivalently incompressibility, can be used to compare the degree of
collectivity exhibited by very different systems, it can also be used to characterize the dependency
structure within a given system. Writing the relative redundancy as a function of a subset of the
system, A ⊆ S, we have

r(A) = 1− H({Xi}i∈A)∑
i∈AH(Xi)

. (2.1)

1 As noted by Watanabe (1960), its significance as a potential measure of organization stretches back still further, to
at least Rothstein (1952).

2 Meaning that they share the same outcome.
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Figure 1. (Left) Schematic description of a system, {Xi}i∈S , by its average total correlation (y-axis), measuring de-
pendence, and the average marginal entropy of its elements (x-axis). (Right) Feasible (white) and infeasible
(shaded) redundancies for systems of a given size, n. The upper bound is given by a system in which every
element is perfectly dependent on every other element (so knowing the state of one element is as good as
knowing the state of every element in the system). The lower bound is zero, which occurs when every element
is independent of every other element.

What divisions of a system maximize the relative redundancy of each subset? Can the subdivisions
of a system achieve a higher average relative redundancy than the system as a whole?

To begin making these questions concrete, let Ŝ be a set of indices for a collection of subsets
of S, which we will refer to as the components of system S. That is, let Ŝ = {1, 2, . . . ,m}, where
typically3 m ≤ n, and introduce a probabilistic assignment p(j|i), ∀(i, j) ∈ (S, Ŝ).4 Then the
expected quality of an assignment to a given component is

E [r(A)|j] =
∑

A∈P(S)

r(A)p(A|j), (2.2)

where P(S) is the power set (set of all subsets) of S, and

p(A|j) =
∏

i∈A
p(j|i)

∏

i∈Ac

[1− p(j|i)] , (2.3)

is the probability of subset A given the assignments of elements to component j, by a simple count-
ing argument.5 Treating the quality of each component equally, the expected quality over all com-
ponents is then

E [r(A), j] =
1

m

∑

j∈Ŝ

E [r(A)|j] . (2.4)

3 If m > n then some components will necessarily be empty.
4 The use of i and j as elements of S and Ŝ, respectively, will follow this convention in the rest of the paper.
5 Unless stated otherwise, the complement of a set is taken with respect to S, i.e. Ac = {k ∈ S : k 6∈ A}.
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2.1 Rate-distortion theory

While this gives us a natural way to evaluate the quality of a given assignment, it does not imme-
diately provide us with a way to find such an assignment. Instead, we draw inspiration from the
information-theoretic treatment of compression given by rate-distortion theory (see Shannon, 1959;
Cover & Thomas, 2006). Classical rate-distortion theory addresses the following problem: given a
source (random variable) X , a measure of distortion, d, and an allowable level of average distortion
D, determine the minimum rate necessary for a compressed description of X that introduces an
average distortion no more than D. I.e.,

R(D) = min
p(x̂|x) : Ed(x,x̂) ≤ D

I(X; X̂). (2.5)

In this case, the rate measures the information, I(X; X̂), that the compressed representation, X̂ ,
needs to keep about the source, X , where

I(X; X̂) =
∑

x,x̂

p(x, x̂) log
p(x, x̂)

p(x)p(x̂)
(2.6)

is the mutual information between X and X̂ . The lower the rate, the better the compression, but
(depending on the source and the distortion measure) the higher the average distortion introduced.
Surprisingly, not only can the rate-distortion curve be characterized numerically in general, the min-
imal compressed representation of X can be found via a simple, iterative, alternating minimization
algorithm (Blahut, 1972; Arimoto, 1972).

2.2 Redundancy compression

Though there are important differences from rate-distortion theory (discussed in Appendix A), we
can similarly frame the problem of finding structure based on redundancy as a compression problem.
Here, we wish to find the assignment of elements of S to components of Ŝ that achieves an average
redundancy no less than r∗, and otherwise preserves as little about the original identities of the
elements as possible. I.e.,

R(r∗) = min
p(j|i) : E[r(A),j] ≥ r∗

I(S; Ŝ), (2.7)

where p(j|i) is further required to be non-negative and sum to one. This is not a standard rate-
distortion problem,6 but we can use much of the same ideas developed by Blahut (1972) and
Arimoto (1972) in their original numerical algorithms for the channel capacity and rate-distortion
problems for deriving a practical solution. We give a brief account of this derivation here; see
Appendix A for a complete account.

Introducing Lagrange multipliers to constrain the
∑

i∈S p(j|i) = 1 (non-negativity will be en-
forced by the form of the solution), the variational problem becomes

L [p(j|i)] = I(S; Ŝ)− β
∑

j∈Ŝ,A∈P(S)

r(A)p(A|j) +
∑

j∈Ŝ

λ(j)
∑

i∈S
p(j|i), (2.8)

6 A consequence of the differences with the standard rate-distortion formulation is that we should not expect R(r∗)
to necessarily behave similarly to R(D) as we vary r∗ and D, respectively.
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where β, the lagrange multiplier for the average redundancy constraint, absorbs the 1/m term.
Taking the derivative with respect to a particular j′ and i′, we have

∂

∂p(j′|i′)L [p(j|i)] = p(i′) log
p(j′|i′)
p(j′)

− β
∑

j∈Ŝ,A∈P(S)

r(A)
∂p(A|j)
∂p(j′|i′) + λ(i′), (2.9)

where

∂p(A|j)
∂p(j′|i′) =





0 if j 6= j′,
fi′(A|j′) if j = j′, i′ ∈ A,
−fi′(A|j′) if j = j′, i′ ∈ Ac,

(2.10)

and

fi(A|j) =
∏

k∈A\{i}

p(j|k)
∏

k∈Ac\{i}

[
1− p(j|i)

]
, (2.11)

where A \ {i} is the relative complement of {i} with respect to A.
Then setting ∂L/∂p(j′|i′) = 0 and splitting the sum over P(S) into terms with and without

i′ ∈ A, we have

p(i′) log
p(j′|i′)
p(j′)

= β
∑

{A∈P(S) : i′∈A}

r(A)fi′(A|j′)

− β
∑

{A∈P(S) : i′∈Ac}

r(A)fi′(A|j′)

− λ(i′).

(2.12)

Let

d(i, j) =
1

p(i)

∑

{A∈P(S) : i∈A}

r(A)fi(A|j), (2.13)

and define dc(i, j) to be identical except substituting i ∈ Ac for i ∈ A. Lastly, let ∆d(i, j) =
d(i, j)− dc(i, j). Then, dividing through by p(i′) and substituting, we have,

log
p(j′|i′)
p(j′)

= β∆d(i′, j′)− λ(i′)

p(i′)
. (2.14)

Finally, substituting logµ(i′) = λ(i′)/p(i′) and solving for p(j′|i′),

p(j′|i′) =
p(j′)

µ(i′)
eβ∆d(i′,j′). (2.15)

Enforcing the constraint that
∑

j∈Ŝ p(j|i′) = 1 and simplifying notation, we have

p(j|i) =
p(j)eβ∆d(i,j)

∑
j′∈Ŝ p(j

′)eβ∆d(i,j′)
. (2.16)
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Before moving on, it is worth noting that ∆d(i, j) has a simple and intuitive interpretation. It is the
difference in redundancy for component j when i is included versus when it is excluded, weighted
by the relative importance of i.

Note that p(j) and p(A|j) depend on the choice of p(j|i). The final algorithm,





pt(j|i) = pt(j)eβ∆d(i,j)∑
j′∈Ŝ pt(j

′)eβ∆d(i,j′) ,

pt+1(j) =
∑

i∈S pt(j|i)p(i),

pt+1(A|j) =
∏
i∈A pt(j|i)

∏
i∈Ac

[
1− pt(j|i)

]
,

(2.17)

follows a similar alternating minimization scheme to the one developed by Blahut and Arimoto and
generalized by Csiszár & Tsunády (1984), albeit with only local optimality guarantees similar to
Tishby et al. (1999); Banerjee et al. (2005). See Appendix A and Alg. A1 for a complete deriva-
tion and description of the algorithm. The two practical issues with the algorithm are (1) the 2n

scaling of the number of subsets of S as n (the number of elements of S) increases, and (2) the
general difficulty of estimating the mutual information between variables, let alone among multiple
variables.

For the first issue, it is worth noting that there are non-trivial collective systems of empirical
interest even for small n. Current computational hardware may permit exact computation up to
around n ≈ 15 even on consumer hardware, which would be relevant for many experimental sys-
tems (as in e.g. Miller & Gerlai, 2007; Katz et al., 2011; Jolles et al., 2018). For larger systems,
Monte-Carlo estimation of ∆d(i, j) can be readily employed, e.g. for K samples,

d̂(i, j) =
1

p(i)K

K∑

k=1

r
(
Aij ∪ {i}

)
,

d̂c(i, j) =
1

p(i)K

K∑

k=1

r
(
Aij \ {i}

)
, where Aij ∼ fi(·|j).

(2.18)

For large systems in particular initializing near good solutions may be helpful. In many systems
we may expect elements to be spatially or temporally dependent, and use that prior knowledge
to initialize reasonable clusters. However the preliminary results given in the next section do not
employ any such strategy; we simply run the algorithm many times beginning with many different
initial conditions and select the best solution generated.

While there is no exact universal solution to the practical difficulties of the second issue, we can
proceed by maximizing a lower bound on component redundancy. For continuous random variables
that are marginally Gaussian, the Gaussian mutual information is a lower bound on the total mutual
information (Foster & Grassberger, 2011; Kraskov et al., 2004). Thus we can use

r(A) ≥ IG({Xi}i∈A)∑
i∈AHG(Xi)

, (2.19)

which is simple to compute in practice. When the random variables comprising the system are
not marginally Gaussian, we can still use this bound by substituting copula transformed variables
Gi for Xi, for which we enforce that each Gi is Gaussian distributed. We emphasize that this
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transformation is valid and unique for any set of continuous random variables; this is guaranteed by
Sklar’s theorem (Sklar, 1959), which ensures that the lower bound on redundancy given by Eq. 2.19
is applicable in general. The preliminary results in the next section are based on maximizing this
Gaussian bound on redundancy using a copula transform to enforce Gaussian marginals.

2.3 Simulation experiments

We tested the proposed algorithm on two sets of data: simulations of schooling groups, and empiri-
cal data collected from the movements of schooling fish in a lab environment. The former allow us
to control the dependency structure of the system, while the latter allows us to demonstrate appli-
cability to empirical systems. Simulations used a simple model of coordinated movement based on
attraction, alignment, and repulsion social forces (based on Romanczuk et al., 2012; Romanczuk &
Schimansky-Geier, 2012; a description of the model and additional information on the simulation
conditions can be found in Appendix B). Position and velocity data for independent groups of size
n = 5, 10, and 20 were generated for a high (η = 0.2) and low (η = 0.15) noise conditions.

2.4 Empirical experiments

Movement data of fish comes from videos originally recorded by Katz et al. (2011). In that work,
groups of 10, 30, and 70 golden shiners (Notemigonus crysoleucas) were purchased from Anderson
Farms (www.andersonminnows.com) and filmed in a 1.2 × 2.1 m tank with an overhead camera.
Videos were then corrected for lens distortion and fish were tracked using the same custom in-
house software developed by Haishan Wu and used in Rosenthal et al. (2015). The software begins
by detecting all individuals in each frame, then linking individuals across frames to form tracks.
All tracks were manually corrected to ensure accuracy. Individual positions and velocities were
estimated from these tracks using a 3rd order Savitzky-Golay filter (Savitzky & Golay, 1964; similar
to e.g. Harpaz et al., 2017) with a 7 frame smoothing window (videos were recorded at 30 fps).
Interactions between fish are time-dependent: in results presented we chose a fixed window of
±15 s surrounding a given time t to estimate the dependency structure of the group.

3 Results

The algorithm outlined in the previous section requires specifying a parameter, β, which controls
the relative importance of maximizing the average redundancy of the components as opposed to
maximally compressing the original set of system elements. While it will be interesting to investi-
gate the ‘soft-partitioning’ aspect of this approach in future work, here we simply consider the hard
assignment case, which requires only that β is large. Fig. 2 (Right) illustrates this point, showing the
stabilization of average component redundancy for β > 5. We found that β = 200 was sufficient
to recover hard assignments in all cases tested here.7 Since relative redundancy ranges between 0
and 1 for any dataset, these parameter values should generalize well to other systems, and leaves the
method free of parameter fine-tuning.

To validate that the Monte-Carlo estimate of ∆d(i, j) employed is effective, we compared its
behavior to exact computations of ∆d(i, j) for small system sizes (simulated groups of size 5 and
10). We ran each version of the algorithm for up to 10 components and took the best (maximum)

7 Using the simultaneous updating variant of the algorithm, see Appendix A.
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Figure 2. Algorithm implementation and parameter sensitivity. (Left) Comparison of exact and Monte Carlo estimates
of ∆d(i, j), for single groups of size 5 and 10, for low and high noise conditions. (Right) Impact of the choice
of β on the average redundancy of the recovered components for a single simulated group of size 10, high
noise condition, searching for 5 components. Dotted line shows the mean of the solutions for β > 5.

average component redundancy achieved over 100 random initializations of the assignment matrix
p(j|i). Fig. 2 (Left) shows that the results are in good agreement, and where there are discrepancies
they tend to favor the Monte Carlo method.

We tested the Monte Carlo algorithm on simulated data in which the dependency structure of the
simulated groups was known. For each test, we computed the best average component redundancy
recovered for up to 10 components, again using 100 random initializations of the assignment matrix
for each computation. Average component redundancies for single groups of size 5, 10, and 20
(Fig. 3 Left) have a peak at a single component, which includes all the elements of the system.
Redundancies for two non-interacting groups, in pairs of matched size groups of 5, 10, and 20,
have peaks at 2 components for size 10 and 20, with a plateau or slight decline for the pair of
size 5 (Fig. 3 Center). Finally, the redundancies for a system of three non-interacting groups of
mixed sizes 5, 10, and 20 was computed, with peaks at 3 and 4 components for high and low
noise conditions, respectively (Fig. 3 Right).8 Taken together, this is evidence that the peaks and
plateaus of the average component redundancies recovered by the algorithm do indeed reflect the
dependency structure of the underlying system. It suggests that these features may be useful in
identifying relevant structure in other systems, even those with less extreme dependency structures.

Fig. 4 illustrates the iterative generation of assignments for the algorithm in the mixed three
group (high noise) case. Assignments change and harden until they converge on a (local) maximal
average redundancy partition of the systems elements (Left). The assignments generated by the algo-
rithm of system elements to components corresponds one-to-one with the original, non-interacting
set of three groups (of sizes 5, 10, and 20) comprising the whole system (of total size 35). Positions
of the elements of the system and their velocity vectors are shown for one time point, colored by

8 In both noise conditions all three non-interacting groups were split into separate components. In the low noise
condition, the group of 20 was further subdivided into two components.
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Figure 3. Partitioning results for simulations of 1, 2, or 3 independent (non-interacting) groups. (Left) For single co-
hesive groups of size (n) 5, 10, or 20, the average redundancy (y-axis) of the components decreases approx-
imately monotonically as we increase the number of components. (Center) For two non-interacting groups
of the same size, the average redundancy peaks, or at least plateaus, at two components. (Right) A mixed
collection of three non-interacting groups, with sizes 5, 10, and 20, achieve peak average redundancy with
three or four components, depending on the noise (η) used in the simulation. For comparison, the left two
plots show results for η = 0.2 (the ‘high’ noise).

the component they were assigned to (which corresponds to their original group), in Fig. 4 (Left).
Note that, while the snapshot shown in Fig. 4 was chosen to show the three distinct groups, at many
points in the simulation the positions, velocities, or both, overlapped between the three groups.

Finally, we applied the algorithm to empirical data collected on fish schools to validate that the
method is able to recover sensible results for strongly interacting groups and from non-simulated
data. Fig. 5 shows that for fish, groups of size 10 interact strongly enough in at least one instance to
be considered one coherent unit, while groups of size 30 are already large enough to have subsets
that more strongly interact with one another than the rest of the group. Fish systems of size 70 do not
always have a clear peak, but a broad plateau of possible subdivisions. The component assignments,
positions, and velocities for a group of 30 fish is shown in Fig. 5 (Right) for three superimposed time
points. Two of the components (shown as red and blue) show particularly coherent structure over the
course of the 20 seconds of movement shown. Further work is needed to investigate the duration of
substructure in fish schools, as well as the emergence and disappearance of components over time.

4 Discussion

There are a wide range of both general purpose clustering algorithms (see Jain, 2010; Xu & Tian,
2015) and network community detection methods (see Forunato, 2010), owing to a diversity of
plausible clustering and community detection criteria. The justification for the average relative re-
dundancy criterion presented here stems from its principled approach to the specific problem of
quantifying collectivity, as argued at the beginning of this paper, and its demonstrated ability to
identify the dependent structure of collective systems, as shown by the results obtained in the previ-
ous section. Usage of this criterion requires sufficient information for estimating the redundancy of
any subset of the system, thus it cannot be used as a drop-in replacement for other clustering or com-
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p(j|i)

n = 5

n = 10

n = 20

Figure 4. Generation of assignments for a mixture of three non-interacting simulated groups. (Left) Assignments gener-
ated by the proposed sequential algorithm for three components after initialization (t = 0), 1 iteration (t = 1),
and 10 iterations (t = 10), at top, middle, and bottom, respectively. The color scale indicates the probability
of assigning a member of a group (column) to a particular component (row), where low to high probability
is coded dark to light (color scale top right). Original groupings of the system into its three non-interacting
subsets are indicated on the x-axis. (Right) Two-dimensional positions (arbitrary units) of simulated system
at one time point, color-coded by final component assignment; velocity vectors indicated by line segments.
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Figure 5. Redundant substructure for empirical fish schools. (Left) Average component redundancy as a function of the
number of components, for fish groups of size 10, 30, and 70. (Right) Example partitioning of a group of size
30 fish into three components, colored black, red, and blue. Dots indicate the positions of the fish in a large
(1.2 m×2.1 m) arena, while line segments indicate the velocity vector of each individual. Positions (cm) and
velocities are shown superimposed for the group at times t and t± 10 s.
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munity detection methods that operate on arbitrary similarity or correlation matrices. If the lower
bound on redundancy given by Eq. 2.19 is to be used, then marginal normality must be enforced via
copula transform or directly by the process generating the data.

In addition to its theoretical and empirical justification, the method is also computationally effi-
cient, making it usable in practice. The proposed Monte-Carlo algorithm improves on the compu-
tational complexity of both the brute-force (check every partition) and naı̈ve exact (sum over every
subset) solutions, while achieving comparable results. It is instead limited by the cost of comput-
ing, for each element, log determinants for the Gaussian average redundancy bound. This reduces to
matrix multiplication and thus scales (depending on the method) as O

(
n3+1m

)
or O

(
n2.373+1m

)
,

where m is the number of components, assuming a fixed number of Monte-Carlo samples and total
iterations of the algorithm. In fact, this worst-case bound will almost never be achieved in practice,
since it requires probabilistically sampling at least one assignment of all n elements to each of the
m components when evaluating ∆d(i, j). The probability this occurs decreases exponentially in n.

There are many open questions left for future work. First, the identification of a peak in the
average redundancy plot as a function of the number of components is only a heuristic. In some
cases, as in e.g. the group of 70 fish studied here, there may be no obvious peak, and thus there may
be more than one useful decomposition of the group. In other cases, depending on the question being
asked, it may be more appropriate to divide the group into a given number of components regardless
of the existence or position of a peak. Further theoretical work is needed on the significance of peaks
or plateaus in the average redundancy plot; we present only empirical evidence of their utility here.
Second, an investigation of these features as a function of the time-window chosen for computing
the dependency structure may be important for understanding how the dependency structure of the
group scales with time. It might be expected that this in fact plays a very important role, in that on
short time-scales for many systems only very local interactions will matter, while at long enough
time scales the system is best represented as only one component.

It may also be important to investigate the algorithm presented here in the context of generating a
soft-partitioning of a system’s elements into partially overlapping components. Using intermediate
values of β may allow the algorithm to find better average redundancy solutions ‘in-between’ m
and m+ 1 components, in which the assignments for some elements are split between some set of
components. At the same time, since optimal sets of components are not guaranteed to be unique, it
may be important to explore the set of equally (or nearly equally) optimal solutions as an ensemble
of equivalent descriptions of a system. Moreover, exploring the range of solutions as the number
of components varies may reveal whether or not the system exhibits some form of hierarchical
dependency structure. In hierarchical systems we would expect components to be successively
subdivided as the number of components increases, while in non-hierarchical systems this would
not be the case.

One of the most interesting potential applications of the method may be to long time-series
data for collective systems, in which the dependency structure of the group changes over time.
Characterizing the natural decomposition of a system as a function of time may reveal important
time-dependent mesoscopic features. How do the natural number of components of a system fluc-
tuate in time, and how long do components persist? How do the components of a system interact as
a function of time? These questions are central to the study of collective systems and can now be
addressed quantitatively via the method introduced here.
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A Algorithm

Here we give an expanded account of the redundancy compression algorithm.

A.1 Rate-Distortion Compression

Classical rate-distortion theory treats the following optimization problem:

minimize
p(x̂|x)

I(X; X̂)

subject to E[d(x, x̂)] ≤ D

p(x̂|x) ≥ 0 ∀(x, x̂) ∈ (X, X̂)
∑

j p(x̂|x) = 1 ∀x ∈ X,

(A.1)

where

E [d(x, x̂)] =
∑

x̂∈X̂

∑

x∈X
p(x̂|x)p(x)d(x, x̂), (A.2)

and p(x) is given. The problem as stated is not convex due to the form of I(X; X̂). However,
writing the objective as

I(X; X̂) =
∑

x,x̂

p(x̂|x)p(x) log p(x̂|x)−
∑

x,x̂

p(x̂|x)p(x) log p(x̂), (A.3)

it is clear that the problem is convex when varying p(x̂|x) or p(x̂) separately, holding the other
constant. Since the distortion constraint, E [d(x, x̂)] is convex in p(x̂|x), the problem can be restated
as a convex double minimization of the form

min
p(x̂|x)

min
p(x̂)

I(X; X̂), (A.4)

which is minimized for fixed p(x̂|x) by

p(x̂) =
∑

x

p(x̂|x)p(x), (A.5)

and for fixed p(x̂) by

p(x̂|x) =
p(x̂) exp [−βd(x, x̂)]∑
x̂′ p(x̂

′) exp [−βd(x, x̂′)]
, (A.6)

(see Blahut, 1972; Arimoto, 1972; Cover & Thomas, 2006). This leads to the classic Blahut-
Arimoto algorithm, which, by iterative application of these two self-consistent equations for a given
β, converges to an optimal solution point on the rate-distortion curve with tangent slope equal to β.
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A.2 Redundancy Compression

In this paper, we are interested in a similar problem:

minimize
p(j|i)

I(S; Ŝ)

subject to E[r(A, j)] ≥ r∗ ∀j ∈ Ŝ
p(j|i) ≥ 0 ∀(i, j) ∈ (S, Ŝ)

∑
j p(j|i) = 1 ∀i ∈ S,

(A.7)

where

E [r(A, j)] =
1

m

∑

j∈Ŝ

r(A, j) (A.8)

and

r(A, j) =
∑

A∈P(S)

rA
∏

i∈A
p(j|i)

∏

i∈Ac

[1− p(j|i)] . (A.9)

The fixed 1/m weighting of the marginal importance of each component, j, in the redundancy
constraint, E [r(A, j)], is a minor variation from the classical rate-distortion problem. The important
difference is that the r(A, j) inequality constraint is not convex with respect to p(j|i). However,
with change of variables bA = log rA, yij = log p(j|i), and ȳij = log [1− p(j|i)], we can define

g(A, j) =
∑

A∈P(S)

exp

[∑

i∈A
yij +

∑

i∈Ac

ȳij + bA

]
, (A.10)

where r(A, j) = g(A, j), with g(A, j) convex with respect to yij and ȳij and invariant with respect
to p(j|i) or p(j).

This gives the equivalent minimization problem:

minimize
p(j|i)

I(S; Ŝ)

subject to E[g(A, j)] ≥ r∗ ∀j ∈ Ŝ
p(j|i) ≥ 0 ∀(i, j) ∈ (S, Ŝ)

∑
j p(j|i) = 1 ∀i ∈ S

eyij ≤ p(j|i) ∀(i, j) ∈ (S, Ŝ)

eȳij ≤ 1− p(j|i) ∀(i, j) ∈ (S, Ŝ).

(A.11)

Setting aside non-negativity constraints on p(j|i) (these will be enforced by the form of the solu-
tion), we have the functional

L [p(j|i); p(j); yij , ȳij ] =
∑

i,j

p(j|i) log
p(j|i)
p(j)

+
∑

i

λ(i)
∑

j

p(j|i) (A.12)
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− β
∑

j,A∈P(S)

exp

[∑

i∈A
yij +

∑

i∈Ac

ȳij + bA

]
(A.13)

+
∑

i,j

λ(i, j) [eyij − p(j|i)] (A.14)

+
∑

i,j

λ̄(i, j)
[
eȳij + p(j|i)

]
. (A.15)

We can then restate the original non-convex problem in terms of two convex minimizations and one
quasiconvex minimization,

min
p(j|i)

min
p(j)

min
yij ,ȳij

L [p(j|i); p(j); yij , ȳij ] . (A.16)

Note that, similar to Tishby et al. (1999), the problem is not jointly convex and thus there is no
guarantee of a unique global solution as in the rate-distortion case. Nevertheless, the marginal
(quasi-)convexity admits an efficient iterative algorithm for identifying (locally) optimal solutions,
similar to Tishby et al. (1999).

Taking the derivative of L with respect to p(j|i) and setting equal to zero, we arrive at

p(j|i) =
p(j)

µ(i)
exp

[
p(i)−1

[
λ(i, j)− λ̄(i, j)

]]
, (A.17)

where µ(i) just normalizes the distribution over j for a given i. Taking the derivative of L with
respect to yij and setting equal to zero, we have

λ(i, j) = βe−yij
∑

{A∈P(S) : i∈A}

exp

[∑

k∈A
ykj +

∑

k∈Ac

ȳkj + bA

]
. (A.18)

Doing the same for ȳij gives

λ̄(i, j) = βe−ȳij
∑

{A∈P(S) : i∈Ac}

exp

[∑

k∈A
ykj +

∑

i∈Ac

ȳkj + bA

]
. (A.19)

Subtracting the two equations, we have

β∆d(i, j) = λ(i, j)− λ̄(i, j), (A.20)

which is equivalent to the definition of ∆d(i, j) in the main text. Substituting into Eq. A.17 produces

p(j|i) =
p(j)

µ(i)
exp

[
β

p(i)
∆d(i, j)

]
. (A.21)

This gives the minimizing values of L with respect to p(j|i) for fixed p(j), yij , and ȳij , as in Blahut
(1972); Arimoto (1972); Tishby et al. (1999); Banerjee et al. (2005). The minimizing values of L
with respect to p(j) are the same as in classical rate-distortion theory and are given by

p(j) =
∑

i

p(j|i)p(i). (A.22)
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The minimizing value of L with respect to yij and ȳij under the constraints that eyij ≤ p(j|i), and
eȳij ≤ [1− p(j|i)], is simply

yij = log p(j|i), (A.23)

ȳij = log [1− p(j|i)] , (A.24)

since the monotonically decreasing A.13 will achieve its minimum for the least negative values of
yij and ȳij , which puts them up against their constraints.

A.3 Generalization

It is clear from the form of g(A, j) that the only requirement of the measured property, bA, of any
set, A ∈ S, is that it is non-negative. Thus this same method may be employed for measures
on sets other than redundancy, in the same way that rate-distortion theory treats generic measures
of distortion. On the other hand, when the measured property offers certain kinds of additional
structure, as in e.g. the case of an average similarity (Slonim et al., 2005) measure, then other
efficient solutions may be possible.

One variant to the sequential update of p(j|i) as listed in Alg. A1 is to modify every p(j|i)
in parallel, which may be advantageous for some multiprocessor configurations. In practice, for
convergence with simultaneous updating it appears to be important to introduce a slowdown factor,
α, to control the update of pt(j|i), i.e. using

pt(j|i) = α
pt(j)e

β∆d(i,j)

∑
j′∈Ŝ pt(j

′)eβ∆d(i,j′)
+ (1− α)pt−1(j|i), (A.25)

where t is the current iteration of the algorithm. The slowdown operates in a manner analogous to
the learning rate in gradient descent optimization problems.

Like β, α does not require fine-tuning. It just needs to be small enough to allow for convergence,
without being too small so as to allow the algorithm to converge in a reasonable number of iterations.
While a more systematic investigation may be useful in identifying an efficient α, we found that
α = 0.1 and t = 200 iterations was sufficient to ensure convergence for all the numerical results
presented in the main text. In many cases a stable assignment is reached much earlier than after 200
iterations, and in general a stopping criteria based on the difference between assignments from one
iteration to the next could be employed, though we did not do so here.
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Algorithm 1: Alternating minimization

input : features X1, X2, . . . Xn

output : assignments p(j|i) ∈ [0, 1], ∀(i, j) ∈ (S, Ŝ)

parameters : number of components m ∈ N+
0

: assignment hardness β ∈ R+
0

: total iterations tmax ∈ N+

constraints : normalized
∑

j p(j|i) = 1, ∀i ∈ S
: non-negative p(j|i) ≥ 0, ∀(i, j) ∈ (S, Ŝ)

initialization with flat Dirichlet prior
1 foreach i ∈ S do
2 p(j|i) ∼ Dir(m,1)

iteratively improve assignments
3 foreach t ∈ 1, . . . , tmax do
4 foreach i ∈ S do

minimization with respect to p(j)
5 foreach j ∈ Ŝ do
6 p(j)←

∑

i∈S
p(j|i)p(i)

minimization with respect to yij and ȳij
7 foreach (i, j) ∈ (S, Ŝ) do
8 yij ← log p(j|i)
9 ȳij ← log [1− p(j|i)]

minimization with respect to p(j|i)

10 p(j|i)← p(j)eβ∆d(i,j)

∑
j′∈Ŝ p(j

′)eβ∆d(i,j′)

Algorithm A1. N+ are the positive integers, while N+
0 , R+

0 , are the non-negative (positive including zero) integers
and real numbers, respectively. For hard clustering, β just needs to be large. Parameter tmax needs to
be large enough for convergence; alternatively, it can be replaced by a criterion based on a minimum
difference in improvement between iterations. Lines 2 and 10 are to be understood as vector operations
over the set j ∈ Ŝ.
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B Simulation

The agent-based model used in this paper for generating schooling motion with known dependency
structure is based on the three-zone-model introduced by Couzin et al. (2002). Each agent moves
at a constant speed s0 and responds to its conspecifics by changing its direction of motion. The
interactions between individuals are governed by three basic social forces: long-range attraction,
short-range repulsion, and intermediate-range alignment. However, there are two main differences
from the original Couzin model: (1) the model is formulated in terms of stochastic differential
equations with effective social forces (see Romanczuk et al., 2012; Romanczuk & Schimansky-
Geier, 2012); and (2) instead of discrete zones, we use overlapping social forces, whereby repulsion
dominates at short distances (rij < rrep), attraction dominates at long distances rij < ratt, and the
alignment contribution overlaps with attraction and repulsion up to intermediate ranges (rij < ralg),
whereby rrep < ralg < ratt.

B.1 Model formulation

We simulate the movement of a group of n agents via a set of 2n (stochastic) differential equations.
The agents move in a quadratic domain of size L × L with periodic boundary conditions. The
dynamics of each agent (in 2d) are described by the following equations of motion (i = 1, . . . , n):

dri
dt

= vi(t), with vi(t) =

(
s0 cos(ϕi(t))

s0 sin(ϕi(t))

)
, (B.1)

dϕi
dt

=
1

s0
(Fi,ϕ + ηi,ϕ) . (B.2)

Here ri, and vi are the Cartesian position and velocity vectors of each agent, with s0 being the
(constant) speed of agent i. Furthermore, ηi,ϕ are Gaussian white noise terms accounting for ran-
domness in the turning motion of individuals, and fi,ϕ are the projections of the total social forces
inducing turning behavior, where

Fi,ϕ = fi · uϕ,i = fi

(−s0 sinϕi
s0 cosϕi

)
. (B.3)

The total effective social force is a sum of three components, fi = fi,rep + fi,alg + fi,att,

Attraction fi,rep =
∑

j∈Neigh

+µattSatt(rji)r̂ji,

Repulsion fi,rep =
∑

j∈Neigh

−µrepSrep(rji)r̂ji,

Alignment fi,alg =
∑

j∈Neigh

µalgSalg(rji)(vj − vi),

(B.4)

with r̂ = r/|r|. The strength of the different interactions is set by a constant µX and a sigmoid
function of distance, which goes from 1 to 0, with the transition point at rX and steepness aX :

SX(r) =
1

2
(tanh(−a(r − rX) + 1)

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/362681doi: bioRxiv preprint 

https://doi.org/10.1101/362681
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm B1. (Left) Schematic of the effective social interactions, with repulsion dominating at short distances (red
zone), attraction dominating at large distances (green zone) and main contribution of alignment at in-
termediate ranges (blue zone). (Right) The strength of the different social forces versus distance for the
different interactions.

(see Fig B1).
The stochastic differential equations for the direction of motion of individual agents are solved

by a simple Euler-Maruyama method:

ϕ(t+ 1) = ϕ(t) +
1

s0

(
Fi,ϕ(t)∆t+

√
2Dϕ∆t GRN(t)

)
, (B.5)

r(t+ 1) = r(t) +

(
s0 cos(ϕi(t))

s0 sin(ϕi(t))

)
∆t. (B.6)

B.2 Numerical experiments

We simulated independent groups of three different sizes, n = 5, 10, and 15, wherein it was possible
for each agent to interact with the distance dependent effective forces with all other agents within
the group. The initial conditions were always a random distribution of agents in the simulation
domain with random initial direction of motion. In order to ensure formation of a single cohesive
group we set the attraction range to be larger then the domain size ratt > L. In all simulation runs
considered here, we obtained for the used parameters (see Tab. 1) a single polarized group after a
transient time of t < 400. Thus for our analyses we used only data for t > 400.
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Parameter Symbol Value
domain size L 100
repulsion range rrep 1.0
attraction range ratt 100.0
alignment range ralg 5.0
repulsion strength µrep 2.0
attraction strength µatt 0.3
alignment strength µalg 0.8
steepness of interaction function a 10
speed of individuals s0 1.0

Table 1. Parameter values used in the simulations.
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