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Clonal cells of exponentially growing populations vary substantially from cell to cell.

The main drivers of this heterogeneity are the population dynamics and stochastic-

ity in the intracellular reactions, which are commonly studied separately. Here we

develop an agent-based framework that allows tracking of the biochemical dynamics

in every single cell of a growing population that accounts for both of these factors.

Apart from the common intrinsic variability of the biochemical reactions, the frame-

work also predicts extrinsic noise arising from fluctuations in the histories of cells

without the need to introduce fluctuating rate constants. Instead, these extrinsic

fluctuations are explained by cell cycle fluctuations and differences in cell age, which

are ubiquitously observed in growing populations. We give explicit formulas to quan-

tify mean molecule numbers, intrinsic and extrinsic noise statistics as measured in

two-colour experiments. We find that these statistics may differ significantly depend-

ing on the experimental setup used to observe the cells. We illustrate this fact using

(i) averages over an isolated cell lineage tracked over many generations as observed

in the mother machine, (ii) snapshots of a growing population with known cell ages

as recorded in time-lapse microscopy, and (iii) snapshots of unknown cell ages as

measured from static images. Our integrated approach applies to arbitrary biochem-

ical networks and generation time distributions. By employing models of stochastic

gene expression and feedback regulation, we elucidate that isolated lineages, as com-

pared to snapshot data, can significantly overestimate the mean number of molecules,

overestimate extrinsic noise but underestimate intrinsic noise and have qualitatively

different sensitivities to cell cycle fluctuations.
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I Introduction 1

The behaviour of clonal cells varies substantially from cell to cell and over time1,2. Iden- 2

tifying the sources of these fluctuations can help us to understand how clonal cells diversify 3

their responses and to reveal the function of gene circuits and signalling networks. For their 4

quantification, it is often convenient to break down the experimentally observed variability 5

into functional components. Commonly one wishes to separate fluctuations inherent in the 6

circuit dynamics itself, called intrinsic noise, from fluctuations that arise from embedding 7

the circuit in the environment of the cell, called extrinsic noise. 8

A possible resolution to this problem is to place and simultaneously measure a second 9

independent copy of the circuit in the cell, as has been done in E. coli1, yeast3, mammalian 10

cells4 and plants5. The difference between the two circuit copies measures the intrinsic noise 11

whereas their correlations measure the extrinsic noise component. Intrinsic noise arises from 12

the random nature of the involved biochemical reactions. Extrinsic noise originates from fac- 13

tors affecting both circuits in the same way. These can, for instance, be modelled by reaction 14

rates that fluctuate between cells or over time due to shared resources, promoter architecture 15

or upstream pathways. Such sources of extrinsic noise have been studied extensively in the 16

literature6–14. 17

A less commonly studied but equally important source of extrinsic noise is the population 18

dynamics15. Since intracellular molecule numbers must double over the cell division cycle, 19

a two-fold variation of expression levels is expected from cell proliferation alone. Moreover, 20

the cell cycle itself is subject to tremendous variation providing an additional source of 21

extrinsic variability. For example, generation times in Escherichia coli16, budding yeast17
22

and mammalian cells18 vary about 30 − 50%. These sources should therefore prevail in 23

growing cells, populations and tissues. 24

Modelling approaches for understanding the effects of the cell cycle on gene expression 25

noise are only recently being developed19–24. These studies are often restricted to a single 26

isolated cell observed over successive cell divisions and measuring variability over time, sim- 27

ilar to a lineage in the mother machine25. Many experiments, however, report cell-to-cell 28

variability across snapshots of an exponentially growing cell population. These approaches 29

either use time-lapse microscopy26,27 or analyse snapshots with distributed cell ages as ob- 30

served in flow cytometry, smFISH or similar techniques28–30. 31
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Recent studies elucidated that population snapshots and lineages can significantly deviate 32

from each other in their statistics24,31. To-date, however, there exists no general analytical 33

framework with which to quantify the gene expression fluctuations in populations. We are 34

thus lacking the means with which to understand, compare and integrate the knowledge from 35

different experiments such as mother machines, time-lapse microscopy or fixed-cell images. 36

Agent-based approaches allowing to track the expression levels of each individual cell in a 37

growing population are ideally suited to address this issue. 38

In this manuscript, we develop such an approach to characterise the statistics of bio- 39

chemical reaction networks in a growing and dividing cell population. In this framework, an 40

agent is represented by a cell whose biochemical decomposition changes due to stochastic 41

reaction kinetics and cell divisions. In Sec. II A we show how to analytically characterise the 42

joint distribution of cell age and molecule content per cell in a snapshot of the population. 43

We then, in Sec. II B, derive the exact moment equations of this model. 44

Since stochastic models are rarely solvable, we propose an analytically tractable approx- 45

imation to mean and covariances in Sec. III A. Intrinsic and extrinsic noise sources as they 46

are measured using two-reporter systems are in-built in the agent-based approach, and we 47

explain how to decompose the apparent noise into the respective components. We further 48

elaborate on the decomposition in cases where the cell age is unknown, a situation com- 49

monly encountered when analysing data from population snapshots or flow cytometry. We 50

demonstrate how to practically compute the noise decomposition in Sec. III B, illustrate the 51

results using a simple two-reporter system, and study how circuit dynamics can be tuned to 52

suppress either intrinsic or extrinsic fluctuations. 53

II Methods 54

We model the dynamics of a dividing population of cell agents. The state of each cell 55

is given by its age and the number of intracellular molecules, which evolve from birth to 56

division. After cell division, the mother’s molecules are inherited by the two daughters 57

through stochastic partitioning of molecules. Cell divisions occur asynchronously in the 58

population because cells divide at random times. In consequence, cell ages and molecule 59

numbers are heterogeneous in the population. Fig. 1a illustrates the resulting branching 60

process whose final state is a snapshot of the cell population. 61
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The seminal experiment by Elowitz et al. identified the sources of cell-to-cell variation 62

using snapshots of cells expressing green and red fluorescent reporters1. Reporters expressed 63

at different levels appear either red or green, a signature of intrinsic noise. Cells with similar 64

reporter levels appear yellow but with variable intensities, a signature of extrinsic noise. In 65

our model (Fig. 1a), similar effects are observed since stochasticity in biochemical reactions 66

and partitioning of molecules at division account for intrinsic variation across the population. 67

Cell age and variability in division timing provide a source of extrinsic noise (Fig. 1b). In 68

contrast to the population-view, the dynamics of isolated cells can also be tracked over time, 69

which we will refer to as lineage (Fig. 1c), which corresponds to a random path in the tree. 70

These statistics can differ significantly from population snapshots (Fig. 1d). To develop a 71

quantitative understanding of these effects, we begin with deriving analytical framework to 72

quantify these populations. 73

A Agent-based framework for stochastic biochemical kinetics in growing cell popula- 74

tions 75

To each cell we associate an age τ that counts the time since its last division and a number 76

of set of biochemical species X1, X2, . . ., XNS present in amounts x = (x1, x2, . . . , xNS). 77

These species interact via a network of R intracellular biochemical reactions of the type 78

ν+
1,rX1 + . . .+ ν+

NS ,r
XNS → ν−1,rX1 + . . .+ ν−NS ,rXNS ,

where ν±ir are the stoichiometric coefficients and r = 1, . . . , R. In the following, we outline the 79

master equation that allows to analytically study these networks in an agent-based context. 80

1 Master equation for the agent-based population 81

The state of the overall cell population can be characterised by the snapshot density 82

n(τ, x, t) that counts the number of cells at time t with age between τ and τ + dτ and 83

molecule counts x. Accordingly, the total number of cells in the population is given by 84

N(t) =

∫ ∞
0

dτ
∑
x

n(τ, x, t), (1)

where the summation is over all possible molecule number configurations x. 85
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We assume that cells divide with an age-dependent rate γ(τ), which is related to the 86

interdivision time distribution ϕ(τd) via 87

γ(τ) =
ϕ(τ)∫∞

τ
dτd ϕ(τd)

. (2)

The snapshot density then evolves due to age-progression of cells, cell divisions and the 88

change in their molecular decomposition due to biochemical reactions 89(
∂

∂t
+

∂

∂τ
+ γ(τ)

)
n(τ, x, t) = Qn(τ, x, t). (3a)

Here, the change in the molecule numbers per cell is expressed by the transition matrix Q 90

acting as Qn(τ, x, t) =
∑R

r=1[wr(x−νr)n(τ, x−νr, t)−wr(x)n(τ, x, t)], where (νr)i = ν+
ir−ν−ir 91

is the stochiometric vector of the rth reaction. Cell birth is described by the boundary 92

condition 93

n(0, x, t) = 2

∫ ∞
0

dτ
∑
x′

B(x|x′)γ(τ)n(τ, x′, t), (3b)

whereby the mother cell is replaced with two daughter cells of zero age with its molecules be- 94

ing partitioned between them. The division kernel B(x|x′) is the probability of partitioning 95

the molecule numbers x′ to x of any daughter cell and is given by 96

B(x|x′) =
1

2
B1(x|x′) +

1

2
B2(x|x′), (4)

where B1 and B2 are the marginal probabilities for the two daughter cells to inherit x of 97

the mother cell’s molecules x′. Importantly, if the total amount is conserved in the division, 98

we have B2(x|x′) = B1(x′ − x|x′). Thus each cell inherits an equal amount of molecules 99

EB[x|x′] = x′/2, because we do not distinguish the daughters. 100

Since resolving the time-evolution of the snapshot density is a formidable task, we con- 101

centrate on the long-term evolution of Eq. (3), which describes the exponential growth phase 102

or balanced growth condition. In this limit, the total number of cells grows exponentially 103

N(t) ∼ N0e
λt with rate λ and the fraction of cells with a certain cell age and molecule 104

content is constant 105

Π(τ, x) = lim
t→∞

n(τ, x, t)

N(t)
, (5)

due to the balance between cell births, divisions and the biochemical reactions. In the 106

following, we summarise how to characterise this distribution analytically. 107
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2 Age-distribution and population growth rate 108

The fraction of cells with the same age in a snapshot is given by the age-distribution, 109

which follows31
110

Π(τ) = lim
t→∞

∑
x

n(τ, x, t)

N(t)
= 2λe−λτ

∫ ∞
τ

dτ ′ ϕ(τ ′). (6)

The distribution ϕ characterises the interdivision times 111

ϕ(τd) = γ(τd)e
−

∫ τd
0 dτ ′γ(τ ′), (7)

as also seen from Eq. (2). The age distribution, Eq. (6), depends on the population growth 112

rate λ that is uniquely determined by the Euler-Lotka equation 113

1 = 2

∫ ∞
0

dτd e
−λτϕ(τd). (8)

The above equations constitute the fundamental age-structure of microbial populations, 114

which has been verified in experiments16,32,33. 115

3 Distribution of molecules for cells of the same age 116

We consider the total number of cells with age τ and molecule count x divided by the 117

number of cells at that age. This conditional probability quantifies the likelihood of observing 118

x molecules in a cell of age τ and is given by 119

Π(x|τ) = lim
t→∞

n(τ, x, t)∑
x n(τ, x, t)

=
Π(τ, x)

Π(τ)
. (9)

It can be verified31 that Π(x|τ) obeys 120

∂

∂τ
Π(x|τ) = QΠ(x|τ), (10a)

which is similar to the chemical master equation (with time replaced by cell age). An 121

important difference though, is that it has to be solved subject to the boundary condition 122

Π(x|0) =

∫ ∞
0

dτd
∑
x′

B(x|x′)Π(x′|τd)ρ(τd), (10b)

which accounts for the cell divisions. The distribution under the integral 123

ρ(τd) = 2ϕ(τd)e
−λτd , (11)
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is the interdivision time distribution in the population32,34. The distribution describes the 124

interdivision times of cells with completed cell divisions and depends explicitly on the pop- 125

ulation growth rate λ. 126

4 Comparison with the lineage framework 127

A lineage tracks a single of the population over successive cell divisions. In the long term 128

its evolution also approaches a stable distribution, which we denote by π(τ, x). The molecule 129

number distribution for cells of the same age in a lineage is given by π(x|τ) = π(x, τ)/π(τ) 130

and satisfies 131

∂

∂τ
π(x|τ) = Qπ(x|τ),

π(x|0) =

∫ ∞
0

dτd
∑
x′

B(x|x′)Π(x′|τd)ϕ(τd). (12)

By comparing the above equations with Eqs. (10), we notice that this distribution is obtained 132

by substituting the division time distribution ρ by ϕ. Thus cells of the same age can be 133

analysed using a unified framework whether in populations or lineages. The age-distribution 134

in a lineage, however, which is 135

π(τ) =
1

Eϕ[τ ]

∫ ∞
τ

dτ ′ϕ(τ ′), (13)

differs significantly from the population, Eq. (6). 136

B Moment equations for the agent-based model 137

In many practical situations, solving for the full distribution is infeasible. Summary 138

statistics such as means and variances, which we will focus on in the following, present 139

convenient alternatives as they are more amenable to analysis. 140
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1 Exact moment equations for cells of the same age 141

In brief, the moment equations are obtained by multiplying Eq. (10a) by x or xxT and 142

summing over all possible states. The results for the first and second moments are 143

∂EΠ[x|τ ]

∂τ
=

R∑
r=1

νrEΠ[wr(x)|τ ], (14a)

∂EΠ[xxT |τ ]

∂τ
=

R∑
r=1

(
νrEΠ[xTwr(x)|τ ] + EΠ[xwr(x)|τ ]νTr

)

+
R∑
r=1

(
νrEΠ[wr(x)|τ ]νTr

)
. (14b)

Interestingly, these are the same moment equations that appear in the study of systems 144

without age-dependence (with age being replaced by the observational time). The key 145

difference is the boundary condition subject to which the moment equations have to be 146

solved. These conditions follow from Eq. (10b) and the conservation of molecules in Eq. (4), 147

which implies EB[x|x′] = x′/2. They read 148

EΠ[x|0] =
1

2
Eρ[EΠ[x|τd]], (14c)

EΠ[xxT |0] = Eρ[EΠ(EB[x′x′T |x]|τd)]. (14d)

The first condition states that, on average, molecule numbers need to double over one cell 149

cycle. The second condition relates the second moments to the partitioning of molecules 150

described by the division kernel, Eq. 4. 151

2 Exact moment equations for cells of unknown age 152

We now consider the snapshot moments of molecule numbers irrespective of age. EΠ[x] = 153

EΠ[EΠ[x|τ ]] and EΠ[xxT ] = EΠ[EΠ[xxT |τ ]] are obtained by multiplying Eq. (14) with Π(τ) 154

and performing the integration. For this purpose, consider the expected value of a function 155

f(τ) with respect to the age distribution, which satisfies 156∫ ∞
0

dτ Π(τ)
∂f(τ)

∂τ

= −
∫ ∞

0

dτ f(τ)
∂

∂τ
Π(τ)− f(0)Π(0)

= λEΠ[f(τ)] + λEρ(f(τ)− 2f(0)). (15)
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In the first line, we integrate by parts assuming limτ→∞ f(τ)Π(τ) = 0, and in the second 157

line we substituted Eq. (6) for Π(τ) and performed the derivative. The first term captures 158

the effect of dilution, while the second term describes discrete changes during cell division. 159

Setting now f(τ) = EΠ[x|τ ] in (15) and combing the result with Eq. (14a) and the 160

boundary conditions (14c), we find an equation for the mean number of molecules in the 161

population, 162

λEΠ[x] =
R∑
r=1

νrEΠ[wr(x)]. (16)

Similarly, using Eq. (15) with f(τ) = EΠ[xxT |τ ], Eq. (14b) and (14d), the equation for the 163

second moment becomes 164

λEΠ[xxT ] +
λ

2
Eρ[EΠ(xxT |τd)]− 4EΠ(CovB[x′|x]|τ)]

=
R∑
r=1

(
νrEΠ[xTwr(x)] + EΠ[xwr(x)]νTr

)

+
R∑
r=1

νrEΠ[wr(x)]νTr , (17)

where the left hand side depends explicitly on the division-time distribution ρ. Obviously, 165

these equations cannot be solved in general, not only because the hierarchy of moments is 166

not closed but also because they depend on moments for cells of known age. The conditions 167

for which these equations are closed and can be solved exactly are discussed in SI V C. 168

III Results 169

A Decomposing noise into intrinsic and extrinsic contributions 170

To circumvent the moment-closure problem, we employ the linear noise approximation 171

to decompose the noise into intrinsic and extrinsic components (see35,36 for details of the 172

approximation). In brief, the approximation assumes Gaussian fluctuations and provides 173

closed-form expressions for the mean molecule numbers and their covariances. Writing short 174

CovΠ[x|τ ] = EΠ[xxT |τ ]− EΠ[x|τ ]EΠ[xT |τ ] for the covariance matrix, the result is 175

∂

∂τ
EΠ[x|τ ] = νw(EΠ[x|τ ]), (18a)

∂

∂τ
CovΠ[x|τ ] = JCovΠ[x|τ ] + CovΠ[x|τ ]J T +D. (18b)
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where the Jacobian J and the diffusion matrix D are defined as 176

Jij(τ) =
R∑
r=1

νir
∂wr(EΠ[x|τ ])

∂EΠ[xj|τ ]
,

Dij(τ) =
R∑
r=1

νirνjrwr(EΠ[x|τ ]), (19)

which depend on cell age through the mean molecule numbers EΠ[x|τ ]. Comparison of 177

Eqs. (18) with (14) shows that these equations are exact whenever the propensities are 178

linear in the molecule numbers. In all other cases, we consider these as an approximation 179

valid in the limit of large molecule numbers. 180

Next, we cast the boundary condition (14d) in terms of the covariance matrix CovΠ[x|τ ], 181

which leads to 182

EΠ[x|0] =
1

2
Eρ[EΠ(x|τd)], (20a)

CovΠ[xi, xj|0] =
1

4
Eρ[CovΠ(xi, xj|τ)]︸ ︷︷ ︸

variability between mother cells

+ Eρ[EΠ(CovB[xi, xj|x′]|τ)]︸ ︷︷ ︸
partitioning of molecules

+
1

4
Covρ[EΠ(xj|τ), EΠ(xj|τ)]︸ ︷︷ ︸

cell cycle variability

. (20b)

The first term is the contribution due to fluctuations in the number of molecules before 183

division. The second term denotes the variation due to random partitioning of molecules at 184

cell division, while the third contribution stems from differences in the molecule numbers 185

due to different cell cycle lengths. We note that Eqs. (20b) themselves do not constitute a 186

noise decomposition since these contribute do not propagate independently. Instead, they 187

represent the sources of cell-to-cell variability for the two daughter cells. 188

1 Noise decomposition using dual reporter systems 189

To investigate how the different sources of variations affect biochemical reaction dynamics, 190

we consider the synthesis and degradation of mRNA molecules and translation into proteins 191

∅ k0−→ mRNA
km−→ ∅,

mRNA
ks−→ mRNA + Protein. (21)

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362368doi: bioRxiv preprint 

https://doi.org/10.1101/362368
http://creativecommons.org/licenses/by/4.0/


We do not account for protein degradation explicitly in this model since stable proteins are 192

diluted in the population by cell division, the effect of which we will study in the following. 193

For simplicity, we assume that mRNA degradation is faster than the population growth 194

such that the reactions can be approximated by a single reaction synthesising proteins in 195

stochastic bursts. At the same time, for the purpose of the noise decomposition, we consider 196

an additional, identical copy of the same circuit in the cell 197

∅ k0−→ m1 × Protein1,

∅ k0−→ m2 × Protein2. (22)

The stochastic burst size of the first and second copy are denoted by m1 and m2, respectively, 198

and both follow a geometric distribution with mean b = ks/km (see Ref.37 and SI V D for 199

details of the burst approximation). 200

a. Mean number of proteins. 201

Since the two reporter proteins are expressed identically in the cell, their mean expression 202

levels must be the same. Denoting the protein numbers of the two reporters by x1 and x2, 203

we have EΠ[x1|τ ] = EΠ[x2|τ ]. The rate equation (18a) for the average number of proteins 204

for a cell of given age becomes 205

∂EΠ[x1|τ ]

∂τ
= k0b.

The solution that respects the boundary condition (20a) is 206

EΠ[x1|τ ] = k0b(τ + Eρ[τ ]). (23)

The number of proteins inherited after cell division (τ = 0) is thus k0bEρ[τ ], which depends 207

on the mean division time Eρ[τ ] in the population. 208

b. Separating noise into intrinsic and extrinsic components. 209

For identical two-reporter systems, the overall variance can be decomposed into intrinsic 210

and extrinsic components as follows 211

Σ(τ) = Σint(τ) + Σext(τ). (24)

The individual contributions can be quantified using1
212

Σint(τ) =
1

2
EΠ[(x1 − x2)2|τ ],

Σext(τ) = CovΠ[x1, x2|τ ]. (25)
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Since these components are measured in the same cell, they also account for the correct 213

history dependence7,9,38. 214

The variance of intrinsic and extrinsic fluctuations follows from using Eqs. (25) in (18b) 215

and rearranging, which leads to 216

∂

∂τ
Σint(τ) = b(2b+ 1)k0,

∂

∂τ
Σext(τ) = 0.

Its solution is obtained by straight-forward integration and is given by Σint(τ) = Σint(0) + 217

b(2b + 1)k0τ and Σext(τ) = Σext(0). To fix the boundary condition (20b), we assume that 218

each molecule of the mother cell being partitioned with equal probability between the two 219

daughter cells. In this case, the division kernel in Eq. (4) is binomial with covariance 220

CovB[xi, xj|x′] = δijx
′
i/4. We then find that Σint(0) = 1

3
b(2b + 3)k0Eρ[τ ] and Σext(0) = 221

1
3
b2k2

0Eρ[τ ]2CV2
ρ, and finally 222

CV2
int(τ) =

Σint(τ)

EΠ[x1|τ ]2
=

1

EΠ[p1|τ ]

(
1 +

2

3
b

(
1 +

2τ

Eρ[τ ] + τ

))
, (26a)

CV2
ext(τ) =

Σext(τ)

EΠ[x1|τ ]2
=

Eρ[τ ]2

(Eρ[τ ] + τ)2

CV2
ρ

3
. (26b)

The coefficients of variations quantify the size of fluctuations relative to the mean. The result 223

confirms the intuition that intrinsic noise decreases with the mean number of molecules. The 224

extrinsic noise component, however, reflects the variations in cell cycle duration CV2
ρ that 225

are transmitted to the protein levels. 226

c. Snapshots display higher intrinsic but lower extrinsic noise levels than lineages. 227

Next, we compare the statistics of snapshots of a growing population with the one of 228

a lineage of an isolated cell over time. As explained in Sec. II A 4, we obtain the lineage 229

statistic by substituting the division time distribution ρ for ϕ in Eqs. (23), (26a) and (26b). 230

Interestingly, the deviations between these two statistics is apparent even on the mean 231

level. To see this, we notice that the mean number of molecules, Eq. (23), increases with the 232

duration of the cell cycle. It is well known that the cell cycle time is longer when averaged 233

over single cells than for cells in the population16 Eρ[τ ] ≤ Eϕ[τ ]. An intuitive explanation of 234

this fact is that fast dividing cells are over-represented in the population. It hence follows 235

from Eq. (23) that the expected number of molecules is lower in populations compared to 236

lineages, no matter what the division time distribution is. 237

In Fig. 2a, we compare the total noise CV2
tot(τ) = CV2

int(τ) + CV2
ext(τ) for gamma and 238

log-normal distributed interdivision times. In both cases, we observe that the noise exhibits 239
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a maximum for low cell cycle variability. With increasing cell cycle variability, we find that 240

the maximum flattens in the lineage but not in snapshot statistics. Albeit the two statistics 241

are collected from different samples of the same population, snapshots are more noisy than 242

lineages in both cases. To understand this noise propagation, we decompose the total noise 243

into intrinsic and extrinsic components via Eqs. (26a) and (26b). We observe that intrinsic 244

noise in snapshots increases with cell cycle variability (Fig. 2b) while it is significantly lower 245

in lineages and independent of these fluctuations, which is consistent with lower expression 246

levels in snapshots. 247

Fig. 2a also reveals a non-monotonic dependence of the intrinsic noise component on 248

cell age. To explain this phenomenon, we notice that intrinsic noise, Eq. (26a), increases 249

with cell age due to an increase in the Fano factor. For older cells, however, intrinsic noise 250

decreases with age as these cells express higher protein levels. Combining these findings 251

explains the noise maximum at a well-defined cell age. By maximising Eq. (26a) over all 252

possible cell ages, the age at which noise peaks is τ/Eρ[τd] = 2b−3
6b+3

whenever b > 3/2. This 253

ratio only depends on the burst size b and approaches 1/3 of the mean cell cycle time for 254

large b. By contrast, we find that extrinsic noise is lower and decays slower over the cell cycle 255

in snapshots than in lineages (Fig. 2c). We conclude that lineage statistics may significantly 256

underestimate intrinsic heterogeneity but overestimate extrinsic noise in the population. In 257

the next subsection, we extend this method to general stochastic reaction networks. 258

2 General decomposition for cells of the same age 259

We now generalise the decomposition to two-reporter systems involving an arbitrary 260

network of biochemical reactions. As before, we assume that the two copies of our network 261

with molecule numbers x1 and x2 do not interact and involve the same type reactions, and 262

therefore they have the same mean expression level. The covariance of the two-reporter 263

system is 264

CovΠ[x1, x2|τ ] =

 Σ11(τ) Σ12(τ)

Σ12(τ) Σ11(τ)

 ,
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whose individual components satisfy 265

∂

∂τ
Σ11(τ) = JΣ11 + Σ11J T +D,

∂

∂τ
Σ12(τ) = JΣ12 + Σ12J T , (27)

according to Eqs. (18b). 266

The intrinsic and extrinsic noise components can be expressed via 267

Σint(τ) =
1

2
E[(x1 − x2)2|τ ] = Σ11 − Σ12,

Σext(τ) = Cov[x1, x2|τ ] = Σ12.

Since the covariances obey the linear equations (27), the two noise contributions evolve 268

independently. In particular, the intrinsic and extrinsic covariances satisfy 269

d

dτ
Σint = JΣint + ΣintJ T +D, (28a)

d

dτ
Σext = JΣext + ΣextJ T , (28b)

where only the intrinsic component involves the biochemical noise from the intracellular 270

reactions through the diffusion matrix D. 271

Assuming again binomial partitioning with covariance CovB[xi, xj|x′] = δijx
′
i/4, allows us 272

to split the boundary condition (20b) according to Eq. (24). The results are two independent 273

conditions 274

4Σint(0) = Eρ[Σint(τd)] + Eρ[EΠ[diag(x)|τd]], (28c)

4Σext(0) = Eρ[Σext(τd)]

+ Covρ[EΠ[x|τd], EΠ[x|τd]]. (28d)

The noise decomposition is fully specified by the mean number of molecules for cells of the 275

same age, the Jacobian J of the corresponding rate equations, the diffusion matrix D (see 276

Eqs. (19)) and the distribution of interdivision times in the population ρ (see Eq. (11)). 277

Importantly, Eq. (28c) shows that partitioning is a noise source to intrinsic fluctuations, 278

while Eq. (28d) shows that cell cycle variations contribute to extrinsic fluctuations. We 279

conclude that conditioning on the cell cycle position is not enough to eliminate all extrinsic 280

noise. Before we continue, we note that other types of partitioning, such as asymmetric 281

cell division, can be easily incorporated into the framework but using a different form of 282

CovB[xi, xj|x′]39. 283
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3 General decomposition for cells of unknown age 284

An obstacle for applying this decomposition in practice is that in many situation the cell 285

age is not known, and this is especially true for population snapshots. For this reason, the 286

mean of the molecule number has to be averaged over all possible cell ages 287

EΠ[x] = EΠ(EΠ[x|τ ]) =

∫ ∞
0

dτEΠ[x|τ ]Π(τ).

Similarly, we use the law of total variance to decompose the snapshot-variance as 288

Σ̄ = Σ̄int︸︷︷︸
intrinsic

+ Σ̄cc + Σ̄age︸ ︷︷ ︸
extrinsic

, (29a)

with 289

Σ̄int = EΠ(Σint(τ)),

Σ̄cc = EΠ(Σext(τ)),

Σ̄age = CovΠ(EΠ[x|τ ], EΠ[x|τ ]). (29b)

The first term in Eq. (29a) is the intrinsic variance measured across a population, the second 290

term is the extrinsic variance transmitted from cell cycle variations, and the third term is 291

another extrinsic component that comes from averaging over cells of different ages. The total 292

extrinsic noise, which is measured in a two-reporter system, is the sum of the second and 293

third term. The practical use of this noise decomposition is demonstrated in the following 294

section. 295

B Practical computation of the noise decomposition and applications 296

Finally, we apply the noise decomposition to analyse snapshots in which the age of in- 297

dividual cells is not known. While the decomposition can be carried out exactly for linear 298

reaction networks, we also outline a numerical method with which the decomposition can be 299

carried out efficiently for complex nonlinear networks as we demonstrate for a protein that 300

regulates its own expression. 301
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1 Decomposition for linear reactions in cells of unknown age 302

For linear reaction networks in which the propensities are linear functions of the molecule 303

numbers. This dependence allows to average the statistics exactly over all cell ages. Thus 304

from Eq. (16), we obtain the rate equations 305

λEΠ[x] = νw(EΠ[x]), (30)

since EΠ[w(x)] = w(EΠ[x]). These equations coincide precisely with the steady state of the 306

traditional deterministic rate equations including an effective dilution term proportional to 307

the population growth rate λ. 308

Averaging Eq. (28a) over all ages and accounting for the boundary terms using Eq. (15), 309

the intrinsic variance becomes 310

λΣ̄int =J Σ̄int + Σ̄intJ T + EΠ[D(τ)]

+ λ (2Σint(0)− Eρ[Σint(τd)]) , (31a)

where the Jacobian J is assumed to be independent of cell age. Similarly, averaging 311

Eq. (28b) the extrinsic variance transmitted from cell cycle fluctuations is obtained as 312

λΣ̄cc =J Σ̄cc + Σ̄ccJ T

+ λ (2Σext(0)− Eρ[Σext(τd)]) . (31b)

Similarly, an equation for Σ̄age can be derived (see SI V B for details), which reads 313

λΣ̄age =J Σ̄age + Σ̄ageJ T

+ λ

(
EΠ[x]EΠ[xT ]− 2EΠ[x|0]EΠ[xT |0]

− Covρ(EΠ[x|τd], EΠ[x|τd])
)
. (31c)

This decomposition exactly characterises the variability of linear intracellular reaction net- 314

works across snapshots. 315

a. Application to stochastic reporter expression. 316

We return to the two-reporter system (22) and apply the decomposition developed in the 317

previous section. From Eq. (30), we find that the mean molecule number is given by 318

E[p] =

k0b/λ snapshot,

bk0 (Eϕ[τd] + Eπ[τ ]) lineage.
(32)
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Note that the lineage mean follows from integrating Eq. (23) with ϕ instead of ρ against 319

the lineage age-distribution (13). Interestingly, only the population mean agrees with the 320

intuition in which the ratio of synthesis and dilution rates yields the steady state levels. 321

However, both averages depend implicitly on the cell cycle variability through the average 322

age Eπ[τ ] or the population growth rate λ, respectively. In Fig. 3a, we show that molecule 323

numbers in the lineage increase with cell cycle variability while they decrease in the snapshot 324

statistic under the same conditions. These quantities thus exhibit opposite sensitivities to 325

cell cycle variability. 326

Next, we explore the noise properties of the reporter system using the decomposition 327

(31). We find that the contributions of intrinsic noise are 328

CV2
int =


1

EΠ[p]

(
1 + 2

3
b (1 + 2λEΠ[τ ])

)
snapshot,

1
Eπ [p]

(
1 + 2b− 4bEϕ[τd]

3(Eϕ[τd]+Eπ [τ ])

)
lineage,

which is inversely proportional to the mean number of proteins. The contribution of extrinsic 329

noise due to stochasticity in cell cycle duration is 330

CV2
cc =


1
3
(Eρ[τd]λ)2CV2

ρ[τd] snapshot,

1
3

Eϕ[τd]2

(Eϕ[τd]+Eπ [τ ])2 CV2
ϕ[τd] lineage,

and the one due to the unknown cell age is 331

CV2
age =

(λEΠ[τ ])2CV2
Π[τ ] snapshot,

Eπ [τ ]2

(Eϕ[τd]+Eπ [τ ])2 CV2
π[τ ] lineage.

The noise decomposition crucially depends on the population growth rate λ, while in lineages 332

it depends on the corresponding average cell age Eπ[τ ]. More specifically, CV2
cc and CV2

age 333

depend the variations in the age and interdivision time distributions, which are generally 334

different in lineages and population. We illustrate this dependence using the analytical 335

decompositions for two different interdivision-time distributions with the same mean and 336

variance. 337

For both the gamma and the log-normal distribution, intrinsic noise (red lines, Fig. 3b) 338

exhibits opposite sensitivities on cell cycle variability comparing lineage (dashed) and snap- 339

shot statistics (solid). This observation is explained by smaller mean expression levels in 340

snapshots (cf. Fig. 3a) because intrinsic noise is expected to scale inversely with the mean 341
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molecule number. For the gamma distribution, the extrinsic noise transmitted from cell 342

cycle variations (blue lines, Fig. 3b) is (almost) identical for these measures. For the log- 343

normal distribution, however, extrinsic noise in the lineage is smaller than in the snapshot. 344

Interestingly, we find that the total noise is higher in snapshots than in lineages for the 345

gamma distribution (black lines, Fig. 3c), while this not true for the log-normal distribution 346

and large cell cycle variability (black lines, Fig. 3d). 347

In developed network models, the extrinsic components will also depend on the biochem- 348

ical properties of the network. We demonstrate this analytically in SI V D when the protein 349

is also subject to degradation, which reveals intricate noise patterns. A straight-forward ap- 350

proach for the noise decomposition in complex biochemical network is given in the following 351

section. 352

2 Decomposition for nonlinear reaction networks 353

For nonlinear reaction networks, it is generally difficult to carry out the noise decomposi- 354

tion analytically. This is because the statistics of known and unkown cell age are intricately 355

coupled and can be solved simultaneously only in simple cases. An efficient and generally 356

applicable procedure to compute the numerical noise decomposition is the following: 357

1. Calculate the population growth rate using Eq. (8). 358

2. Solve for the statistics of cells of the same age, Eq. (28a) and (28b) and use the shooting 359

method to match the boundary conditions (28c) and (28d). 360

3. Obtain the noise decomposition (29a) irrespectively of cell age by performing the 361

average in Eqs. (29b). 362

Step 1 can be efficiently computed using numerical root-finding methods. The shooting 363

method in Step 2 consists of an iterative procedure by which the mean molecule number, 364

intrinsic variance and extrinsic variance are obtained through an initial guess on their values 365

after cell division, Eρ[x|0], Σint(0) and Σcc(0), and the result is then refined using standard 366

root-finding methods until the boundary conditions (28c) and (28d) are matched. Step 3 367

is easily carried out alongside the numerical integration of Step 2. The procedure typically 368

evaluates the noise decomposition in seconds on a desktop computer and may therefore be 369

adequate for statistical inference. 370

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362368doi: bioRxiv preprint 

https://doi.org/10.1101/362368
http://creativecommons.org/licenses/by/4.0/


a. Suppressing intrinsic or extrinsic noise through feedback mechanisms. 371

Over 40% of known transcription factors in E. coli regulate their own expression40. We 372

here investigate the sensitivity of negative autoregulatory feedback to cell cycle fluctuations. 373

We consider transcription and degradation of mRNA molecules from which proteins are 374

synthesised 375

∅ h(p)−−→ mRNA
k1−→ ∅,

mRNA
k2−→ mRNA + Protein. (33)

The effect of negative feedback is modelled via a Hill-function for the transcription rate 376

h(p) = k0

1+(p/K)4 , which decreases with the protein number p. This approximation is appro- 377

priate when the promoter-binding is extremely fast41. 378

In Fig. 4a we show mRNA levels in lineages decrease with cell cycle variability for various 379

feedback strength (the inverse of the dissociation constant, 1/K). Mean mRNA numbers 380

in the snapshot statistic either decrease (weak, moderate feedback) or increase with cell 381

cycle variability (strong feedback) depending on the feedback strength. In contrast, protein 382

levels increase with cell cycle variability in lineages but decrease in the snapshot for various 383

feedback strengths (Fig. 4b). In agreement with this trend, we find that intrinsic noise 384

always increases with cell cycle variability while the opposite holds for weak to moderate 385

feedback but not for strong feedback (Fig. 4d). Strikingly, due to the negative feedback 386

regulation, the sensitivity of intrinsic noise of mRNAs is the opposite (Fig. 4c). In contrast 387

to the intrinsic noise properties of the circuit, the total extrinsic noise of the circuit always 388

increases with cell cycle variability, both in lineages and snapshots (Fig. 4d,e). In all cases, 389

our approximations are in good agreement with exact stochastic simulations (Fig. 4 dots) 390

carried out using the First-Division Algorithm given in Ref.31 including two non-interacting 391

reporter networks. 392

Finally, we use the noise decomposition to understand how heterogeneity can be controlled 393

by natural and synthetic circuits. Negative feedback is widely known to reduce noise but 394

often requires fine-tuned parameters42–44. How this translates to individual functional noise 395

components, such as intrinsic and extrinsic noise, has only been explored in response to 396

parameter fluctuations6,45 but not in the context of the ubiquitous population dynamics. 397

Here, we are specifically interested in the sensitivity of lineage and population snapshot 398

statistics to cell cycle noise. 399
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In Fig. 5a we show that negative feedback can efficiently suppress intrinsic noise as the 400

feedback strength is varied. Intriguingly, comparing the minimum noise levels in lineages and 401

snapshots, vastly different values of the dissociation constants achieve noise suppression in 402

these measures. To study this dependency in more detail, we compute the optimal feedback 403

strength that minimises intrinsic noise as shown in Fig. 5b. Intriguingly, the optimal values 404

exhibit opposite sensitivities to the cell cycle variability in lineages than in the population 405

snapshots. To efficiently suppress intrinsic noise in a lineage, we must decrease the feedback 406

strength in response to an increase in cell cycle variability. To compensate for intrinsic 407

variability across the population, however, the feedback strength must increase by almost a 408

two-fold of what would be required in the lineage. 409

In other situations, it may be advantageous to reduce the extrinsic instead of the intrinsic 410

noise component. In Fig. 5c, we show that tuning the dissociation constant (K) can similarly 411

reduce the transmitted cell cycle noise CV2
cc. Comparing the optimal feedback strength 412

(1/K) as a function of the cell cycle noise CV[τd] (Fig. 5d), we observe that they increase with 413

cell cycle variability in both lineage and snapshot. It is worth noting that vastly different 414

feedback strengths achieve either intrinsic or extrinsic noise suppression (cf. Fig. 5c,d). 415

These findings highlight that a single feedback loop may not be sufficient to simultaneously 416

suppress both noise components whether in lineages or population snapshots. 417

IV Discussion 418

We presented an analytical framework to analyse stochastic biochemical reactions in an 419

exponentially growing cell population. This theory allows us to characterise and system- 420

atically decomposes cellular noise into intrinsic and extrinsic components, which applies to 421

general stochastic biochemical networks. We found that a typical cell in the population 422

expresses lower levels of proteins per cell than an isolated cell tracked over successive cell 423

divisions. As a consequence, we observed higher levels of intrinsic noise but, for the exam- 424

ples studied, the extrinsic noise component was significantly reduced. These effects are most 425

pronounced in the presence of division time variability as it is the case in natural popula- 426

tions. Importantly, this highlights that one needs to account for cell cycle fluctuations when 427

modelling either intrinsic or extrinsic noise components. 428

Previous studies46,47 focussed solely on the effect of age-structure but mostly neglected cell 429
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cycle variations. We demonstrated that the statistics of lineages and population snapshots 430

are not equivalent even when the cell cycle position is known. Although these differences 431

appear to be small when divisions occur deterministically, they will be pronounced in the 432

presence of division time variability (Figs. 3 and 4). In particular, we showed that measuring 433

cells within a narrow range of cell cycle stages, as for instance achieved through gating8,28, 434

does not eliminate all extrinsic noise due to cell cycle fluctuations. In reality, cells are 435

affected by more than one type of extrinsic noise source as reaction rates may fluctuate over 436

time and between cells6,7,13. These effects should be added to the transmitted extrinsic noise. 437

We anticipate, however, that it will be difficult in practice to distinguish these fluctuations 438

from the variations induced by cell cycle variability. 439

While this study focused on the effects of age-structure on biochemical dynamics, several 440

simulation studies suggest that cell size also coordinates gene expression48,49. Incorporat- 441

ing additional physiological details such as cell size into our framework could thus provide 442

insights to the statistics of intracellular concentrations50–52 and extrinsic noise transduced 443

from cell size control and growth rate fluctuations53. A different limitation of this study 444

is that it is based on the linear noise approximation, which albeit being exact for linear 445

reaction networks, represents an approximation assuming large molecule numbers. Its esti- 446

mates can be inaccurate for nonlinear reaction networks involving low numbers of molecules. 447

An improvement to this approximation could employ higher order terms in the system size 448

expansion41,54, or close the hierarchy of moments using moment closure approximations55. 449

Heterogeneity inferred from snapshots is often used to say something about a cell’s history. 450

By grouping cells of similar ages, as in ergodic rate analysis56, one can in principle reconstruct 451

time-course information. We demonstrated that such a procedure produces different results 452

to the lineage statistic (see Fig. 2). Instead, the variability across the population is equivalent 453

to choosing an arbitrary cell from the final population and tracing it backwards in time31. 454

Although this equivalence provides a sample-path interpretation of snapshot data, it is 455

worth pointing out that it does not apply when cell ages are unidentified. In this case, 456

understanding the relationship between single cell fluctuations and population heterogeneity 457

requires an agent-based framework as the one presented. 458

We showed that gene expression noise in populations is coupled to the population growth 459

rate, as observed in population studies57. This dependency is crucial when quantifying 460

summary statistics such as mean and variances. We found that the cellular heterogeneity 461
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displays opposite sensitivities to cell cycle variability across populations and lineages. For 462

negative feedback circuits, this implies that no parameter tuning enables cells to minimise 463

noise of both measures efficiently (Fig. 5). Reducing noise in lineages over time comes at 464

the cost of increased population heterogeneity, a strategy cells could exploit to diversify in 465

response to stress58. Conversely, tuning snapshot homogeneity sacrifices lineage-optimality, 466

which could confer advantages when gene expression couples to global physiological factors 467

such as cell size, growth rate or cell division59. 468

Cells may thus perform suboptimally depending on which experimental setup is used to 469

study them, whether it is a mother machine or a chemostat. Identifying the relevant noise 470

components and cellular objectives will likely depend on the environmental and experimental 471

conditions, or even on the particular application58,59. These dependencies thus reveal a 472

fundamental trade-off for the evolution of natural circuits and the design of synthetic circuits 473

in living cells. 474

In summary, we presented an agent-based framework for the statistical analysis of pop- 475

ulation snapshots. Inherent in this approach are several noise sources that reveal typical 476

features of snapshot data using noise decompositions. The present framework is widely appli- 477

cable and as such it also applies to large gene regulatory, signalling or metabolic networks. 478

We, therefore, envision that the proposed moment-based approach could prove especially 479

useful for parameter inference from snapshots of living cells60. 480

V Supporting information 481

A Statistics of interdivision times and age distributions 482

We here characterise the statistics of division times and age-distributions in lineages and 483

populations. To this end, it is useful to recall the definition of the Laplace transform of the 484

interdivision time distribution ϕ(τd) in a lineage 485

ϕ̂(s) =

∫ ∞
0

dτd e
−sτdϕ(τd). (34)

We assume that either ϕ(τd) is known or can be calculated from the division rate via Eq. (7). 486
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1 Moments of interdivision times in a population 487

To calculate the statistics of the interdivision times in the population, we employ the 488

Laplace transform of Eq. (11), which is 489

ρ̂(s) = 2ϕ̂(λ+ s). (35)

and note that ϕ̂(λ) = 1/2 due to characteristic equation (8). The moments can thus be 490

expressed in terms of the Laplace transform 491

Eρ[τ
n
d ] = 2

(
− ∂

∂λ

)n
ϕ̂(λ). (36)

From these, we can compute 492

Eρ[τd] = −2ϕ̂′(λ), Varρ[τd] = 2ϕ̂′′(λ)− 4ϕ̂′(λ)2. (37)

and hence 493

CV2
ρ[τd] =

ϕ̂′′(λ)

2ϕ̂′(λ)2
− 1. (38)

2 Age-distribution in lineages 494

The age-distribution yields the frequency of cell ages observed for different single cell 495

measures. To compute the moments of the age-distribution in a lineage, we compute the 496

Laplace transform of Eq. (13), which gives 497

π̂(s) =
1− ϕ̂(s)

sEϕ[τd]
. (39)

By differentiating the above expression repeatedly at s = 0, we find 498

Eπ[τ ] =
Eϕ[τ 2]

2Eϕ[τ ]
, Varπ[τ ] =

Eϕ[τ 3]

3Eϕ[τ ]
(40)

and 499

CV2
π[τ ] =

4Eϕ[τ ]Eϕ[τ 3]

3Eϕ[τ 2]
, (41)

which concludes the the age-statistics in the population snapshot. 500
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3 Age-distribution in populations 501

Similarly, we consider the Laplace transform of the age-distribution in a population snap- 502

shot, Eq. (6), which evaluates to 503

Π̂(s) = EΠ[e−sτ ] = 2λ

∫ ∞
0

dτ Φ(τ)e−(s+λ)τ

=
2λ

s+ λ
(1− ϕ̂(s+ λ)) , (42)

Repeated differentiation at s = 0, gives 504

EΠ[τ ] =
1

λ
+ 2ϕ̂′(λ), VarΠ[τ ] =

1

λ2
− 2ϕ̂′′(λ)− 4ϕ̂′(λ)2. (43)

It is straightforward to evaluate these statistics numerically as we do for the log-normal 505

distribution in Fig. 2 and 3. For the gamma-distribution, the population growth rate, the 506

age- and interdivision-time distributions can be obtained in close form as we show in the 507

following. 508

4 Gamma distribution: Explicit solutions to population growth rate and the age/interdivision 509

time distributions 510

We fix the division time to be gamma distributed with density function 511

ϕ(τd) =
e−

τd
cµ

(
τd
cµ

)
1/c

Γ
(

1
c

)
τd

, (44)

where Γ is the gamma function, such that Eϕ[τd] = µ and c = CV2
ϕ[τd]. The Laplace 512

transform of the distribution is 513

ϕ̂(s) = (cµs+ 1)−1/c. (45)

Recasting now the Euler-Lotka equation in the form ϕ̂(λ) = 1/2, we can solve for λ to obtain 514

λ =
2c − 1

cµ
. (46)

The division time distribution in the population is then given by 515

ρ(τd) = 2e−λτdϕ(τd) =
2e−

2cτd
cµ

(
τd
cµ

)
1/c

Γ
(

1
c

)
τd

, (47)
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which is also a gamma distribution but with a shorter mean division time but the same 516

coefficient of variation 517

Eρ[τd] = 2−cµ, CV2
ρ[τd] = c. (48)

Further, the age-distribution in a lineage is 518

π(τ) =
1

µ

Γ
(

1
c
, τ
cµ

)
Γ
(

1
c

) , (49)

where Γ(·, ·) is the upper incomplete gamma function. Its statistics are with statistics 519

Eπ[τ ] =
µ

2
(1 + c), CV2

π[τ ] =
5c+ 1

3c+ 3
. (50)

Similarly, the age-distribution in the population becomes 520

Π(τ) = 2λe−λτ
Γ
(

1
c
, τ
cµ

)
Γ
(

1
c

) (51)

with statistics 521

EΠ[τ ] = µ

(
c

2c − 1
− 1

2c

)
,

CV2
Π[τ ] =

2c

c+ 2−c − 1
− (2c − 1)2 (c+ 1)

(2c(c− 1) + 1)2 − 1. (52)

Interestingly, it follows that EΠ[τ ] < Eπ[τ ], but CV2
Π[τ ] > CV2

π[τ ] for c < 1 and CV2
Π[τ ] < 522

CV2
π[τ ] for c > 1. 523

B An explict formula for the uncertainty due to unknown cell age 524

We here verify Eq. (31c) of the main text, which holds for linear reaction networks. To 525

this end we define ε(τ) = EΠ[x|τ ] − EΠ[x] such that Σ̄age = EΠ[εεT ] and use Eq. (18a) to 526

write 527

∂

∂τ
ε(τ) = νw(E[x|τ ]) = c+ J (ε(τ) + EΠ[x]).

We used the fact that νw(E[x|τ ]) = c + JE[x|τ ], where c is a constant vector, since for 528

linear reaction networks the propensities are linear in the number of molecules. Making use 529

of Eq. (53) we then compute 530

EΠ

[
∂

∂τ
ε(τ)εT (τ)

]
=EΠ

[
ε(τ)

∂

∂τ
εT (τ)

]
+ EΠ

[
εT (τ)

∂

∂τ
ε(τ)

]
=J Σ̄age + Σ̄ageJ T .
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On the other hand, using Eq. (15) of the main text, it follows that 531

EΠ

[
∂

∂τ
ε(τ)εT (τ)

]
=λ
(
Σ̄age + Eρ[ε(τ)εT (τ)]− 2ε(0)εT (0)

)
=λ
(
Σ̄age + Covρ[E[x|τ ]]− EΠ[x]EΠ[xT ] + 2Eρ[x|0]Eρ[x

T |0]
)
.

Combining the last two equation gives the result (31c) of the main text. 532

C Detailed discussion of the moment-closure conditions 533

While the moment equations derived in Sec. II B are exact, the equations for cells of the 534

same age are only closed when wr(x) depends at most linearly on the molecule numbers x 535

and the covariance of the partitioning kernel CovB[x|x′] depends at most quadratically on the 536

number molecules in the mother cell x′. This holds, for instance, for biochemical composed 537

solely from unimolecular reactions and independent binomial partitioning. Similarly, it 538

holds true for the mean of cells with unknown age, but not generally for their corresponding 539

variances. Specifically, the covariance for cells of unknown age also depends on the moments 540

for cells of known age and thus they must explicitly depend on the division time distribution. 541

There are now two scenarios in which the variances are independent of the division time 542

distribution. The first case is when the age-distribution coincides with the division time 543

distribution Π(τ) = ρ(τ), which follows only when the division rate γ is constant and 544

independent of age, i.e. the division times are exponentially distributed. The second case 545

assumes a particular division kernel B(x|x′) that satisfies CovB[x|x′] = 1
4
x′x′T , which follows 546

when all molecules are inherited by only one of the daughter cells. In all other cases, which 547

seem most relevant in practice, the moment equations for unknown cell age involve the 548

moments for cells of known age. Thus, for general nonlinear reaction networks, they involve 549

two hierarchies of moments that cannot be easily closed. A simple and generally applicable 550

approximation that circumvents this problem is given in Sec. III A using the linear noise 551

approximation. 552
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D Analytical noise decomposition for gene expression with degradation 553

We consider a simple system in which a protein P is translated in stochastic bursts of 554

size m and is subsequently degraded 555

∅ k0−→ m× P, P
k1−→ ∅. (53)

Because the burst size is a random variable we can recast the synthesis reaction into a series 556

of reactions with reaction rates k0π(m), 557

∅ k0π(1)−−−→ 1× P, ∅ k0π(2)−−−→ 2× P, ∅ k0π(3)−−−→ 3× P, . . . , (54)

P
k1−→ ∅, (55)

where π(m) is the distribution of burst sizes, which is geometric for the two-stage model of 558

gene expression. 559

1 Mean protein number of the same age 560

The equation for the mean number of molecules is then 561

∂EΠ[x|τ ]

∂τ
= k0

(∑
m=1

mπ(m)

)
− k1EΠ[x|τ ] = bk0 − k1EΠ[x|τ ] (56)

with solution 562

EΠ[x|τ ] = EΠ[x|0]e−k1τ +
bk0

k1

(
1− e−k1τ

)
(57)

Substituting the solution into the boundary condition Eρ(EΠ[x|τ ]) = 2EΠ[x|0] and solving 563

for EΠ[x|0] yields the final result 564

EΠ[x|τ ] =
bk0

k1

(
1− e−k1τ

2− ρ̂ (k1)

)
, (58)

where ρ̂ is the Laplace transform of the division time distribution 565

ρ̂(s) =

∫ ∞
0

dτd e
−sτdρ(τd). (59)

As we will show in the following the statistics of gene expression in growing populations 566

depends crucially on this function. 567
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2 Protein fluctuations for cells of the same age 568

To compute the protein fluctuations, we see from (58), that the Jacobian is 569

J = −k1. (60)

The diffusion matrix then follows from Eq. (19) then follows 570

D = k0

∞∑
m=1

m2π(m) + k1EΠ[x|τ ] = k0b(2b+ 1) + k1EΠ[x|τ ]. (61)

The variance of intrinsic and extrinsic fluctuations obeys Eqs. (18b, which read explicitly 571

∂

∂τ
Σint(τ) = −2k1Σint(τ) + k0b(2b+ 1) + k1EΠ[x|τ ] (62)

∂

∂τ
Σext(τ) = −2k1Σext(τ) (63)

Σint(τ) =
bk0e

−k1t

k1 (g(k1)− 2)
+
b(b+ 1)k0

k1

+ e−2k1t

(
bk0 (−(b+ 1)g(k1) + 2b+ 1)

k1(g(k1)− 2)
+ Σint(0)

)
(64)

Σext(τ) = Σext(0)e−2k1t, (65)

where Σint(0) and Σext(0) are the intrinsic and extrinsic variation at cell division, which 572

have to be determined from the boundary conditions. According to Eq. (28c) and (28d), 573

the boundary conditions are 574

4Σint(0) = Eρ[Σint(τd)] + Eρ[EΠ[x|τd]],

4Σext(0) = Eρ[Σext(τd)] + Covρ[EΠ[x|τd], EΠ[x|τd]]. (66)

To compute these values we notice that the variances at cell division follow from averaging 575

Eqs. (64) over the division time distribution ρ, which results in 576

Eρ[Σint(τd)] =
bk0ρ̂(k1)

k1 (g(k1)− 2)
+
b(b+ 1)k0

k1

+ ρ̂(2k1)

(
bk0 (−(b+ 1)g(k1) + 2b+ 1)

k1(g(k1)− 2)
+ Σint(0)

)
Eρ[Σext(τd)] = Σext(0)ρ̂(2k1). (67)
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Further, we evaluate 577

Eρ(EΠ[x|τd]) = 2EΠ[x|0] = 2
bk0

k1

(
1− ρ̂ (k1)

2− ρ̂ (k1)

)
, (68)

and 578

Covρ[EΠ[x|τd], EΠ[x|τd]] = Eρ (EΠ[x|τ ]− Eρ(EΠ[x|τ ]))2

=

(
bk0

k1(2− ρ̂(k1))

)2

Eρ
(
ρ̂(k1)− e−k1τ

)2

=

(
bk0

k1(2− ρ̂(k1))

)2 (
ρ̂(2k1)− ρ̂2(k1)

)
. (69)

Plugging Eqs. (67), (68) and (69) into (66), solving for Σint(0) and Σext(0) and using the 579

result in Eqs. (64), we finally arrive at 580

Σint(τ) =
3b2k0e

−2k1t

k1 (ρ̂ (2k1)− 4)
+

bk0e
−k1t

k1 (ρ̂ (k1)− 2)
+

(b+ 1)bk0

k1

,

Σext(τ) =
b2k2

0 (ρ̂ (2k1)− ρ̂2 (k1)) e−2k1t

k2
1 (ρ̂ (k1)− 2) 2 (4− ρ̂ (2k1))

, (70)

which determines the progression of intrinsic and extrinsic fluctuations over the cell cycle. 581

3 Protein statistics for cells of unknown age 582

The mean protein number is given by 583

EΠ[x] =
bk0

k1 + λ
. (71)

Thus the mean number is determined from the balance between the rates of translation, 584

degradation and dilution due to cell divisions. From Eqs. (31) we compute 585

Σ̄int =
b(b+ 1)k0

k1

− bλk0

λk1 + k2
1

+
3b2λk0 (ρ̂ (2k1)− 2)

k1 (4− ρ̂ (2k1)) (λ+ 2k1)
, (72)

Σ̄ext =
b2λk2

0 (ρ̂ (2k1)− ρ̂2 (k1)) (2− ρ̂ (2k1))

k2
1 (2− ρ̂ (k1)) 2 (4− ρ̂ (2k1)) (λ+ 2k1)

, (73)

Σ̄age =
b2λk2

0 (2− ρ̂ (2k1))

k2
1 (ρ̂ (k1)− 2) 2 (λ+ 2k1)

− b2λ2k2
0

k2
1 (λ+ k1) 2

. (74)

Finally, we compute CV2
y = Σ̄y/EΠ[x]2 to arrive at the expressions for the coefficient of 586
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variations 587

CV2
int =

1

EΠ[x]

(
1 + b

(
1 +

bλ

k1

)
− 3bλ

k1

(2− ρ̂ (2k1))

(4− ρ̂ (2k1))

(λ+ k1)

(λ+ 2k1)

)
, (75)

CV2
cc =

λ (ρ̂ (2k1)− ρ̂ (k1) 2) (ρ̂ (2k1)− 2) (λ+ k1) 2

k2
1 (ρ̂ (k1)− 2) 2 (ρ̂ (2k1)− 4) (λ+ 2k1)

, (76)

CV2
age =

λ (2− ρ̂ (2k1)) (λ+ k1) 2

k2
1 (ρ̂ (k1)− 2) 2 (λ+ 2k1)

− λ2

k2
1

, (77)

which denote the intrinsic noise, the transmitted noise from cell cycle fluctuations and the 588

uncertainty due to the unknown cell age. It is obvious that these expressions are much 589

more involved than for the case without degradation because they depend on the Laplace 590

transform ρ̂ of the division time distribution. Interestingly, the last two components, which 591

together represent the extrinsic noise, also depend on the degradation rate k1 meaning that 592

the total extrinsic noise is constant only when measured the mean concentration is varied 593

through the either transcription rate or burst size. 594
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FIG. 1. Agent-based model of clonal population dynamics with stochastic gene ex-

pression and cell cycle variability. (a) Illustration of a growing population as a stochastic

branching process with stochastic interdivision times. Each cell expresses two identical but non-

interacting reporters (green and red) that are partitioned randomly at cell division. Red and green

cells express more molecules of either reporter, which indicates intrinsic variability between cells.

Yellow cells express similar levels of reporter molecules, but vary in their absolute amounts at

different cell cycle stages, which constitutes extrinsic variability. A snapshot of the population

(blue dashed box) quantifies the cell-to-cell variability across the population. A lineage (red path)

quantifies variability over time and tracks an isolated cell over successive cell divisions by randomly

selecting one of the daughter cells. (b) Simulated trajectories of cell age and stochastic protein

expression of two identical reporters on a branched tree. Line colour indicates reporter expression

in the same cell. (c) Cell age and reporter expression of an isolated cell lineage. (d) Comparison

of distributions obtained from lineages and population snapshots. Simulations of the reactions (21)

assume k0 = 10, km = 1, ks = 10 for each reporter and lognormal-distributed division times with

unit mean and standard deviation.
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FIG. 2. Intrinsic and extrinsic noise propagation over the cell cycle. (a) Total noise as a

function of cell age τ with gamma (top) and log-normal-distributed (bottom) interdivision times.

Population snapshot statistics (solid) are compared to lineages (dashed lines). Noise is monotonic

for large cell cycle fluctuations CV2[τd] in lineages but not in snapshots. (b) Intrinsic noise peaks

as a function of cell age and increases with cell cycle fluctuations in populations but not in lineages.

(c) Extrinsic noise is lower in the population than in lineages. Parameters are k0 = 1, b = 100 and

division time distributions assume unit mean.
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FIG. 3. Statistics of population snapshots and isolated lineages for cells of unknown

age. (a) Mean protein number as a function of the cell cycle variations CV[τd] in lineages (dashed)

and snapshots (solid lines). For lineages, the mean protein number increases with cell cycle variabil-

ity and is independent of the division time distribution. In snapshots, the mean decreases with cell

cycle variability with a rate that depends on higher moments of the distribution. The predictions

for gamma- and log-normal distributed interdivision times is shown. (b) Sensitivity of intrinsic

and extrinsic noise sources to cell cycle fluctuations. Intrinsic noise (red lines) increases in lineages

but decreases in snapshots consistent with the dependence of the respective means shown in (a).

The transmitted cell cycle noise (blue lines) shows a similar dependence on cell-cycle variability

in lineages and snapshots for the gamma-distribution, but is lower in snapshots for the log-normal

distribution. (c) Total noise (black lines) broken down into individual noise components for the

gamma-distribution. Transmitted cell cycle noise and the uncertainty due to distributed cell ages

(purple lines) contribute to the total extrinsic noise (teal). (d) The corresponding break-down for

the log-normal distribution. Parameters are k0 = 10 and b = 10 and Eϕ[τd] = 1.
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FIG. 4. Noise decomposition of a negative feedback circuit. Sensitivities to cell cycle noise

CV2[τd] of mean, intrinsic and extrinsic noise contributions are shown for weak (yellow, K = 200),

moderate (blue, K = 100) and strong feedback (red, K = 50). Predictions by the linear noise

approximation (solid lines) are in good qualitative agreement with stochastic simulations (dots).

(a) In lineages, the mean mRNA number always decreases with cell cycle variability while this is not

true in snapshots for moderate to high feedback. (b) In contrast, protein levels always increase

in lineages but decrease in snapshots. (c) The corresponding intrinsic noise profiles of mRNAs

typically increase with cell cycle noise except in snapshots with strong feedback. (d) Intrinsic

noise of proteins always increases with cell cycle noise in snapshots but not in lineages. (e,f)

Total extrinsic noise increases with cell cycle variability for mRNAs and proteins. However, strong

feedback may significantly reduce extrinsic noise in snapshots compared to lineages. Deviations

between the approximation (lines) and the simulations (dots) are most pronounced for strong

feedback. Parameters are k0 = 10, km = 1, ks = 10 and unit-mean interdivision times.
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FIG. 5. Feedback strategies for noise suppression in lineages and populations. Intrinsic

and extrinsic noise statistics of negative autoregulatory feedback circuit are shown as a function

of K, the inverse feedback strength, for three different levels of cell cycle noise CV2[τd] = 0.1

(red), 0.25 (blue) and 0.75 (yellow). (a) Intrinsic noise exhibits a minimum as a function of the

repression strength both in lineage (dashed) and in snapshot statistics (solid lines). The predictions

obtained using the linear noise approximation (lines) are in good agreement with exact stochastic

simulations using the First-Division Algorithm31 (dots for population, open circles for lineages).

(b) Optimal feedback strength (1/K) to minimise intrinsic noise is shown. The feedback strength

increases with interdivision time noise in lineages but decreases in population snapshots. (c) The

transmitted cell cycle noise shows a minimum in dependence of the repression strength both in

lineage (dashed) and in snapshot statistics (solid lines). (d) The optimal feedback strength to

minimise transmitted cell cycle noise decreases with division time noise both in lineages and to a

lesser extent in the population. Parameters as in Fig. 4.
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