
Drosophila DNA/RNA methyltransferase contributes to robust host defense in ageing 

animals by regulating sphingolipid metabolism 

Varada Abhyankar1, Bhagyashree Kaduskar2, Siddhesh S. Kamat2, Deepti Deobagkar1,3,*, Girish 

Ratnaparkhi2,* 

Running Title: Mt2 regulates lipid homeostasis in an age dependent manner. 

 

1Department of Zoology, Savitribai Phule Pune University, Pune 411007, INDIA. 

2Department of Biology, Indian Institute of Science Education & Research, Pune 411008, INDIA. 

3ISRO Chair Professor, Savitribai Phule Pune University, Pune 411007, INDIA. 

 

*Authors for Correspondence: deepti.deobagkar@gmail.com,   girish@iiserpune.ac.in 

Key Words: DNA methyltransferase, Drosophila, Lipid homeostasis, hemocyte, innate immunity, 

ceramide, signaling, sphingosine-1-phosphate (S1P). 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362012doi: bioRxiv preprint 

https://doi.org/10.1101/362012
http://creativecommons.org/licenses/by/4.0/


	 2	

ABSTRACT 1	

Drosophila methyltransferase (Mt2) has been implicated in methylation of both DNA and 2	

tRNA. In this study, we demonstrate that loss of Mt2 activity leads to an age dependent decline of 3	

immune function in the adult fly. A newly eclosed adult has mild immune defects that exacerbate 4	

in a fifteen-day old Mt2-/- fly. The age dependent effects appear to be systemic, including 5	

disturbances in lipid metabolism, changes in cell shape of hemocytes and significant fold changes 6	

in levels of transcripts related to host defense. Lipid imbalance, as measured by quantitative 7	

lipidomics, correlates with immune dysfunction with high levels of immunomodulatory lipids, 8	

sphingosine-1phosphate (S1P) and ceramides, along with low levels of storage lipids. Activity 9	

assays on fly lysates confirm the age dependent increase in S1P and concomitant reduction of S1P 10	

lyase activity. We hypothesize that Mt2 functions to regulate genetic loci such as S1P lyase and 11	

this regulation is essential for robust host defense as the animal ages. Our study uncovers novel 12	

links between age dependent Mt2 function, innate immune response and lipid homeostasis.  13	
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INTRODUCTION 19	

Innate immunity (Janeway and Medzhitov, 2002) is an evolutionary conserved host 20	

defense mechanism present throughout the plant and animal kingdoms. It is the predominant form 21	

of defense against pathogens. Invertebrates lack the adaptive immune system and are thus an 22	

excellent model to study innate defense mechanisms in isolation. The fruit fly, Drosophila 23	

melanogaster, responds to microbial infections by mounting a defense (Akira et al., 2006; 24	

Anderson, 2000; Buchon et al., 2014; Ferrandon et al., 2007; Iwasaki and Medzhitov, 2010; 25	

Lemaitre and Hoffmann, 2007; Ligoxygakis, 2013; Uvell and Engstrom, 2007) against the 26	

invading organisms. The first line of defense is the external cuticle and epithelial barriers. Once 27	

the pathogen breaches these barriers and reaches the hemocoel, they encounter systemic defenses, 28	

both humoral and cellular. The humoral response encompasses the up-regulation of the defense 29	

genes and antimicrobial peptides (AMPs) from the fat body of Drosophila, melanization and the 30	

release of reactive oxygen species, while hemocytes (Agaisse et al., 2003; Williams, 2007) lead 31	

the cellular response, by efficiently phagocytosing and encapsulating microorganisms. Defense 32	

genes thus encode proteins/RNA that function to counteract the effect of the invader and repair the 33	

damage caused. The regulation and thereby expression of defense genes is controlled by a number 34	

of well-characterized signal transduction pathways like the Toll signaling pathway, Immune-35	

deficient (IMD) pathway, c-Jun N-terminal kinases (JNK) and the JAK-STAT pathways (Agaisse 36	

et al., 2003; Delaney et al., 2006; Govind and Nehm, 2004; Kounatidis and Ligoxygakis, 2012; 37	

Lemaitre and Hoffmann, 2007; Lemaitre et al., 1996; Matova and Anderson, 2010; Schneider, 38	

2007; Silverman et al., 2003). Extracellular ligands and/or cell surface receptors sense signatures 39	

of systemic microorganisms and this signal is transduced via the aforementioned transduction 40	

pathways to activate the Drosophila NFκB’s Dorsal, Dif and Relish (Brennan and Anderson, 2004; 41	
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Govind, 1999; Hetru and Hoffmann, 2009; Ip et al., 1993; Kounatidis et al., 2017; Lemaitre et al., 42	

1995; Tanji and Ip, 2005). 43	

The immune response in Drosophila shows complex age-dependent phenotypes (Clark et 44	

al., 2014; Zerofsky et al., 2005). In terms of the cellular response, phagocytic activity declines by 45	

30% in one month old flies and this correlates with a decline in number of hemocytes (Horn et al., 46	

2014; Mackenzie et al., 2011). Levels of expression of many defense genes vary greatly with age 47	

(Felix et al., 2012; Zerofsky et al., 2005), suggesting age dependent regulation of the immune 48	

response. The overall picture is complex and suggests compensatory mechanisms to deal with 49	

infection while ageing. Longevity has also been linked to immune function with many critical 50	

signaling networks that regulate longevity such as Insulin-IGF like (IIL) and TOR pathways 51	

(Grewal, 2009; Johnson et al., 2013; Kapahi et al., 2017; Partridge et al., 2011) shown to 52	

communicate with the central immune pathways for robust regulation of host defense (DeVeale et 53	

al., 2004; Kounatidis et al., 2017; Unckless et al., 2015). 54	

In this study, we characterize the immune response in flies with perturbation in activity of 55	

Drosophila DnMt2 (called Mt2 henceforth), a cryptic DNA/RNA methyltransferase (MT). 56	

Vertebrates have multiple DNA MTs, classified as DnMt1, Mt2, DnMt3a, DnMT3b, based on their 57	

activity and structural features (Basu et al., 2016; Okano et al., 1998).  In contrast, Mt2 is the only 58	

MT identified in Drosophila (Tang et al., 2003). Originally, Mt2 was characterized as a DNA-MT, 59	

but recent research suggests that Mt2 might function primarily as a RNA-MT (Goll et al., 2006; 60	

Schaefer et al., 2010), with methylation enhancing tRNA stability. Mt2 null flies (Mt2-/-) do not 61	

show overt developmental abnormalities and their lifespan is near normal under non-stressed 62	

conditions. Under stress (Becker et al., 2012; Schaefer et al., 2010; Thiagarajan et al., 2011), Mt2-
63	
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/-flies show a shorter lifespan (Lin et al., 2005). Flies grown in overcrowded conditions develop 64	

melanotic spots (Durdevic et al., 2013), suggesting disturbances in immune function. Infection 65	

studies also suggest that Mt2 plays an important role in acute immune response to Drosophila C 66	

virus (DCV) by binding to and possibly methylating viral RNA (Durdevic et al., 2013). 67	

Here, we demonstrate that Mt2-/- flies show an age dependent immune decline. The ability 68	

of adult flies to clear bacteria decreases dramatically by the fifteenth day post eclosion. Adult 69	

hemocytes are sickle-shaped with numbers in excess of that for a wild type animal of the same 70	

age. The age dependent effects are correlated with perturbations in lipid homeostasis, suggesting 71	

that the decline may be a direct response to changes in critical lipid molecules involved in cellular 72	

homeostasis. We hypothesize that Mt2 regulates enzymes involved in lipid homeostasis and this 73	

function is essential for supporting a robust immune response as the animal ages. 74	

 75	

  76	
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RESULTS 77	

Mt2-Null flies show reduction in life-span after bacterial infection: Earlier reports on Mt2-/- 78	

flies indicated that these flies show a shortened lifespan (Lin et al., 2005), are sensitive to stress 79	

(Schaefer et al., 2010) and are susceptible to viral infection (Durdevic et al., 2013). In our study, 80	

we first confirmed that Mt2-/- flies had shorter lifespan (Fig. 1A) and then tested if E. coli. infection 81	

had an effect on Mt2-/- lifespan. Mt2+/+, Mt2-/- and Mt2-(Transgenic Rescue)TG lines (genotypes 82	

as described in Materials & Methods) were either infected with E. coli or mock infected with sterile 83	

1X PBS. Infection of Mt2-/- flies, when compared to Mt2+/+, had an increased rate of lethality. In 84	

contrast, Mt2-TG animals showed a near normal lifespan for both mock and infection experiments, 85	

suggesting a role for Mt2 in host defense against gram negative bacteria. In order to get a more 86	

detailed picture for roles for Mt2 in the innate immune response, as described in following sections, 87	

we tested the functionality of both the cellular and humoral arms of the immune response by 88	

bacterial clearance assays as well by measuring change in transcript levels of defense genes in 89	

Mt2-/- flies before and after infection.  90	

Mt2-Null flies show age dependent impairment in bacterial clearance: We infected 2 day old 91	

adult Mt2+/+, Mt2-/- and Mt2-TG with a saturated, Ampicillin (Amp) resistant culture of E. coli. 92	

Six hours post infection, the animals were crushed and processed, as described in Materials & 93	

Methods, to measure the decrease in E. coli numbers as a consequence of clearance by a robust 94	

immune response. The Mt2-/- flies were an order of magnitude less efficient (Fig. 1B, compare 6 95	

Hour Mt2+/+with Mt2-/-) in clearing the infection as against the wild type or the rescue line (Fig. 96	

1B). 2 day old Mt2-/- flies thus, are impaired in their ability to clear bacteria, suggesting that Mt2 97	

activity supports host defense against bacteria.  98	
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Next, we performed age dependent analysis for the ability of adult flies to clear infection. 99	

Surprisingly, we found that Mt2-/- flies showed significant age-dependent loss in their ability to 100	

clear bacterial infection as compared to wild type flies; an ability regained by replacing Mt2, as in 101	

the MT2-TG flies (Fig. 1C). Wild type flies did not show significant loss in their ability to clear 102	

infections over 30 days. In stark contrast, 15 days Mt2-/- flies cleared bacteria 8-10 fold less 103	

efficiently. 30 day old flies showed similar deficiency, suggesting that there is a steep decline in 104	

ability to clear infection from day 2 to day 15. 105	

Mt2-Null animals have age dependent defects in hematopoiesis: The earliest difference 106	

between Mt2+/+ and Mt2-/- we could find in the cellular response was in the third instar larvae. We 107	

found that crystal cells, which are platelet like cells involved in melanization, are higher in number 108	

in Mt2-/- animals as compared to Mt2+/+ (Suppl. Fig. 1A). This indicated that numbers of blood 109	

cells are not as well-regulated in the mutant. This data led us to look closely at the number of 110	

hemocytes in adults as they age (Fig. 2A). 15 day old wild type animal had fewer number of 111	

hemocytes, when compared to a 2 day old fly. In contrast, the number of hemocytes significantly 112	

increased in the Mt2-/- with age, a trend opposite to that of the wild type fly and the Mt2-TG line. 113	

This would indicate that the increase in hemocytes with age is a Mt2-/- specific event. While 114	

counting the hemocytes using light microscopy, we also noticed that the hemocytes in Mt2-/- 115	

animals had ellipsoid, rice grain like shape as compared to circular shapes in the wild-type 116	

hemocytes. To get a clearer picture we employed Scanning electron microscopy (SEM; See 117	

Materials and Methods). When compared to round wild type hemocytes, the Mt2-/- hemocytes 118	

appeared flat, folded and C-shaped (Fig. 2B), reminiscent of diseased Sickle shaped human RBC’s. 119	

Quantitation of the roundness index of the image SEM data indicated a dramatic change in shape 120	

of the hemocytes in Mt2-/- animals (Fig. 2B, C). This change in cell shape could account for the 121	
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inefficiency of the Mt2-/- hemocytes in clearing the bacterial load in the animal. Based on the above 122	

results, we tested transcript levels of serpent (srp), a gene involved in regulating hemocyte 123	

morphology and phagocytic function (Petersen et al., 1999; Ramet et al., 2002; Shlyakhover et al., 124	

2018) for 15 day old flies. Srp shows reduction in transcript levels (Fig. 2D). This suggests that 125	

Mt2 regulates srp/Srp expression directly or indirectly, affecting the cellular arm of immunity. We 126	

then measured transcript levels, for 15 day old animals for eater (Kroeger et al., 2012) and u-127	

shaped (Muratoglu et al., 2007), genes known to be critical for hemocyte phagocytosis and 128	

hemocyte cell proliferation, respectively. We find that these transcripts are significantly lower in 129	

Mt2-/-  flies as opposed to wild type and the rescue flies (Fig. 2E), again indicating a decline in the 130	

ability of flies to mount an effective cellular transcriptional response to infection. The above data 131	

strongly suggests that Mt2 plays a key role in maintenance of healthy immune response in older 132	

flies via transcription of genes involved in the cellular arm of fly immunity. This Mt2 function 133	

appears to become more critical as the fly ages. In the next section, we tested the transcriptional 134	

levels of gens that code for the anti-microbial peptides, Diptericin (Dipt), Attacin D (AttD) and 135	

Drosomycin (Drs). These genes are activated by Toll/NFkB or IMD/NFkB signaling and serve as 136	

readout for these pathways.  137	

Mt2-null animals show age dependent decline in AMPs: Real time PCR data was used to 138	

measure whole animal transcript levels of Dipt, AttD and Drs for day 2 and day 15 post eclosion.  139	

For this experiment, males of the correct age were infected with E. coli and transcript levels were 140	

measured at 0 and 6 Hours post-infection. Wild type flies two days post eclosion, showed 275 fold, 141	

75 fold and 100 fold increase in transcripts for Dipt, AttD and Drs respectively on infection. In 142	

contrast, all three genes showed 800 fold, 140 fold and 175 fold increase in transcripts for Dipt, 143	

AttD and Drs respectively (Fig. 3A) for Mt2-/-. For Mt2-TG, the transcript levels were similar to 144	
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Mt2+/+. This suggests, that in younger (2 Day) Mt2-/- animals, the humoral immune response is 145	

robust and may be stronger than that in wild-type flies. For15 day old Mt2-/- flies, transcripts of all 146	

three genes, Dipt, AttD and Drs were minimally responsive to infection (Fig. 3B), indicating a 147	

breakdown in signaling or lack of transcription by the NFkBs, DL, Dif and REL.  148	

Mt2 regulates lipid homeostasis in the ageing fly: The altered shape of hemocytes at day 15 led 149	

us to profile the lipid content of Mt2-/- animals 2-15 day post eclosion. A TAG-specific TLC 150	

analysis of the total adult fly lipidome from 2-15 days old showed significant decrease in 151	

triglycerides in Mt2-/- animals. There appeared to be a 30% decrease in Triglyceride (TAG) levels 152	

based on quantitation of TLC bands from day 1 to day 15 (Fig. 4A). MS based quantitative 153	

lipidomics was then used to measure changes in the total lipidome for 15 day old flies (Fig. 4B; 154	

Suppl. Fig 1B).  We found that the immuno-modulatory lipids, sphingosine-1-phosphate (S1P) and 155	

ceramides of varying fatty acid chain lengths, accumulated 2-3 fold in Mt2-/- flies as compared to 156	

their WT counterparts. Concomitantly, the downstream products of sphingolipid metabolism (Fig. 157	

5A), TAGs and phosphoethanolamine (PE) showed a ~25% decrease in Mt2-/- flies (Suppl. Fig. 158	

1B). The levels of lipids in the Mt2-TG rescue line was comparable to wild type. We found that 159	

several other lipid classes including neutral lipids, phospholipids (except PE), sphingomyelins, 160	

and sterols remained unchanged indicating a specific role of Mt2 in regulation of sphingolipid 161	

metabolism (Acharya and Acharya, 2005; Kraut, 2011; Saba and Hla, 2004), especially those 162	

important in immune signaling (Rivera et al., 2008). Next, we checked if, as in case of immune 163	

regulation, Mt2 also regulates lipid homeostasis in age-dependent manner. And indeed, Mt2-/- 164	

showed comparable levels of S1P till day 3 post eclosion, but, by day 5, S1P starts to accumulate 165	

in these mutants as compared to controls (Fig. 4C). This accumulation is more profound as the fly 166	

ages (Fig. 4C). This accumulation of S1P led us to probe if the enzyme Sply, that converts S1P to 167	
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PE (Fig. 5A), is affected. We observed a direct correlation between S1P accumulation and the 168	

failure of Mt2-/- flies to increase Sply activity with age as compared to controls (Fig. 4D). 169	

DISCUSSION 170	

Organisms have to manage energy in order to survive. Energy homeostasis is dependent 171	

on energy uptake, storage and expenditure. Since feeding is a discontinuous process, energy is 172	

usually stored in the form of carbohydrates, proteins or lipids to maintain a continuous supply in 173	

times of need.  The Drosophila fat body, oenocytes, gut, malphigian tubules and special regions 174	

of the nervous system play key roles in metabolic regulation and energy homeostasis. Metabolic 175	

pathways are conserved between mammals and the fly allowing Drosophila to serve as a powerful 176	

model system to get a better understanding of functioning of complex metabolic networks (Owusu-177	

Ansah and Perrimon, 2014; Padmanabha and Baker, 2014; Rajan and Perrimon, 2013; Schlegel 178	

and Stainier, 2007) including those of lipids. A finely tuned network of regulators and inter-organ 179	

communication is necessary to balance the energy intake, storage and expenditure of energy, 180	

whereby a deregulation of such networks can cause malfunction and disease.  181	

Lipids, in addition to being storage molecules and playing structural roles in membranes, 182	

have increasingly been shown to have roles in signaling. Lipids, along with enzymes that modify 183	

and interconvert lipids constitute complex lipid signaling networks responsible for cellular and 184	

organismal homeostasis (Owusu-Ansah and Perrimon, 2014; Palm et al., 2012)(Fig. 5A 185	

summarizes Drosophila sphingolipid metabolic pathways). In sphingolipid metabolism levels of 186	

storage metabolites such as S1P, ceramides and TAG have to be maintained in a dynamic manner 187	

for cellular homeostasis. Drosophila mutants have contributed to insights into critical roles for 188	

sphingolipids in biological function. For example, mutants for sphingosine kinases (Sphk), which 189	
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generate the important intra and intercellular signaling molecule S1P, and S1P-lyase (Sply) (Lovric 190	

et al., 2017), which breaks S1P down, have interesting developmental defects. Sply mutants show 191	

severe flight muscle defects as well as activation of apoptosis in reproductive organs (Herr et al., 192	

2003; Phan et al., 2007), presumably by accumulating S1P. Sphk mutants should have reduced 193	

S1P and accumulate Sphingosine. Sphk2 mutants, in fact, have flight defects and reduced fecundity 194	

(Herr et al., 2003). Sply phenotypes can be rescued by mutations in lace, which codes for a serine 195	

palmitoyl transferase that is a critical rate limiting step for ceramide synthesis. Ceramides act as 196	

regulators of apoptosis and are also shown to directly affect phophorylation of retinoblastoma (Rb) 197	

in response to TNFα signaling (Lee et al., 1996). S1P, in mammalian context, is shown to function 198	

via GPCRs and is suggested to regulate events such as cell shape change in PC12 cells (Edsall et 199	

al., 2001).  200	

 We find that Mt2-/- mutants are unable to deal with infections as they age. As early as 15 201	

days post eclosion, mutant flies are severely compromised in terms of their ability to clear 202	

infection, with plasmatocytes having disproportionately high number but defective shape. This 203	

finding parallels an imbalance in lipid homeostasis.  Quantitative lipidomics confirms that S1P 204	

levels are four-fold higher than in controls, though sphingosine levels are normal. This would 205	

suggest, based on our current understanding of S1P regulation that Sply activity may be reduced. 206	

This is confirmed by enzyme activity assays in fly lysates that show reduction of Sply activity 207	

(Fig. 4D). Reduction in activity does not appear to be a result of lower transcript levels as sply 208	

mRNA levels do not decrease significantly (data not shown). The phenotypes could be due to 209	

errors in translation due to tRNA methylation defects earlier reported in Mt2 mutants. 210	

Alternatively, sply could be regulated in tissue/immune specific manner in flies in a way similar 211	

to seen in C. elegans, where expression of S1P lyase is regulated by GATAA-like transcription 212	
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factors and limit its expression to gut (Oskouian et al., 2005). In Drosophila, Srp is one of the 213	

GATAA-like transcription factors known to regulate Aldehyde dehydrogenase (Abel et al., 1993) 214	

and immune specific genes in tissue specific manner (Petersen et al., 1999; Senger et al., 2006). It 215	

would be interesting to see whether there is any regulatory link between Srp and Sply and if Mt2 216	

plays a key role in this communication.  217	

The lipidomics data also suggests that Ceramide levels are higher while neutral lipids are reduced 218	

suggesting more than one link in lipid metabolism affected in Mt2-/- mutants. The three-fold 219	

increase in Ceramide levels suggest either a backflow from Sphingosine, which is maintained at 220	

normal levels, or increased activity of enzymes that metabolize Ceramide. Curiously, TAG levels 221	

are low which may suggest that the conversion of Ceramide to TAG via DAG is overactive in 222	

order to compensate for the low TAG levels.  The decreased TAG levels suggest either a need for 223	

energy in the animal of a malfunction of enzymes (Fig. 5A) maintaining homeostatic levels of 224	

TAG. 225	

The defective ‘sickle’-shaped hemocyte morphology (Fig. 2B, C) suggest architectural 226	

problems in maintaining the shape of the cell; with lipid homeostasis being a prime candidate. 227	

Since sphingholipids are critical for membrane architecture, the aberrant morphology and 228	

subsequent inability to function as macrophages may be a consequence of a reduction of 229	

sphingolipids. Mutations in S1P lyase have been implicated in regulation of cell shape with our 230	

data suggesting its malfunction being a specific cause of sickle morphology. 231	

The correlation between imbalance in lipid homeostasis and host defense is a less explored 232	

area of research. It is understood that with environmental or nutrient stress, accumulation of lipids 233	

or signaling intermediates can interfere with immune regulation (Ertunc and Hotamisligil, 2016). 234	
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Sphingolipid imbalance has been specifically linked to a number of studies (Bandhuvula and Saba, 235	

2007; Bektas et al., 2010; Park et al., 2013; Rivera et al., 2008; Vijayan et al., 2017; Weber et al., 236	

2009), but universal mechanisms are lacking.  237	

Our study puts the spotlight on age-dependent regulation of lipid homeostasis and immune 238	

function. Mt2 activity, either through regulation of transcription of critical genes or by regulation 239	

of translation of protein products is important for a robust immune response in the aging animal 240	

(Fig. 5B). Absence of Mt2 function triggers an age-dependent decline in both the cellular and 241	

humoral arms of the immune response. The mechanism that Mt2 utilizes for such a systemic 242	

regulation is unclear because of the uncertainties related to Mt2 function in Drosophila. Mt2 243	

function has a history of dispute (Krauss and Reuter, 2011; Schaefer and Lyko, 2010; Yoder and 244	

Bestor, 1996) over its importance in the growth and development of the organism and also its 245	

molecular function. Low levels (0.1 – 0.6%) of 5-genomic methylcytosine (5mC) have been 246	

detected in Drosophila (Capuano et al., 2014; Panikar et al., 2015; Takayama et al., 2014) with 247	

dynamic, developmental stage specific alteration in methylation patterns in Mt2 null animals 248	

(Panikar, 2018; Takayama et al., 2014). Under normal conditions, complete knockdown of Mt2 249	

has no visible survival defects, not only in flies, but also in rat and plant models (Goll et al., 2006). 250	

This led to a belief that Mt2 is not a vital gene for the organism. We, along with others, show that 251	

Mt2 is required for increased lifespan under stress conditions. Here, in addition, we propose a 252	

novel function for Mt2 in regulating steady increase in Sply activity, a phenomenon essential to 253	

keep S1P levels in check as the fly ages. In absence of Mt2 function, this regulatory mechanism is 254	

lost, S1P starts to accumulate with age, leading to adverse effects on the ability of the fly to deal 255	

with infection. Our study, thus uncovers a novel and unexpected relationship between Mt2 256	

mediated activity, age associated lipid homeostasis and the robust nature of the immune response.  257	
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EXPERIMENTAL PROCEDURES 258	

Flystocks. Wild-type, W1118 (Mt2+/+), Mt2 null Mt2-/- (Dnmt299 (Schaefer et al., 2010)) and 259	

transgenic rescue Mt2-TG (w1118; pGeno>>Dnmt2-EGFP (Schaefer et al., 2008)) flies were 260	

maintained on standard corn meal medium at 25°C. Mt2-/- and Mt2-TG flies were provided by Dr. 261	

Frank Lyko (DKFZ, Germany) and Dr. Matthias Schaefer (MFPL, Austria, Vienna) respectively. 262	

The lines were validated by measuring transcript levels in Mt2(-/-), genomic PCR to confirm 263	

deletion as described by (Schaefer et al., 2010) and PCR followed by sequencing to confirm Mt2-264	

TG flies (data not shown). 265	

Survival Analysis. For survival assays, 30 three day old males from each genotype (Mt2+/+, Mt2 -266	

/- and Mt2-TG) were maintained on standard medium at 25 °C or 29 °C. Another set of 30 flies, 267	

each pricked with 1X PBS or a 20 Hour old culture of ampicillin resistant E. coli (DH5α). Dead 268	

flies were removed every day and food vials were changed every day. Surviving flies were scored 269	

for two weeks at both temperatures i.e. 25 °C as well as 29 °C. Thirty flies were tested for each 270	

genotype for each condition in biological quadruplets. Kaplain-Meier and Log Rank (Mantel-Cox) 271	

test was performed using GrapPad Prism 5.0 to analyze the data.  272	

Bacterial Clearance Assay. 2 day, 15 day and 30 day old male flies from each genotype (Mt2+/+, 273	

Mt2-/- and Mt2-TG) were pricked with E. coli and kept at 25 °C for 6 hours. Four live flies from 274	

each genotype were surface sterilized using 70% ethanol. Flies were air-dried and washed twice 275	

with autoclaved MQ under sterile condition, crushed in 100µL of LB and plated on Ampicillin 276	

containing Agar plates. Colony count was taken and plotted in the form of bar graph. The 277	

experiment was repeated thrice for each genotype. Results were analyzed using One-way ANOVA 278	

in GraphPad Prism 5.0. 279	
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Hemocyte count. Hemolymph was extracted as described (Neyen et al., 2014). In brief, 15 flies (1 280	

day and 15 day old males) from each genotype were placed on a 10 µM filter spin column 281	

(ThermoFisher, Cat. No. 69705), covered with 4 mm glass beads (Zymoresearch, Cat. No. S1001 282	

RattlerTM) and centrifuged for 20 min at 4 °C, 10 K rpm in a microcentrifuge. The extracted 283	

hemolymph was collected in 20µL of 1X PBS solution containing 0.01% phenylthiourea, to 284	

prevent melanization of hemolymph, and counted using a Brightline hemocytometer as described 285	

(Kacsoh and Schlenke, 2012). The experiment was repeated thrice for each genotype. The total 286	

number of hemocytes per fly was plotted and One-Way ANOVA was performed in GraphPad 287	

Prism 5.0 to analyze the results. 288	

Counting Crystal Cells in Larvae: Crystal cells were visualized by heating thirty 3rd instar larva 289	

from each genotype (Mt2+/+ and Mt2-/-) at 60 °C for 10 minutes. Photographs were taken using 290	

Zeiss microscope (AxioVision) and crystal cells were counted using ImageJ software. The results 291	

were analysed in GraphPad Prism 5.0 using Student’s t-test. 292	

Real time PCR. Total RNA was extracted from all the samples 0 and 6 hours of post infection 293	

(Direct-zol™ RNA MiniPrep Cat. No. R2050). cDNA was then synthesized from 1 ug total RNA 294	

using High capacity cDNA synthesis kit (Cat No. 4368814). Quantitative PCR experiments were 295	

accomplished with a StepOnePlus machine (ABI) and using SYBR Green (ABI, Catalog # 296	

4368706). Relative gene expression was calculated after normalization to the control RpL32/rp49 297	

mRNA. The primer sequences are available as Suppl. Table 2. 298	

SEM (Scanning Electron Microscopy). Hemocytes from 1 and 15 day old adult males for Mt2 +/+, 299	

Mt2 -/- genotypes were isolated as described in an earlier section. The drop of hemocytes was 300	

allowed to settle down on silicon wafer for 30 minutes at room temperature. Hemocytes were then 301	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362012doi: bioRxiv preprint 

https://doi.org/10.1101/362012
http://creativecommons.org/licenses/by/4.0/


	 16	

washed with 20µL of 1X PBS (Phosphate buffered saline, pH 7). 20µL of fixing solution (50% 302	

ethanol, 5% acetic acid and 1% Para-formaldehyde) was added on to cells and kept overnight at 303	

4O C in a clean chamber. Next day cells were washed with 50%, 70%, 90% and 100% ethanol, air 304	

dried and imaged using Zeiss FE-SEM. Circularity index was calculated using Image J software 305	

(Circularity plugin). A perfect circle gets indicated by circularity value of 1.0 and as this value 306	

gets closer 0, it indicates an elongated polygon. 307	

Lipid extraction for thin layer chromatography (TLC): Lipid isolation was done using a modified 308	

Folch extraction protocol (Kamat et al., 2015). Briefly, 5 whole adult males were crushed in 1ml 309	

DPBS in a glass vial and 1ml Methanol was added, and the mixture vortexed. Thereafter, 2ml of 310	

chloroform was added to these samples and vortexed vigorously. The sample was then centrifuged 311	

at 2800g for 5 minutes to separate the aqueous and organic phases. The organic phase (bottom) 312	

containing lipids was collected in clean glass vial. To enrich for phospholipids, the aqueous layer 313	

was acidified using 2.5% v/v formic acid, and re-extracted using 2 ml choloroform, and the two 314	

phases were separated by centrifugation at 2800g for 5 mins. The two organic phases were pooled 315	

and dried using N2 gas. The sample was spotted onto silica TLC plates using a glass capillary. The 316	

solvent system used was that of Wilfling et. al. (Wilfling et al., 2013) with minor modifications. 317	

The TLC was run using two different mobile phases sequentially. The first solvent was a mixture 318	

of n-hexane/diethyl ether/acetic acid (70:30:1). The first solvent was run halfway upto the top of 319	

the plate, after which the plate was air-dried. The plate was then run in solvent mixture of n-320	

hexene:diethyl ether (59:1). The plate was dried and visualized by spraying with 10% (w/v) CuSO4 321	

in 8% (v/v) H3PO4 followed by baking in the oven above 150oC for 20 mins. The plates were 322	

scanned and quantified using Image J-software. 323	
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Quantitative lipidomics: All lipid extractions were done as described above, with small 324	

modifications (Kamat et al., 2015). Briefly, the 5 whole adult males were washed with PBS (x 3 325	

times), and transferred into a glass vial using 1 mL PBS. 3 mL of 2:1 (vol/vol) CHCl3: MeOH with 326	

the internal standard mix (100 pmol of each internal standard listed in Suppl. Table 3) was added, 327	

and the mixture was vigorously vortexed. The two phases were separated by centrifugation at 328	

2800g for 5 minutes. The organic phase (bottom) was removed, 50 µL of formic acid was added 329	

to acidify the aqueous homogenate (to enhance extraction of phospholipids), and CHCl3 was added 330	

to make up 4 mL volume. The mixture was vortexed, and separated using centrifugation described 331	

above. Both the organic extracts were pooled, and dried under a stream of N2. The lipidome was 332	

re-solubilized in 200 µL of 2:1 (vol/vol) CHCl3: MeOH, and 20 µL was used for the targeted LC-333	

MS analysis. All the lipid species analyzed in this study were quantified using the multiple reaction 334	

monitoring (MRM) method (see Suppl. Table 3) on an AbSciex QTrap 4500 LC-MS with a 335	

Shimadzu Exion-LC series quaternary pump. All data was collected using the Acquisition mode 336	

of the Analyst software, and analyzed using the Quantitate mode of the same software.  The LC 337	

separation was achieved using a Gemini 5U C-18 column (Phenomenex, 5 µm, 50 x 4.6 mm) 338	

coupled to a Gemini guard column (Phenomenex, 4 x 3 mm, Phenomenex security cartridge). The 339	

LC solvents were: For positive mode: buffer A: 95:5 (vol/vol) H2O: MeOH + 0.1% formic acid + 340	

10 mM ammonium formate; and buffer B: 60:35:5 (vol/vol) iPrOH: MeOH: H2O + 0.1% formic 341	

acid + 10 mM ammonium formate, For Negative mode: buffer A: 95:5 (vol/vol) H2O: MeOH + 342	

0.1% ammonium hydroxide; and buffer B: 60:35:5 (vol/vol) iPrOH: MeOH: H2O + 0.1% 343	

ammonium hydroxide. All the MS based lipid estimations was performed using an electrospray 344	

ion source, using the following MS parameters: ion source = turbo spray, collision gas = medium, 345	

curtain gas = 20 L/min, ion spray voltage = 4500 V, temperature = 400 oC. A typical LC-run 346	
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consisted of 55 minutes, with the following solvent run sequence post injection: 0.3 ml/min 0% 347	

buffer B for 5 minutes, 0.5 ml/min 0% buffer B for 5 minutes, 0.5 ml/min linear gradient of buffer 348	

B from 0 – 100% over 25 minutes, 0.5 ml/min of 100% buffer B for 10 minutes, and re-349	

equilibration with 0.5 ml/min of 0% buffer B for 10 minutes. A detailed list of all the species 350	

targeted in this MRM study, describing the precursor parent ion mass and adduct, the product ion 351	

targeted can be found in Supp. Table 3B. All the endogenous lipid species were quantified by 352	

measuring the area under the curve in comparison to the respective internal standard and then 353	

normalized to the number of flies. All the data is represented as mean ± s. e. m. of 5 biological 354	

replicates per group (Suppl. Table 3). 355	

Sply activity assay: Total protein was isolated from 5 flies per replicate per genotype. 15 µg of 356	

proteome was incubated with 100 µM S1P (S9666, Sigma) in a reaction volume of 100 µL in PBS 357	

at 37oC with constant shaking. After 30 minutes the reaction was quenched with 350 µL of 2:1 358	

(vol/vol) CHCl3: MeOH, doped with 250 pmol internal standard, cis-10-heptadecenoic acid (C17:1 359	

FFA). The mixture was vortexed, and centrifuged at 2800 g for 5 minutes to separate the aqueous 360	

(top) and organic (bottom) phase. The organic phase was collected and dried under a stream of N2 361	

gas, re-solubilized in 100 µL of 2:1 (vol/vol) CHCl3: MeOH, and subjected to LC-MS analysis. A 362	

fraction of the organic extract (~ 20 µL) was injected onto an AbSciex QTrap 4500 LC-MS with 363	

a Shimadzu Exion-LC series quaternary pump. LC separation was achieved using a Gemini 5U C-364	

18 column (Phenomenex, 5 µm, 50 x 4.6 mm) coupled to a Gemini guard column (Phenomenex, 365	

4 x 3 mm, Phenomenex security cartridge). The LC solvents were: buffer A: 95:5 (vol/vol) H2O: 366	

MeOH + 0.1% ammonium hydroxide, and buffer B: 60:35:5 (vol/vol) iPrOH: MeOH: H2O + 0.1% 367	

ammonium hydroxide. A typical LC run consisted of 15 minutes post-injection: 0.1 mL/min 100% 368	

buffer A from for 1.5 minutes, 0.5 mL/min linear gradient to 100% buffer B over 5 minutes, 0.5 369	
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mL/min 100% buffer B for 5.5 minutes, and equilibration with 0.5 mL/min 100% buffer A for 3 370	

minutes. All MS analysis was performed using an electrospray ionization source in a MS1 scan 371	

negative ion mode for product formation (free fatty acid from S1P). All MS parameters were the 372	

same as those described in the MS-based lipids profiling method described above.  Measuring the 373	

area under the peak, and normalizing it to the internal standard quantified the product release for 374	

the lipid substrate hydrolysis assays. The substrate hydrolysis rate was corrected by subtracting 375	

the non-enzymatic rate of hydrolysis, which was obtained by using heat-denatured proteome (15 376	

minutes at 95 ºC, followed by cooling at 4 ºC for 10 mins x 3 times) as a control. All the data is 377	

represented as mean ± s. e. m. of 3 biological replicates.  378	
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FIGURE LEGENDS 

Fig. 1: Life span and bacterial clearance assays suggest a decline in immune function for 

Mt2-/- flies. 

 (A) Mock infected Mt2-/- flies show a shorter lifespan when compared to mock infected Mt2+/+ 

animals. When infected with E. coli, Mt2-/- flies show enhanced lethality at 25 °C and 29 °C (data 

not shown), when compared to infected Mt2+/+ flies. Infected Mt2-/- flies show increased mortality 

as compared to mock infected Mt2-/- flies. Experiments were in biological triplicates, with life 

spans curves analyzed using Log-rank (Mantel-Cox) Test, in GraphPad Prism version 5. Analysis	

indicates that the curves Mt2-/- (mock) vs Mt2-/- (infected) as well as the Mt2-/- (infected) vs Mt2+/+ 

(infected) differ significantly (p<0.0001). 

(B) Total bacterial colony forming unit (cfu) count at 0h and 6h post infection for 2 day old Mt2+/+, 

Mt2-/- and Mt2-TG males at 25 °C. The Mt2-/- flies fail to clear bacterial load to the same extent as 

wild type, 6h post infection. The data represents three independent biological replicates. Data 

analyzed by 1-way ANOVA. For all figures henceforth, ‘*’, indicates p<0.01, ‘**’, p<0.05 and 

‘***’, p<0.001.  

(C) Cfu count for ageing flies at day 1, day 15 and day 30 post eclosion. The 6h post-infection cfu 

was normalized to the mean 0h cfu in each case. 2-way ANOVA post arcsine transformation was 

used to test significance. 1 day old Mt2-/- flies showed a mild deficiency in their ability to clear 

bacteria, which worsened dramatically with age. N (biological replicates) =3, n (number of flies, 

for each day/time-point and each genotype) =4. 
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Fig. 2: Hematopoiesis is disturbed in Mt2-/- animals.  

(A) The total hemocyte count for 1 day and 15 day old Mt2+/+, Mt2-/- and Mt2-TG flies indicates 

increase in plasmatocyte number with age for Mt2-/- animals, a trend opposite to that of the controls. 

The data shown represents three independent biological replicates with 15 males per replicate. 

1Way ANOVA followed by tukey test was performed for statistical analysis. N=3, n=15. 

(B) Plasmatocytes from 15 day old flies imaged using SEM at 5K magnification show that Mt2-/- 

show ‘sickle-cell’ morphology, as compared to nearly round cells seen in wild type flies. The bar 

indicates a linear scale of 2 µM. 

(C) The linear dimensions of individual cells from SEM images were analyzed using ImageJ and 

the roundness for each cell was plotted in GraphPad Prism version 5. N=3; n=4. Student’s t-test 

was used for statistical analysis. 

(D) serpent(srp) transcript levels, as measured by real-time qPCR were reduced by half in Mt2-/- 

animals, without infection. 1WAY ANOVA followed by Tukey’s test were performed as a test of 

significance.  N=3, n=5. 

(E) Real time qPCR for eater and u-shaped was carried out for 15 day old flies’ pre and post 

infection. The data is a mean of three independent biological replicates (N=3), with 5 animals per 

experiment (n=5). Interestingly, the production of AMPs and cellular immunity players appear to 

be lowered with age in Mt2-/- flies in comparison with Mt2+/+. 
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Fig. 3: Transcriptional response by AMP genes to infection is weaker in 15-day old Mt2-/-  

flies.  

Real Time qPCR was used to measure levels of dipt, att-D and drs in response to infection for 3 

day and 15 day old adult Mt2+/+, Mt2-/-and MT2-TG flies. Flies were infected and transcript levels 

measured at 0 and 6h post infection. Transcripts were normalized to rp49 and relative fold values 

(6 hrs / 0 hrs) were plotted. 1way ANOVA followed by Tukey’s test was performed as a test of 

significance. N=3, n=5. 

(A) Three day old flies show strong activation of all three AMPs. Activation of AMPs in Mt2-/-

animals is stronger, with dipt and drs levels being statistically significant. 

(B) Fifteen day flies show significantly lower levels of activation for all three AMPs, post 

infection.   

Fig. 4: Spingosine-1-Phosphate, Ceramides levels increase while Triacylglycerol levels fall 

with age in Mt2-/- flies.   

(A) Age dependent drop in TAGs as measured by decrease in band intensities, separated by thin 

layer chromatography. Chi square test for trend was used for analysis. N=1, n=15. 

(B) Heat map that summarizes fold changes in categories of lipid moieties compared between Mt2-

/- and Mt2-TG, when normalized to Mt2+/+, for fifteen day old adult male flies. Red color indicates 

increase while blue color is fold decrease. S1P and Ceramide levels are 4 fold and 2 fold higher, 

respectively in Mt2-/- flies, while Sphingomyelin, Sphingosine, Free fatty acids and overall 

phospholipid levels do not change significantly. TAGs, PE and PA show ~2 fold decrease in levels. 

Data for individual lipid moieties can be found in Suppl. Fig. 1B and Suppl. Tables. N=5, n=2. 
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 (C) Age dependent assay measures S1P levels in adult flies from day 1 to day 15. When compared 

to Mt2+/+ or Mt2-TG, S1P levels in Mt2-/- flies start accumulating 5 days post eclosion. By day 10, 

the levels are approximately 5-fold higher than that of controls. N=4, n=2. 

(D) Enzyme activity assay shows change in Sply activity in Mt2-/- adult whole body extracts from 

day 1 to day 15. Sply activity does not increase in Mt2-/- flies with age as compared to controls.  

N=3, n=5. 

Fig. 5: Mt2 has a systemic role in providing a robust, age dependent immune function in flies. 

 (A) Sphingolipid metabolic pathway in Drosophila. Metabolites are in black font while enzymes 

that are implicated in their conversion are in blue. Lipidomics data suggest age dependent changes 

in Mt2-/- flies, with increase in S1P levels, a result in agreement with decrease in activity of Sply. 

Decrease in Sply activity may also explain the reduction in levels of PE. TAG levels also fall with 

age. 

(B) Model for a role for Mt2 in immunity and aging. Mt2 appears to function by regulating both 

the cellular and humoral arms of the innate immune response in adult flies, with lipid metabolism 

being a critical component for a robust response. At the molecular level, this effect would be via 

methylation of DNA which will regulate transcription or via methylation of tRNA, which would 

regulate tRNA stability and thus affect total protein activity. The model incorporates data from 

this study (arrows) as well as interactions found in literature (dotted arrows). The number on the 

dotted line indicates the source of the data. 1(Oskouian et al., 2005), 2 (Adada et al., 2015; Kraft, 

2016), 3 (Hinkovska-Galcheva et al., 2003; Tafesse et al., 2015), 4 (Ramet et al., 2002; 

Shlyakhover et al., 2018). 
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SUPPL. TABLES (XLS files) 

Suppl. Table 1: Lipid data collected for fifteen day old Mt2+/+, Mt2-/-  and Mt2-TG animals. 

A (Tab1) LC-MS quantitation of different categories of lipids.  

B (Tab 2). Details of the Multiple reaction monitoring transitions for the different lipids measured 

in the experiments. 

Suppl. Table 2: Primers used for RT-PCR, sequencing and validation. 
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A. Crystal cell numbers are ~2-fold higher in Mt2-/- larvae when compared to Mt2+/+ suggesting a role for Mt2 in regulating larval hematopoiesis. 
Crystal cells were counted in three abdominal segments. N=3, n=4.  This is the earliest  phenotype seen in Mt2-/- flies.

B. Quantitative lipidomics measuring changes in lipid moieties in 15 day old Mt2+/+, Mt2-/- and Mt2-TG flies. Sphingomyelin, Sphingosine, Free fatty 
acids and overall phospholipid levels do not change significantly while S1P, Ceramides and TAGs show significant changes. 1Way ANOVA followed by 
tukey test was performed. N=5.
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