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Abstract 

Knowledge of chromosome-length haplotypes will not only advance our understanding of the 

relationship between DNA and phenotypes, but also promote a variety of genetic applications. Here 

we present Hapi, an innovative method for chromosomal haplotype inference using only 3 to 5 

gametes. Hapi outperformed all existing haploid-based phasing methods in terms of accuracy, 

reliability, and cost efficiency in both simulated and real gamete datasets. This highly cost-effective 

phasing method will make large-scale haplotype studies feasible to facilitate human disease studies 

and plant/animal breeding. In addition, Hapi can detect meiotic crossovers in gametes, which has 

promise in the diagnosis of abnormal recombination activity in human reproductive cells. 
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Introduction 

A haplotype in a diploid individual is a set of DNA variants on a chromosome that are co-

inherited from a parent. Knowledge of haplotypes has an essential role in interpreting personal 

genomes and guiding individualized treatment plans in precision medicine [1, 2]. Haplotype data 

have also been utilized in many areas of genetic studies, including imputation of low-frequent 

variants [3, 4] and characterization of DNA-phenotype associations [5, 6]. Numerous GWAS studies 

have indicated that while single-SNP analysis is not optimal, joint analysis of multiple SNPs along 

chromosomes, i.e., haplotypes, showed significantly increased power for detection of genetic 

determinants for complex traits [7, 8]. 

Determination of haplotypes, termed phasing or haplotyping, is the process of inferring 

haplotype architecture based on genotypic data using statistical or bioinformatic approaches. The 

most widely used haplotyping strategy is to phase common genetic variants using population data 

[9-16]; however, this approach is incapable of phasing de novo mutations, rare variants or structural 

variants, and is limited to infer short-range haplotype fragments, which constrains its use in genetic 

studies as well as precision medicine [2]. Experimental approaches targeting whole-chromosome 

phasing involve the physical separation of homologous chromosomes in diploid cells using 

chromosome microdissection, FACS-mediated chromosome sorting, or microfluidics, followed by 

single-chromosome sequencing [17-19]. Nevertheless, these approaches usually require 

specialized equipment which is expensive and are typically time-consuming. Numerous 

sequencing technologies including fosmid-based dilution pool sequencing, long fragment read 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/361873doi: bioRxiv preprint 

https://doi.org/10.1101/361873
http://creativecommons.org/licenses/by-nc-nd/4.0/


(LFR) technology, PacBio single molecule real-time (SMRT) long-read sequencing, 10X Genomics 

linked-read sequencing, and proximity ligation (Hi-C) sequencing can also be employed to generate 

long-range haplotype fragments [20-23]. A novel single-cell DNA template strand sequencing 

(Strand-seq) technique has been invented to sequence either Watson strand or Crick strand of a 

chromosome in a diploid somatic cell and phase chromosomal haplotypes using pooled Strand-

seq libraries [24, 25]. However, the cost associated with these sequencing technologies are still 

high, making large-scale research infeasible. 

Gamete cells such as pollen grains in plants or sperms and eggs in animals are the natural 

packaging of haploid complements that are formed by meiotic recombination. Using haploid data 

of single gamete cells may substantially reduce the complexity in inferring the donor’s chromosomal 

haplotypes, compared to the phasing approaches using diploid data of somatic cells. However, the 

development of gamete-based phasing methodologies is still in the early stage, requiring either a 

large number of gametes or manual inspection for assembly to ensure phasing accuracy [26-28]. 

No cost-efficient and user-friendly software has been made available for phasing chromosome-

length haplotypes with gamete data. To fill this void, we developed an innovative method, named 

Hapi (Haplotyping with imperfect genotype data), for a fully-automatic inference of an individual’s 

chromosomal haplotypes using 3 to 5 gametes, given the heterozygous loci are already known for 

the genome of this individual. Comprehensive comparisons, involving the use of a simulated 

dataset, a maize microspore dataset, and a human sperm sequencing dataset, demonstrated that 

the new Hapi method outperformed two existing approaches in terms of phasing accuracy and cost 
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efficiency. The results also suggested that chromosomal haplotypes may be inferred by using only 

3 gamete cells if the genotype data are of high quality. Simple, inexpensive and reliable techniques 

for isolation, lysis, and whole-genome amplification (WGA) of single gamete cells allied with the 

new Hapi method will make the genome-wide haplotype association study (GWHAS) affordable 

and feasible. In addition, the crossover analysis module in the Hapi R package can be used for 

analysis of crossovers on gamete chromosomes, which will facilitate research on meiotic 

recombination and also potentially lead to adoption by the public health sector, such as diagnosis 

of abnormal recombination activity in human sperms and eggs to aid in reducing infant mortality, 

birth defects, and miscarriages. 

 

Results 

Implementation of Hapi  

Implementing the Hapi algorithm to phase an entire chromosome consists of three steps: (1) 

data preprocessing, (2) inference of draft haplotypes, and (3) assembly of high-resolution 

chromosomal haplotypes (Fig. 1). In step (1), markers with potential genotyping errors in any 

gamete cells are filtered out via an iterative Hidden Markov Model (HMM) analysis of gamete pairs 

(Supplementary Fig. 1; see Methods). A subset of markers, which have been successfully 

genotyped in at least 3 gametes, are selected to form a “precursor” framework. In the framework, 

missing data in each gamete are iteratively imputed using supporting data in other gametes 

(Supplementary Fig. 2; see Methods). The markers, usually of a small number, with missing data 
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that cannot be fully resolved by imputation are eliminated, resulting in the final framework for 

building draft haplotypes. In step (2), the draft haplotypes are derived by sequentially analyzing 

pairs of adjacent framework markers using the majority voting method, through which the 

haplotypes for each marker pair are determined by the link type represented in the majority of the 

gametes (Supplementary Fig. 3; see Methods). The maximum parsimony of recombination (MPR) 

principle is then adopted to proofread disputable positions of the draft haplotypes (Supplementary 

Fig. 4; see Methods). In step (3), each gamete chromosome is compared to the draft haplotypes 

to identify haplotype-converting points (HCPs) to deduce gamete-specific haplotypes, with the non-

framework markers being phased. Consensus high-resolution haplotypes are eventually 

determined from these gamete-specific haplotypes by voting for the major allele at each locus 

(Supplementary Fig. 5; see Methods). 

A user-friendly R package has been developed for implementing the Hapi algorithm to infer 

chromosome-length haplotypes using single gamete cells. Hapi uses genotype data of hetSNPs in 

individual gametes and outputs the high-resolution chromosomal haplotypes as well as confidence 

level of each phased hetSNP. The package also includes a crossover analysis module allowing 

downstream analyses and visualization of crossover positions identified in the observed gametes 

(Fig. 1). The Hapi package is publicly available at https://github.com/Jialab-UCR/Hapi. 
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Fig. 1: Flowchart of the Hapi phasing pipeline. 

 

Comparison of phasing methods in a simulated dataset 

We carried out a comprehensive simulation study to compare the performance of Hapi with 

the other two competitive methods, One-Versus-All (OVA) [28] and Pairwise HMM (PHMM) [26]. 

Three factors that may affect phasing accuracy and cost efficiency were considered in each 

scenario, i.e., (1) the number of hetSNP markers on the chromosome, (2) the number of gametes, 

and (3) the frequency of missing genotype data. In the simulated dataset, a pool of 100 haploid 

gametes was generated from a single diploid donor. The number of hetSNPs on the chromosome 

ranged from 5,000 to 1,000,000. Three to fifteen gametes, each with 0 to 3 crossovers on the 

chromosome, were arbitrarily selected from the 100 haploid gametes without replacement. 10% to 

70% of missing genotype data were randomly introduced to each simulated gamete chromosome. 

Moreover, 1% genotyping errors were randomly placed on the simulated gamete chromosomes. 

We compared the three methods under different scenarios with predetermined number of gametes, 

number of hetSNPs, and missing genotype rate. 100 replicates were performed for each scenario. 
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A successful inference was defined if more than 99% of hetSNPs were correctly phased in each 

replicate run. 

The results indicated that Hapi outperformed the other two methods in both phasing accuracy 

and cost efficiency (Fig. 2). When 5,000 hetSNPs per chromosome were considered, Hapi only 

needed 6 gametes to correctly infer haplotypes even with 60% of missing genotype data. For OVA, 

at the missing rate of 50%, the first 100% correct inference of haplotypes occurred when 7 gametes 

were used. However, when more gametes were included in the analysis, the performance of OVA 

was not monotonically increased, indicating a lack of reliability and robustness of the method. If 70% 

of the marker data were missing, Hapi was able to reconstruct haplotypes correctly with 11 or more 

gametes; whereas, OVA failed to do so even when all 15 gametes were used. With increased 

density of hetSNPs, fewer gametes were needed and a higher rate of missing genotypes can be 

tolerated for both methods to correctly phase the chromosome, however, Hapi always outcompeted 

OVA by requiring fewer gametes and allowing more missing data. The results also indicated that 

only 3 gametes may be enough for successful inference of chromosomal haplotypes when gamete 

data are of high quality. PHMM behaved quite differently from the other two methods. The 

performance of PHMM did not change with the rate of missing data, while the performance was 

barely improved with the increase in number of hetSNPs. Rather, the phasing accuracy of PHMM 

depended on the number of gametes used in analysis. In general, many more gametes are required 

for PHMM to infer correct haplotypes than the other two methods. 
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Fig. 2: Performances of three methods (Hapi, OVA, and PHMM) in the simulated dataset for 5,000 to 100,000 

hetSNPs per chromosome. The number in each heatmap grid denotes for how many times out of the 100 replicates the 

haplotypes are incorrectly inferred in that scenario. 

 

Comparison of phasing methods in the maize microspore dataset 

A maize microspore sequencing dataset from F1 hybrid individuals of a cross between two 

inbred lines [29] was used to further evaluate the performance of the three methods. This is an 
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ideal validation dataset since the parental haplotypes are known. To avoid using microspores from 

the same meiosis event, one microspore from each of the 24 tetrads was randomly selected to 

form a 24-gamete pool. The number of hetSNPs on the maize chromosomes ranges from 42691 

(Chr10) to 82689 (Chr1). The average rate of missing genotype data for 10 chromosomes across 

the 24 selected gametes is about 50%, with the maximum missing rate equal to 72.46% 

(Supplementary Table 1). To phase a maize chromosome, the 24 selected gametes were sorted in 

descending order of missing rates on that chromosome, i.e., the first gamete in the sorted list has 

the most missing data for the chromosome. 3 to 15 gametes were sequentially selected from the 

sorted list and analyzed with the three methods, respectively, to infer haplotypes for that 

chromosome. This process was repeated to phase all 10 chromosomes, yielding a total of 390 

scenarios (13 numbers of gametes × 10 chromosomes × 3 methods). In each scenario, the phased 

chromosome was compared with the known parental haplotypes to calculate phasing accuracy. A 

successful inference of chromosomal haplotypes is defined if > 99% of the markers were correctly 

phased. 

The results indicated that the Hapi method can achieve phasing accuracies of greater than 

99.9% in most scenarios, with two exceptions at 98.46% for Chr2, and 99.89% for Chr6, 

respectively. The accuracy lower than 99% happened when only 3 gametes were analyzed for 

phasing Chr2 (Fig. 3). A close look at Chr2 of these 3 gametes disclosed two crossovers on two 

gamete chromosomes in a small region (39 hetSNPs in between) near one end of the chromosome. 

In order to construct a reliable draft haplotype, Hapi, by default, excludes any small block (< 100 
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hetSNPs) delimited by two close-in crossovers from the draft haplotypes, prior to implementation 

of MPR; thus, in some cases, the phase of the two merging framework markers may be incorrectly 

inferred by misinterpreting the link types in between due to the removed two crossovers. On the 

other hand, at least 6 and 7 gametes are required for OVA and PHMM, respectively, to achieve a 

phasing accuracy of > 99% for all the 10 chromosomes. 

 

Fig. 3: Performances of three methods (H: Hapi, O: OVA, and P: PHMM) on phasing 10 chromosomes of maize in 

the maize microspore sequencing dataset. 
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Comparison of phasing methods in the human sperm dataset  

To further benchmark the three phasing methods, a human sperm sequencing dataset 

consisting of 11 independent sperm cells from the donor of the HuRef diploid genome sequence 

was used [28]. Although the true haplotypes for this donor are unknown, a ‘phased’ genome 

consisting of 1.82 million hetSNPs has been suggested based on a joint analysis of these 11 

sperms sequenced at 1.5~3.7× coverage and 16 additional sperms genotyped using the Illumina 

HumanOmni-Quad v1.0 BeadChip (array data not publicly available) [28]. The raw sequencing data 

of the 11 sperm cells were downloaded and 1.66 million out of the 1.82 million hetSNPs were called 

in at least one sperm. The number of hetSNPs on 22 autosomes ranges from 15340 (Chr22) to 

141669 (Chr2), and the rate of missing genotype data ranges from 70.95% to 86.49% 

(Supplementary Table 2). When phasing a human chromosome, the 11 sperms were sorted in a 

similar manner as for the maize data based on the missing genotype rates. 3 to 11 sperms were 

sequentially selected from the sorted list and analyzed using the three methods described above 

to infer chromosomal haplotypes which were then compared with the hetSNPs ‘phased’ in the 

original study[28] to calculate the concordance rate. Since the chromosomal haplotypes suggested 

in the original study may be subject to errors, we relaxed the criterion in the sperm analysis by 

defining a successful inference of haplotypes if > 95% of phased markers are in agreement with 

the haplotypes suggested by Kirkness et al [28]. 

The results showed that Hapi can correctly phase all 22 autosomes with 3 sperms; whereas, 

OVA and PHMM required at least 7 and 8 sperms, respectively, to achieve the same level of 
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accuracy (Fig. 4). When 7 or less sperms were used, Hapi performed consistently well but the 

performances of OVA and PHMM fluctuated wildly, indicating Hapi provides more reliable phasing 

results with small samples. Interestingly, PHMM can correctly infer the haplotypes of chromosome 

1 with 6 to 10 gametes but failed when all 11 sperms had been used. Although a consistency of 

95% was used to determine the success of haplotype inference, Hapi achieved > 99% of 

consistency for 82% of the scenarios (164 out of 198). For Hapi, the majority of scenarios with 

consistencies of 95%~99% were for the analyses of Chr15, Chr16, and Chr21, which also appeared 

to be challenging to the other two approaches, suggesting a complication in the genotype data for 

these chromosomes. Overall, among the 1.66 million hetSNPs phased by Hapi using all the 11 

sperms, 99.73% (1,658,197/1,662,611) of them are concordant with the haplotypes suggested by 

Kirkness et al [28]. An inspection of the non-concordant hetSNPs showed that 49.1% of them are 

only supported by 1 sperm and 33.4% of them have discordancy among 2 or more supporting 

sperms. The disputably phased hetSNPs tend to cluster around the centromere or at either end of 

the chromosomes (Supplementary Fig. 6). The hetSNPs that are not in agreement between Hapi 

and the suggested haplotypes on Chr15 are evenly distributed along the chromosome, which might 

be ascribed to the complication in data of sperm Y47 being contaminated by DNA from other lysed 

cells as mentioned in the original paper [28]. The results showed that phasing Chr15 is equally 

challenging for OVA and PHMM. Compared with Hapi, the major deficiency in haplotype phasing 

with OVA and PHMM is due to their core strategy of a direct inference of crossover positions, which 

is sensitive to the regions with ambiguous genotypes or complications caused by multiple 
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crossovers in more than one gamete. For example, as shown in the Supplementary Fig. 7, if 10 

sperms were analyzed, a crossover on Chr1 in the sperm X69 (reference chromosome) was not 

claimed because it was only supported by 5 out of 9 other sperms and missed the cutoff of ≥ 0.6 

for determining a crossover. However, when including the 11th sperm, the crossover became 

supported by 6 out of 10 sperms, which claimed a false crossover and yielded an incorrect gamete-

specific haplotype. In Hapi, such genomic regions harboring complicated multiple cv-links will be 

excluded from the draft haplotypes to reduce the chance of phasing errors. In addition, a special 

capping function has been designed in Hapi to phase either end of the chromosome, which are 

usually excluded from the framework but may also involve recombination. The OVA method, which 

also leverages draft haplotypes for phasing a chromosome, cannot handle recombination beyond 

the framework. 
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Fig. 4: Performances of three methods (H: Hapi, O: OVA and P: PHMM) on phasing 22 autosomes in the human 

sperm dataset. The 3 outer circles show the phasing concordance with the suggested haplotypes [28] for each method 

using 3 to 11 sperms. The 6 inner circles are the haplotypes inferred by the 3 methods using 3 sperms with the most missing 

genotypes. 

 

Recombination analysis in the human sperm dataset 

With the phased chromosome-length haplotypes, an HMM was used to infer crossover 

positions in the sperm genomes by successively contrasting hetSNPs in each sperm with the 
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inferred chromosomal haplotypes (Supplementary Fig. 8).  

A total of 254 crossovers along the 22 autosomes were identified in the 11 sperms with an 

average of 1.05 per chromosome. Compared with the 260 crossovers identified in the original paper 

[28], 251 were also identified by the Hapi method (Supplementary Table 3). The 12 inconsistent 

crossovers are all located at the ends of chromosomes, and such inconsistency may be ascribed 

to either of two following reasons. (1) In general, the OVA method in the original paper cannot 

accurately infer haplotypes at the chromosome ends, yielding incorrect crossovers in those regions. 

(2) The observed double crossovers in a very small region are considered to be either caused by 

a gene conversion event or consecutive genotyping errors and thus are filtered out by Hapi. The 

number of crossovers was counted in each bin (5Mb in length) along 22 autosomes and 

distributions of the 254 crossovers are depicted in Fig. 5A. The resolution of crossover locations 

ranges from 79bp~788kb with a median of 89.3kb, which is roughly the same as the 82.5kb 

resolution reported in the original paper [28]. Over 75% of the 254 crossovers were located within 

an interval of < 200kb (Fig. 5B). Distribution of distances between any two chromosomally adjacent 

crossovers was provided (Fig. 5C), which can be used for recombination-relevant research 

including location of hot spots or interference in the formation of chromosomal crossovers during 

meiosis. Functions for downstream analysis and visualization are included in the ‘crossover 

analysis’ module of the Hapi package. 
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Fig. 5: Crossover analysis in the human sperm sequencing dataset. (A) The distribution of 254 identified crossovers 

on the 22 autosomes. (B) The distribution of the crossover resolutions (distance between two adjacent markers that 

involve a crossover). (C) The distribution of distances between two neighboring crossovers. 

 

Discussion 

Current diploid-based haplotyping methods are costly or only produce haplotype fragments, 

whereas, haploid-based alternatives using gamete data may break through such boundary to infer 

chromosome-scale haplotypes for individual genomes. Two haploid-based phasing methods both 

rely on the accurate detection of crossover positions on gamete chromosomes, which may be 
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challenging for complex chromosomal regions with many repetitive DNA elements, such as large 

segmental duplications. The existence of missing and ambiguous genotype calls makes the task 

even harder, leading to inaccurately phased haplotypes. In this study, we developed a highly 

efficient algorithm that only requires 3 to 5 gametes to correctly reconstruct high-resolution 

chromosomal haplotypes. 

Using simulated and real sequencing datasets, we demonstrated that Hapi outperforms the 

other two methods in phasing accuracy, reliability, and cost efficiency. To achieve the same level of 

phasing accuracy, Hapi required fewer gametes and can tolerate more missing genotypes than the 

other two methods. This is not only because of the sophisticated and improved phasing strategy, 

but also due to the novel algorithms for handling imperfect data (missing and erroneous genotypes). 

When different numbers of gametes were used for phasing, Hapi performed consistently well but 

the performances of OVA and PHMM fluctuated wildly, indicating the new Hapi method handles 

ambiguous data from a small number of gametes very well and produces reliable phasing results. 

Supplementary Fig. 9 provides an example of showing deficiencies for OVA and PHMM when 4 

gametes are analyzed. If two crossovers, one in a gamete and the other one in another gamete, 

are located in a 1Mb region, OVA cannot detect any crossover while PHMM detects 4 crossovers, 

suggesting that neither method is capable of phasing chromosomes when multiple crossovers 

occur in multiple gametes within a very small chromosomal region (such as a recombinational “hot-

spot”). In contrast, this challenge can be well resolved by the majority voting and MPR strategies 

implemented in the Hapi method. Since ambiguous genotypic data sometimes occurs at the 
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chromosome ends, a special capping algorithm has been designed in the Hapi method to polish 

the haplotypes in those regions. 

Our study also indicated that 3 gametes may be enough to reconstruct chromosome-length 

haplotypes by Hapi if the genotype data are of high quality, i.e., with few missing or erroneous data. 

It should be noted that using 3 gametes may fail in a special scenario when two sampled gametes 

each have a crossover within a very small region. This is because, in the step of proofreading draft 

haplotypes, small blocks with little genotype information are excluded from the draft haplotypes by 

default, assuming the probability of having multiple crossovers within these blocks in more than 

one gamete is low. In this specific but rare scenario, removal of such blocks may lead to the wrong 

determination of the major link type and thereafter the haplotypes. If only 3 gametes are available, 

it is recommended to implement the Hapi method with and without removing blocks in constructing 

draft haplotypes and check the consistency in results from two different settings. 

Unlike existing phasing algorithms that demand sequencing long-reads or linked-reads in 

diploid cells, the Hapi method can analyze hetSNPs data of single gamete cells generated using 

any genotyping platform. Either nucleobases (A/T/C/G) or binary code (0/1) can be used as the 

input genotypic data for hetSNPs in gamete genomes. Advanced technologies, such as 10X 

Genomics linked-read sequencing, are not necessary for the Hapi method, but may be used as 

ancillary approaches to generate designated long-range haplotype fragments for complex and 

challenging genomic regions, further perfecting the chromosomal haplotypes inferred by the Hapi 

method. 
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As a cost-effective method for inferring chromosome-length haplotypes of individual genomes, 

the new Hapi method has made GWHAS feasible and affordable, which will inspire innovative ideas 

and advance our understanding of the relationship between DNA and phenotypes. Another 

important application of the Hapi package is to implement the crossover analysis module to derive 

maps of recombination in gametes based on the inferred chromosome-length haplotypes, which 

will facilitate recombination-relevant research in humans and may be translationally applied in 

clinical labs to manage human diseases that are associated with abnormal recombination. This 

unique function can also be used to monitor the crossovers on plant genomes to facilitate more 

rapid introgression of target genes or to break up undesirable linkages for crop improvement. 
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Materials and Methods 

Key Component Algorithms Employed in Hapi 

1. HMM for detection of genotyping errors 

Enlightened by a previous study [26], a HMM is adopted to linearly scrutinize hetSNP markers 

along the chromosome in two gametes to identify markers bearing genotyping errors 

(Supplementary Fig. 1). In the HMM, there are two observations ‘s’ and ‘d’ indicating the two 

possible outcomes, either same or different, in terms of the relationship of observed genotype calls 

at a hetSNP locus between two gametes. Two hidden states, ‘S’ and ‘D’, represent the invisible 

relationship between the true genotypes of this marker in these two gametes, with ‘S’ and ‘D’ 

denoting the same and different genotypes, respectively. The initial probabilities of the two states 

are 0.5. Because the observed genotype outcomes may be different from the hidden states due to 

the genotyping errors at rate E, the emission probabilities to observe the same genotype calls, i.e., 

s, given the S hidden state is 1-2E(1-E) and to observe the different genotype calls, i.e., d, is 2E(1-

E). The emission probabilities given the D state are defined in the same way. A transition is defined 

as a change in state when scanning two adjacent markers, indicating that a meiotic recombination 

likely occurs between these two markers on either gamete chromosome. Suppose the 

recombination frequency is R, the transition probabilities from one state to itself is 1 - 2R × (1 - R), 

and to the other state is 2R × (1-R). After defining the HMM, Viterbi's algorithm [30] can be used to 

determine the most likely hidden state for each marker. Markers with genotyping errors are 

determined where there are conflicts between the observed outcomes and the inferred states. The 
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HMM is iteratively applied to all gamete pairs for the detection of disputable SNP loci with potential 

genotyping errors. 

2. Imputation of missing genotypes 

We define a framework as a set of selected hetSNPs for constructing draft haplotypes for each 

chromosome. Missing data for the framework markers in the gametes are imputed in an iterative 

manner (Supplementary Fig. 2). When a missing region (either a single marker or consecutive 

markers) of a ‘target’ gamete is to be imputed, the two markers immediately around this region, 

called comparator markers, are first compared with those in other ‘support’ gametes. The missing 

region can be imputed with the information from a support gamete cell only if the genotype calls for 

these two comparator markers in the target gamete are either both identical or both complementary 

to those in the support gamete. For example, if genotype calls of the two comparator markers in 

the target gamete are both identical to those in the support gamete, the missing region on the target 

gamete is simply imputed with genotype calls of markers in the same region in the support gamete. 

Otherwise, the missing region in the target gamete is imputed with the reciprocal genotypes in the 

support gamete. Missing genotypes in one gamete can be eventually resolved only if the 

imputations are supported by more than 2 support gametes and no imputation conflict is incurred. 

Once all the gametes are imputed in one iteration, genotypes in the missing regions are updated 

and the entire process described above will be repeated until no more missing data can be further 

imputed.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/361873doi: bioRxiv preprint 

https://doi.org/10.1101/361873
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. Majority voting 

With the assumption that recombination is generally rare on the chromosome and even rarer 

between two neighboring framework markers (a small region) in multiple gametes, the haplotypes 

of these two adjacent framework markers are deduced by analyzing genotype links (genotype 

patterns for these two markers) across all gametes based on the majority voting principle. There 

are two types of links between these two neighboring framework markers, i.e., type I links include 

genotype patterns 0-0 and 1-1 and type II links include genotype patterns 0-1 and 1-0, where 1 and 

0 represent two complementary genotype calls that are arbitrarily and independently assigned at 

either locus (Supplementary Fig. 3). The most frequent link type is determined as hap-link which 

represents the likely haplotypes for the two framework markers, whereas the minority link type is 

considered as cv-link arising from a crossover. The final draft haplotypes can be deduced through 

walking and voting along the framework of the chromosome. 

4. Maximum parsimony of recombination 

Maximum parsimony of recombination (MPR) [31], an optimality criterion to search for the 

haplotype arrangement with minimum number of crossovers in a chromosomal region across all 

gametes, is adopted by Hapi to proofread the equivocal regions (two adjacent framework markers) 

of draft haplotypes where disputable cv-links have been observed. When five or more gametes are 

analyzed, we treat any two adjacent markers with 2 or more cv-links as candidate regions for 

proofreading (Supplementary Fig. 4). If very few (e.g., 3 or 4) gametes are in use, every two 

adjacent markers with any cv-link are subject to proofreading. The draft haplotypes are first 
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segmented into blocks by the equivocal regions. Small blocks (< 100 hetSNPs) with little genotypic 

data are excluded from the construction of the draft haplotypes. To phase two neighboring blocks, 

raw genotype calls (with possible missing data) of the joining hetSNPs markers, i.e., the last 100 

consecutive hetSNPs in the first block and the first 100 consecutive hetSNPs in the second block, 

are retrieved. Since haplotypes within each block are unambiguous, there are only two possible 

combining haplotypes for these two blocks. The total number of crossovers in all gametes are 

counted given the two combining haplotypes, and the one generating less crossovers is preferred 

by the MPR algorithm. 

5. Assembly of consensus chromosome-length haplotypes 

We arbitrarily select one of the inferred draft haplotypes and use it as a blueprint to deduce 

gamete-specific haplotypes and eventually assemble the chromosome-length consensus 

haplotypes through three steps (Supplementary Fig. 5). In step 1, genotype calls of framework 

markers in each gamete chromosome are compared to the blueprint to identify haplotype-

converting points (HCPs) which are caused by potential recombination. These HCPs partition each 

gamete chromosome into k haplotype segments, where k-1 is the number of HCPs identified for 

this gamete chromosome. For the segments 1 through k, genotype calls of hetSNPs in every 

second segment are flipped to form a gamete-specific haplotype, where ‘flip’ refers to switching the 

current genotype call to its reciprocal genotype. In step 2, each gamete-specific haplotype is 

synchronized with the blueprint by either remaining the same or flipping over the genotypes of 

entire chromosomal hetSNPs. In step 3, the first consensus chromosome-length haplotype is 
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reconstructed via voting for the most frequent allele at each hetSNP locus across all the gamete-

specific haplotypes. The second consensus haplotype is obtained by simply flipping genotypes of 

hetSNPs on the first chromosome-length haplotype. 

If a crossover occurs at the end of a gamete chromosome where hetSNPs are not enclosed in 

the framework, it becomes challenging to correctly infer the haplotypes for this chromosome-tip 

region. Hapi employs an additional capping strategy to polish two ends of chromosomal haplotypes. 

First, hetSNPs in such a region are combined with the immediately adjacent 200 consecutive 

hetSNPs at the joining end of the framework to form a capping block, of which the haplotypes can 

be inferred by treating them as a small chromosome. Then, small-scale draft haplotypes are 

constructed for the selected framework markers of this capping block by using the most frequently 

represented genotype calls across the gametes. The same strategy is adopted to generate gamete-

specific haplotypes to deduce consensus haplotypes for this small chromosome-tip region. Lastly, 

the inferred haplotypes for the capping block are integrated into the chromosome-length haplotypes 

to accomplish the assembly. 

 

Rival Phasing Methods 

1. One-versus-All (OVA) pipeline 

Kirkness et al. [28] proposed a two-stage strategy to infer chromosome-scale haplotypes by 

combining the use of genotyping array data and next-generation sequencing data of sperm cells. 

In the first stage, array data with relatively high call rate (50.9% on average in their study) were 
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analyzed in a one-versus-all fashion to identify crossovers in the gametes, which were used to 

construct the draft haplotypes. When phasing a chromosome, a gamete is first set as a reference, 

and the other gametes are considered as offspring. HCPs are identified for all reference-offspring 

pairs, where an HCP indicates the position with a potential crossover either on the reference or on 

offspring chromosome. A crossover is assigned to the reference chromosome if the HCP is 

identified in the majority of reference-offspring pairs, for example, 13 out of 15 pairs as indicated in 

the original paper [28]. Otherwise, multiple crossovers must have taken place on the offspring 

chromosomes. A manual inspection step is required to confirm the crossover locations on each 

reference chromosome. As a result, a gamete-specific chromosome-scale haplotype can be 

inferred by the crossovers assigned to the reference chromosome. The entire process described 

above is repeated until each gamete has been set as a reference for one time. Draft haplotypes 

can be constructed using these gamete-specific haplotypes by voting for the major allele at each 

locus. In the second stage, the inferred crossover positions are employed again to assist the 

analysis of the additional sequencing data of sperm cells to infer the high-resolution consensus 

chromosome-scale haplotypes. 

To perform the comparison analysis, this algorithm was written in R language by us with a few 

optimizations. (1) Rather than using two sets of gamete genotype data, i.e., SNP array data and 

sequencing data as in the original study [28], only one dataset is used for the modified two-stage 

OVA pipeline. (2) The gamete genotype data are preprocessed to remove markers with potential 

genotyping errors and a subset of high-quality hetSNPs is selected to infer crossovers in the 
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gametes. (3) A HMM is used to detect HCPs with higher level of accuracy. (4) A well-written R 

function is developed to automatically determine crossovers, which gives the exact results of 

locating recombination, to replace the manual inspection required in the original pipeline. 

2. Pairwise HMM (PHMM) 

The PHMM pipeline developed by Hou et al. [26] evolved from the OVA pipeline by introducing 

a HMM-based HCP detection approach to the reference-offspring pairwise-comparison scheme. 

For each reference chromosome, a crossover can be directly inferred if, within a 1Mb sliding 

window, HCPs can be identified in over 60% of the reference-offspring pairs. Detailed description 

of the pipeline can be found in the original paper [26]. Source code of a series of C++ programs 

and perl scripts for implementing the PHMM pipeline are publicly available. To facilitate the 

comparison analysis in this study, we directly applied the C++ programs for crossover identification 

but rewrote the perl scripts in R language (without changing the original algorithm) for the inference 

of consensus haplotypes. 

 

Maize microspore sequencing dataset 

The maize microspore sequencing dataset was generated by Li et al [29]. A total of 96 (24 × 

4) microspores from 24 tetrads were isolated from F1 hybrid individuals of a cross between two 

inbred lines (SK and ZHENG58), and were sequenced at ~1.4× depth coverage. Parents of the F1 

hybrid were also sequenced at up to 8× (SK) and 15.7× (ZHENG58) genome coverage depth, 

respectively. With a stringent filtering process, a total of 599,154 high-quality SNPs were obtained 
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for both parents and the microspores. 

 

Human sperm sequencing dataset 

Single sperm cell sequencing data of 11 sperms from the donor of the HuRef diploid genome 

were downloaded from the NCBI Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) 

with the accession number SRP017516 [28]. Sequences were aligned to the human GRCh37 

reference genome using BWA-MEM [32] implemented in the SpeedSeq software [33]. Duplicate-

marked, sorted, and indexed BAM files were produced by the SpeedSeq align module, which 

utilizes SAMBLASTER [34] to mark duplicates and uses Sambamba [35] to sort and index BAM 

files. For each sperm, the genotypes at 1.95 million heterozygous SNP loci in the HuRef genome 

were determined using Genome Analysis Toolkit (GATK) [36]. 

 

Data availability 

Hapi is an R package that is freely available at https://github.com/Jialab-UCR/Hapi 
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Supplementary Fig. 1: The HMM for detection of hetSNPs with erroneous genotype calls. (R: recombination frequency; 

E: genotype error rate; 0 and 1 represent the two alleles that are arbitrarily assigned for a hetSNP locus; ╳ signs in red 

mark the hetSNPs with potential errors and √ signs in black denote the hetSNPs with correct genotype calls.)  
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Supplementary Fig. 2: Iterative imputation of missing genotypes in the framework. (g1, …, g5 are the 5 gamete cells 

with missing genotypes; g1’, …, g5’ are gamete cells after imputation; The gamete with green background is the ‘target 

gamete’ for imputation; Markers with yellow background are ‘comparator markers’ that immediately around missing regions.)  
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Supplementary Fig. 3: The majority voting strategy for the inference of the draft haplotype. (0 and 1 represent the 

two alleles that are arbitrarily assigned for a hetSNP locus; The two colors of background indicate the two haplotypes; The 

table in the middle shows the number of different link types between any two adjacent markers.)  
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Supplementary Fig. 4: Maximum parsimony of recombination (MPR) principle for proofreading the draft haplotypes. 

The framework is divided into two blocks (Block 1 and Block 2) at the position under proofreading. There are two possible 

haplotype combinations between these two blocks. The number of crossovers is counted given each of the two haplotypes 

and the one generating less crossovers is determined as the true haplotype based upon MPR. (0 and 1 represent the two 

alleles that are arbitrarily assigned for a hetSNP locus; The two colors of background indicate the two reciprocal haplotypes 

for Block 2; Purple cross signs denote the positions of crossovers.)  
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Supplementary Fig. 5: High-resolution consensus haplotype assembly. (g1, …, g5 are the 5 gamete cells; 0 and 1 

represent the two alleles that are arbitrarily assigned for a hetSNP locus; D represents draft haplotype and C represents 

consensus haplotype; In the table of consensus haplotype, ‘total’ is the total number of cells with observed genotypes at a 

locus, ‘rate’ is the ratio of cells supporting the haplotype, and ‘conf.’ is the confidence of haplotype phasing for each hetSNP, 

i.e., F indicates that the hetSNP is in the framework, L denotes low-confident phasing, whereas H represents high-confident 

phasing that is supported by at least 2 gametes and the ratio of cells supporting the haplotype is greater than 0.6; Green 

triangles mark the HCPs inferred by comparing genotypes in each gamete cell with those in the draft haplotype. The two 

colors of background indicate the two haplotypes in each gamete, and regions with grey background are unsolved haplotype 

regions; The regions with slash represent the haplotypes after flipping.) 
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Supplementary Fig. 6: Distribution of phased hetSNPs that disagree between Hapi and the suggested haplotypes. 
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Supplementary Fig. 7: An example of incorrect assignment of crossovers by PHMM when multiple crossovers 

occur in a small region that is less than 1M. (g1, …, g11 are the 11 gamete cells; g1’ is gamete 1 with deduced 

crossovers via pairwise comparisons with all other gametes; Purple cross signs denote the positions of crossovers and 

green triangles mark the HCPs inferred by the reference-offspring assay.) 
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Supplementary Fig. 8: HMM for identification of crossovers. The HMM consists of two observations (f and m), and two 

hidden states (F and M), representing the paternal and maternal haplotypes, respectively. The initial probabilities of the two 

states are 0.5. Given the F (or M) state, the emission probability of observing the f (or m) haplotype is 1-E and observing 

the complementary haplotype m (or f) is E, respectively, where E is genotype error rate. The transition probabilities from 

one state to itself is 1-R, and to the other state is R, where R is recombination frequency. A sequence of hidden states for 

the ‘chained’ markers can be inferred by Viterbi's algorithm and crossover positions are determined where state swaps 

occur. 
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Supplementary Fig. 9: An example of deficiencies for OVA and PHMM in haplotype phasing when 4 gametes are 

analyzed and two crossovers (cross signs in purple) occurred in two gametes within 1M chromosomal region. 

Multiple HCPs within a 1Mb region inferred from a reference-offspring pair are filtered out by both methods (triangles in 

gray). OVA detects HCPs (triangles in green) with overlapping hetSNPs and uses a threshold (rate of support from the 

reference-offspring assay) of 1 to assign a crossover to the reference chromosome. PHMM searches HCPs (triangles in 

green) in a 1Mb sliding window and uses a cutoff of 0.6 to determine the crossover on the reference chromosome. In this 

case, OVA identified no crossover (4 X signs in red), while 4 crossovers (4 √ signs in red) have been detected by PHMM 

with each gamete bearing one crossover. 
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