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__________________________________________________________________________________ 

Abstract  
Both temporal and frontoparietal brain areas are associated with the representation of 
knowledge about the world, in particular about actions. However, what these brain regions 
represent and precisely how they differ remains unknown. Here, we reveal fundamentally 
distinct functional profiles of lateral temporal and frontoparietal cortex: Using fMRI-based 
MVPA we found that frontoparietal areas encode representations of observed actions and 
corresponding written sentences in an overlapping way, but these representations did not 
generalize across stimulus type.  By contrast, only left lateral posterior temporal cortex 
(LPTC) encoded action representations that generalize across observed action scenes and 
sentences. The representational organization of stimulus-general action information in LPTC 
could be predicted from models that describe basic agent-patient relations (object- and 
person-directedness) and the general semantic similarity between actions. The match between 
action videos and sentences in LPTC and its representational profile indicate that this region 
encodes general, conceptual aspects of actions whereas frontoparietal representations appear 
to be tied to specific stimulus types.  

___________________________________________________________________________ 

Introduction 
Our knowledge about things and events in the world is represented at multiple levels, from 
specific perceptual details (e.g. the movement of a body part) to more general, conceptual 
aspects (e.g. that a movement serves and is meant to give something to someone). Where 
these levels are represented in the brain is a central issue in neuroscience but remains 
unresolved (Martin and Chao, 2001; Caramazza and Mahon, 2003; Binder and Desai, 2011; 
Ralph et al., 2017). While there is considerable progress in understanding the representation 
of objects, the representation of action knowledge remains particularly controversial 
(Rizzolatti and Sinigaglia, 2010; Gallese et al., 2011; Oosterhof et al., 2013; Caramazza et al., 
2014). A popular view is that higher-level conceptual aspects of actions are encoded in 
frontoparietal areas, possibly overlapping with the motor system, whereas perceptual action 
details such as body parts and movements are encoded in posterior temporal areas in closer 
proximity to the visual system (Gallese and Lakoff, 2005; Patterson et al., 2007; Rizzolatti 
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and Sinigaglia, 2010). This conception has recently been challenged by demonstrating that 
posterior temporal cortex encodes action representations (e.g. of opening and closing) that 
generalize across a range of perceptual features, such as the body parts (Vannuscorps et al., 
2018) and movements used to carry out an action (Wurm and Lingnau, 2015; Vannuscorps et 
al., 2018), the type of object involved in an action (Wurm and Lingnau, 2015; Vannuscorps et 
al., 2018), and whether an action is recognized from photographs or videos (Hafri et al., 
2017). These findings suggest that temporal cortex encodes action representations that 
abstract away from various details of a perceived action. However, these studies also found 
that anterior parietal cortex represents actions that generalize across perceptual details (see 
also Leshinskaya and Caramazza, 2015). Likewise, both areas are also activated during the 
semantic processing of action words, which lack specific perceptual details of concrete action 
exemplars (Binder et al., 2009; Watson et al., 2013). These findings raise a puzzling question: 
If both posterior temporal and anterior parietal cortex are capable of representing actions at 
similar, high levels of generality, what are their different roles in recognition and memory? It 
appears unlikely that the two regions have identical functional profiles and store the same, 
possibly conceptual-level, information in a duplicate way. 

Critically, representations of perceptual details are tied to a specific modality, or stimulus 
type, whereas conceptual representations are generally accessible via different types of 
stimuli, e.g. via observation or via reading a text. Neuroimaging studies revealed that 
understanding actions from observation and from written sentences activates overlapping 
brain networks in prefrontal and parietal cortex as well as in occipitotemporal brain areas, 
specifically in posterior middle temporal gyrus (pMTG) and surrounding areas in lateral 
posterior temporal cortex (LPTC; Aziz-Zadeh et al., 2006; Spunt and Lieberman, 2012; see 
also Martin et al., 1995). This overlap in activation is usually taken as evidence for the 
recruitment of the same neural representations accessed during both action observation and 
sentence comprehension, which would suggest that these representations encode action 
knowledge at stimulus-independent, conceptual levels. However, overlap in activation is not 
necessarily due to activation of shared representations (Martin, 2016). Instead, a brain region 
may house spatially overlapping but functionally independent neural populations that are 
each activated via one stimulus type but not the other. To date, it remains unresolved whether 
any of the identified brain regions represent conceptual aspects of actions that can be 
accessed by different kinds of stimuli, such as videos or sentences, a necessary condition of 
conceptual representation. 

Here, we applied a more stringent approach, crossmodal MVPA (Oosterhof et al., 2010; 
Fairhall and Caramazza, 2013), to identify action representations that are action-specific but 
at the same time generalize across perception and understanding of visual scenes and 
sentences. By training a classifier to discriminate actions observed in videos and testing the 
same classifier on its accuracy to discriminate corresponding action sentences, this approach 
is sensitive to spatially corresponding activation patterns of action videos and sentences, 
pointing toward action representations that are commonly accessed by both stimulus types. In 
addition, we used a second, conservative criterion to test whether activation patterns that 
generalize across stimulus type are compatible with conceptual representation: Neural 
activity patterns associated with different actions should be less or more similar to each other 
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depending on whether the actions share fewer or more conceptual features with each other. 
For example, the action of opening should be more similar to closing as compared to taking, 
and all three actions should be more similar to each other as compared to communicating 
actions. Hence, if stimulus-independent representations encode conceptual information then 
their similarity to each other should not be random but follow semantic principles. We used 
crossmodal representational similarity analysis (RSA) to test whether semantic models are 
capable of predicting the similarities of crossmodal action representations, allowing us to 
specify which aspects of actions are captured by stimulus-general action representations. 
Following the view that action concepts are represented as propositional structures (Schank, 
1973), we hypothesized that stimulus-general action representations encode basic 
components of action concepts, such as agent-patient relations that describe whether or not an 
action is directed toward other persons or toward objects (Wurm et al., 2017).  

 
 
Figure 1. Experimental Design. The video session (A) consisted of action videos (8 actions * 24 video 
exemplars per action, 2s per video). The sentence session consisted of verbal action descriptions corresponding 
to the actions shown in the videos (8 actions * 24 sentence exemplars per action, 2s per sentence).  
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Results 
In two fMRI sessions, participants recognized actions presented in videos and corresponding 
visually-presented sentences (Fig. 1). Participants performed catch trial detection tasks by 
responding to incomplete or meaningless action videos and grammatically or semantically 
incorrect sentences. The session order was balanced across participants. 

Crossmodal action classification. Using searchlight analysis (Kriegeskorte et al., 2006), we 
performed two kinds of MVPA to identify brain regions that encode stimulus-general and 
stimulus-specific action representations. To identify action representations that generalize 
across stimulus type, we trained a classifier to discriminate actions from video stimuli and 
tested the classifier on the sentences, and vice versa. This analysis identified a single cluster 
in the left LPTC, peaking in pMTG and extending dorsally into posterior superior temporal 
sulcus (pSTS) and ventrally into inferior temporal gyrus (Fig. 2A, Supplementary Table 2). 
By contrast, if classifiers were trained and tested within action videos or within sentences, 
actions could be discriminated in more extended networks overlapping in occipitotemporal, 
frontal, and parietal areas (Fig. 2B), in line with previous findings (Aziz-Zadeh et al., 2006; 
Spunt and Lieberman, 2012). Overall, classification accuracies were higher for videos than 
for sentences. Apart from these general activation differences, some areas appeared to be 
particularly sensitive to observed actions (left and right lateral occipitotemporal cortex and 
anterior inferior parietal cortex), whereas other areas were particularly sensitive to sentences 
(left posterior superior temporal gyrus and inferior frontal cortex, anterior temporal lobes). 
Critically, large parts of frontoparietal cortex discriminated both action videos and sentences, 
but the absence of crossmodal decoding in these areas suggests that these representations do 
not generalize across stimulus type.  

To investigate the differential effects of crossmodal and within-session decoding in 
frontoparietal and temporal areas in more detail, we extracted classification accuracies from 
ROIs based on the conjunction of the univariate activation maps for action videos vs. baseline 
and action sentences vs. baseline (Figure 1C). This conjunction revealed clusters in left 
inferior frontal gyrus (IFG), left premotor cortex (PMC), left intraparietal sulcus (IPS), and 
bilateral occipitotemporal cortex extending into LPTC in the left hemisphere. In all ROIs, 
within-video and within-sentence decoding was significantly above chance, whereas the 
crossmodal decoding revealed significant effects only in LPTC (Figure 1D, Supplementary 
Table 3). To quantify and compare the evidence in the data for H1 (decoding accuracy above 
chance) and H0 (decoding accuracies not above chance) we performed Bayesian model 
comparisons using directional Bayesian one-sample t-tests (Rouder et al., 2009). All 
frontoparietal ROIs revealed moderate evidence for H0 (Bayes factors between 0.11 and 0.21) 
in the crossmodal decoding (Supplementary Table 3), suggesting that the absence of 
significant decoding above chance in these areas was unlikely to result from an 
underpowered design (Jeffreys, 1998) (see also Supplementary Figure 1 for a Bayesian whole 
brain analysis). A repeated measures ANOVA with the factors ROI and DECODING 
SCHEME revealed a significant interaction (F(6,120) = 9.99, p < 0.0001) as well as main 
effects for ROI (F(3,60) = 18.5, p < 0.0001) and DECODING SCHEME (F(2,40) = 59.4, p < 
0.0001). Two-tailed paired t-tests revealed that crossmodal decoding accuracies in LPTC 
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were significantly higher than in the other ROIs (all t > 3.5, all p < 0.002). Together, these 
results further substantiate the view that areas commonly activated during action observation 
and sentence comprehension may do so on the basis of different principles: While LPTC 
contains information about action scenes and sentences that can be decoded both within and 
across stimulus types, frontoparietal areas contain information that can be decoded only 
within but not across stimulus types. 

 
Figure 2. Multiclass action decoding searchlight (mean accuracies, chance = 12.5%). (A) Crossmodal 
classification. Red outlines indicate TFCE-corrected areas. (B) Within-modality classification. Maps 
thresholded using TFCE correction. (C) Overlap of univariate activation maps for the contrasts action videos vs. 
baseline and action sentences vs. baseline (FDR-corrected). Spherical ROIs (12 mm radius) were centered on 
conjunction peaks (indicated by crosses). (D) ROI decoding accuracies for crossmodal and within-modality 
classification. Asterisks in indicate FDR-corrected effects: ** p < 0.01, *** p < 0.001, **** p < 0.0001. Error 
bars/lines indicate SEM. IFG: inferior frontal gyrus, IPS: intraparietal sulcus, LPTC: lateral posterior temporal 
cortex, PMC: premotor cortex. 
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Could the generalization across stimulus type in left LPTC be explained by verbalization or 
visual imagery? Our experimental design allowed testing these possibilities: As we balanced 
the order of video and sentence sessions across participants, we would expect stronger 
verbalization in the participant group that started with the sentence session, and stronger 
imagery in the participant group that started with the video session. Contrasting the decoding 
maps of the two groups, however, revealed no significant differences in left LPTC (t(19) = 
0.04, p = 0.97, two-tailed; Supplementary Fig. 2A). In addition, we found no significant 
correlations between decoding accuracies in LPTC and scores obtained in a post-fMRI rating 
on verbalization (r(19) = 0.26, p = 0.13, one-tailed) and visual imagery (r(19) = -0.31, p = 
0.97, one-tailed; Supplementary Fig. 2B and C). Together, these control analyses found no 
support for the hypothesis that visual imagery and verbalization account for the observed 
crossmodal decoding effects. 

Crossmodal multiple regression RSA. The accessibility of action-specific representations 
during both action observation and sentence reading suggests a central role of LPTC in action 
understanding. What exactly do these representations encode? Using multiple regression 
RSA, we analyzed the structure of action representations in LPTC in more detail. To this end, 
we extracted, for each participant, the pairwise crossmodal classification accuracies to 
construct neural dissimilarity matrices, which reflect how well the actions could be 
discriminated from each other, and thus how dissimilar the action representations are to each 
other (Fig. 3A). We found that the neural action dissimilarity in LPTC could be predicted by 
models of person- and object-directedness, which were based on post-fMRI ratings of how 
much the actions shown in the experiment took into account the reactions of other persons 
(person-directedness) and how much the actions involved an interaction with physical, 
nonliving objects (object-directedness, Fig. 3B). Additional variance in the neural 
representational similarity could be explained by a more general model of semantic action 
similarity that group actions based on a combination of semantic action relations (Miller et 
al., 1990). Other models that were included in the regression to control for factors of no 
interest (semantic object similarity, task difficulty, unusualness of actions) could not explain 
further variance. RSA effects were robust across ROI size and number of models included in 
the analysis (Supplementary Figure 3). In addition, we found that the rating-based models of 
person- and object-directedness correlated significantly better with the neural action 
dissimilarities than simple categorical models that were based on the main stimulus 
dimensions used in the experiment (Fig. 3C; person-directedness: Z = 3.62, p = 0.0003, 
object-relatedness: Z = 3.01, p = 0.002; two-tailed signed-rank test). This suggests that the 
neural representational organization in LPTC indeed reflect stimulus variations in person- 
and object-directedness as measured by behavioral judgments rather than other hidden factors 
that may have accidentally covaried with the stimulus dimensions. Finally, we tested whether 
models based on individual ratings outperform models based on group-averaged ratings. 
Correlations with neural dissimilarities were slightly higher for group-averaged as compared 
to individual models, but differences were not significant (person-directedness: Z = 1.59, p = 
0.11, object-relatedness: Z = 0.29, p = 077; two-tailed signed-rank test). 
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Figure 3. Crossmodal RSA. (A) Classification matrices were extracted from left LPTC, averaged, and 
converted into a dissimilarity matrix for each participant (see Methods for details; displayed matrix averaged 
across participants, rank-transformed, and scaled (Nili et al., 2014)). (B) Multiple regression RSA. Person- and 
object-directedness were based on ratings; WordNet action and object models were based on taxonomical 
distance (path length); crossmodal control models were based on behavioral experiments (Errors, Reaction 
Times) and ratings for unusualness of actions presented in videos and sentences. (C) Comparison between 
performance of behavioral (rating-based) and categorical models of person- and object-directedness using 
correlation-based RSA. (D) Path-of-ROI analysis. Mean RSA correlation coefficients plotted as a function of 
position along dorsal-ventral axis. X-axis color bar corresponds to ROI colors. Asterisks in B and C indicate 
FDR-corrected effects: ** p < 0.01, *** p < 0.001, **** p < 0.0001. Error bars/lines indicate SEM. 
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Path-of-ROI RSA. Crossmodal action information could be decoded from a relatively large 
cluster in LPTC spanning from posterior superior temporal sulcus to inferior temporal gyrus. 
Is this area parceled into distinct subregions specialized for certain aspects of actions? Based 
on previous findings (Wurm et al., 2017), we hypothesized that conceptual information 
related to person- and object directedness is not distributed uniformly in LPTC but rather 
follows a distinctive functional topography that parallels known gradients in more posterior 
areas segregating animate and inanimate object knowledge (Chao et al., 1999; Konkle and 
Caramazza, 2013) and biological and functional tool motion (Beauchamp et al., 2002). To 
investigate how the representational content changes from dorsal to ventral temporal cortex, 
we plotted the performance of the person-directedness and object-relatedness models as a 
function of position along a cortical vector from the dorsal to the ventral end of the 
crossmodal decoding cluster (Figure 3D). In line with our prediction, we found that the 
person-directedness model explained most variance in dorsal LOTC at the level of pSTS 
(Talairach z = 9) whereas the object- directedness model peaked more ventrally (Talairach z 
= 3) at the level of pMTG (ANOVA interaction POSITION x MODEL: F(15,300) = 4.23, p < 
0.001).  

 

Discussion 
Conceptual representations should generally be accessible independently of the modality or 
type of stimulus, e.g., whether one observes an action or reads a corresponding verbal 
description. Here we show that overlap of activation alone during action observation and 
sentence comprehension cannot be taken as evidence for the access of stimulus-independent, 
conceptual representations. Using crossmodal MVPA, we found that only the left LPTC 
reveals neural activity patterns that are both specific for distinct actions and at the same time 
generalize across action scenes and sentences. What accounts for the action-specific 
correspondence between action scenes and sentences in LPTC?  

One possibility is that crossmodal decoding was due to visual imagery (during reading the 
sentences) or verbalization (during watching the action scenes). If so, the decoded 
information in LPTC was in a verbal format, triggered by both the sentences and by 
verbalizations of the action scenes, or in a visual format, triggered by the observed action 
scenes and imagery of the sentences. However, control analyses do not support this 
possibility: the strength of crossmodal decoding was not influenced by session order, by the 
participants’ tendencies to verbalize or to imagine the actions, or by the strength of 
correspondence between verbalizations and sentences or between imagined and observed 
actions. Nonetheless, it is possible that verbalization or imagery were so implicit and 
automatic that they were not captured by the participants’ subjective ratings, that session 
order did not substantially influence the tendencies to verbalize or imagine the actions, or that 
retrospection of previously experienced action scenes and sentences had no measurable 
impact on verbalization or imagery. However, these assumptions would not explain why 
effects of verbalization or imagery resulted in a match between action videos and sentences 
in left LPTC only and not in other brain regions that were found in the within-video or the 
within-sentence decoding. A second possibility is that neural populations carrying action-
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specific information for the two stimulus types are functionally independent but lie next to 
each other within individual voxels. While this scenario is possible, it would raise the 
question about the purpose of such voxel-by-voxel correspondence between representations 
of action scenes and sentences and why left LPTC is the only area with this representational 
profile. Together, these objections do not dispute that left LPTC reveals a representational 
profile that is fundamentally different than those found in frontoparietal areas. In 
consideration of the neuroimaging (Watson et al., 2013), neuropsychological (Kalenine and 
Buxbaum, 2016), and virtual lesion (Buxbaum and Kalenine, 2010) evidence we have about 
this area (see Lingnau and Downing, 2015, for a review), the most plausible interpretation 
seems to be that left LPTC encodes a conceptual level of representation that can be accessed 
by different modalities and stimulus types like action scenes and sentences. This 
interpretation is further supported by crossmodal RSA, which revealed that the organization 
on stimulus-general information in LPTC could be predicted by models that describe basic 
conceptual aspects of actions, i.e., agent-patient relations (person- and object-directedness) as 
well as more complex semantic relations between action concepts such as whether actions are 
subparts of or in opposition with each other.  

Frontoparietal areas discriminated both action scenes and sentences, but the decoded 
representations did not generalize across the two stimulus types. Representations in LPTC 
thus seem to be more general and abstract as compared to frontoparietal representations, 
which appear to capture more specific details and properties of the different stimulus types. 
Notably, observed actions are more specific and rich in details compared to sentences. The 
stronger decoding of action scenes relative to sentences appears to reflect this difference in 
richness of detail. The decoded frontoparietal representations might capture information 
about how specifically an action is carried out. Such motor-related representations might be 
triggered by action scenes reflecting specific aspects of the action (Negri et al., 2007; 
Buxbaum and Kalenine, 2010), such as the kinematics of an action or the particular grip used 
on an object, whereas the motor-related representations triggered by sentences would be less 
specific, more variable, and less robust. Following this view, frontoparietal motor-related 
representations are activated following conceptual activation in LPTC, in line with the 
finding that TMS-induced perturbation of pMTG not only impedes semantic processing of 
action verbs but also disrupts increased motor excitability for motor as compared to non-
motor verbs (Papeo et al., 2015). Likewise, dysplasic individuals born without arms 
recognize hand actions, for which they do not have corresponding motor representations, as 
fast and as accurately as typically developed participants suggesting that motor-related 
representations are not necessary in accessing action concepts (Vannuscorps and Caramazza, 
2016). Notably, neural activity and representational content in frontoparietal cortex does not 
differ between dysplasic and typically developed individuals during hand action observation 
(Vannuscorps et al., 2018). An additional possibility is therefore that frontoparietal areas are 
involved in processing non-motor information related to the stimuli, for example in the 
service of anticipating how action scenes and sentences unfold (Schubotz, 2007; Kilner, 
2011; Willems et al., 2016). In support of this view, premotor and parietal areas have been 
shown to be engaged in the prediction of dynamic stimuli of different types and modalities 
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(Schubotz and von Cramon, 2003), even if stimuli lack any motor-relevant pragmatic 
properties (Schubotz and Yves von Cramon, 2002). 

Whereas the crossmodal decoding analyses reported here focused on identifying the neural 
substrate of stimulus-general action representations, the crossmodal RSA allowed us to 
investigate the structure of these representations in more detail. We found that the similarity 
of neural patterns associated with the actions tested in this experiment could be predicted by 
models that describe whether actions are directed toward other persons or toward inanimate 
objects as well as a more general model of semantic action similarity. Representations 
sensitive to person- and object-directedness followed distinctive functional topographies: 
Neural populations in the dorsal part of LPTC were more sensitive to detect whether an 
action is person-directed or not, whereas neural populations in more ventral parts were more 
sensitive to detect whether an action is object-directed or not. This result replicates the 
previous observation of a dorsal-ventral gradient for observed actions (Wurm et al., 2017) 
and demonstrates that a similar (but left-lateralized) gradient exists also for stimulus-general 
action representations. The topographical distinction of person- and object-directedness 
resembles related gradients that are typically found in adjacent posterior/ventral areas: In 
lateral occipitotemporal cortex, overlapping with the posterior part of the cluster found in the 
present study, dorsal subregions are preferentially activated by animate objects (e.g. animals 
and body parts) whereas ventral subregions are preferentially activated by inanimate objects 
(e.g. manipulable artifacts and tools) (Chao et al., 1999; Konkle and Caramazza, 2013). 
Likewise, dorsal subregions are preferentially activated by body movements whereas ventral 
subregions are preferentially activated by action-specific tool movements (Beauchamp et al., 
2002). Here we demonstrate a continuation of this distinction for more complex action 
components that cannot be explained by visual stimulus properties. The topographic 
alignment of object, object motion, and modality-general action representation points to an 
overarching organizational principle of action and object knowledge in temporal and occipital 
cortex: Knowledge related to persons is represented in dorsal posterior occipitotemporal 
cortex and specifically associated with (and form the perceptual basis of) biological motion 
and person-directed actions in dorsal LPTC. Furthermore, knowledge about inanimate 
manipulable objects is represented in ventral occipitotemporal cortex and specifically 
associated with action-related object motion patterns and object-directed actions in ventral 
LPTC. The functionally parallel organization of object and action knowledge in lateral 
occipital and temporal cortex, respectively, suggest the important role of domain-specific 
object-action connections along the posterior-anterior axis, in agreement with the view that 
connectivity plays a fundamental role in shaping the functional organization of distinct 
knowledge categories (Mahon and Caramazza, 2011; Osher et al., 2016). 

In conclusion, our results demonstrate that overlap in activation does not necessarily indicate 
recruitment of a common representation or function and that cross-decoding is a powerful 
tool to detect the presence or absence of representational correspondence in overlapping 
activity patterns. Specifically, we revealed fundamental differences between frontoparietal 
and temporal cortex in representing action information in stimulus-dependent and -
independent manners. This result may shed new light onto the representational profiles of 
frontoparietal and temporal regions and their roles in semantic memory. The different levels 
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of generality in these areas point to a hierarchy of action representation from specific 
perceptual stimulus features in occipitotemporal areas to more general, conceptual aspects in 
left LPTC and back to stimulus-specific representations in frontoparietal cortex. We propose 
that the topographic organization of conceptual action knowledge is (at least partially) 
determined by the representation of more basic precursors, such as animate and inanimate 
entities.  

 

 
Materials and Methods 
Participants. Twenty-two right-handed native Italian speakers (9 females; mean age, 23.8 
years; age range, 20-36 years) participated in this experiment. All participants had normal or 
corrected-to-normal vision and no history of neurological or psychiatric disease. One subject 
was excluded due to poor behavioral performance in the task (accuracy two standard 
deviations below the group mean). All procedures were approved by the Ethics Committee 
for research involving human participants at the University of Trento, Italy.  

Stimuli. The video stimuli consisted of 24 exemplars of eight hand actions (192 action videos 
in total) as used in Wurm et al. (2017). The actions varied along two dimensions, person-
directedness (here defined as the degree to which actions take into account the actions and 
reactions of others) and object-directedness (here defined as the degree to which actions 
involve the interaction with physical inanimate objects), resulting in four action categories: 
change of possession (object-directed/person-directed): give, take; object manipulation 
(object-directed/nonsocial): open, close; communication (not object-directed/person-
directed): agree, disagree; body/contact action (not object-directed/not person-directed): 
stroke, scratch. By using 24 different exemplars for each action we increased the perceptual 
variance of the stimuli to ensure that classification is trained on conceptual rather than 
perceptual features. Variance was induced by using two different contexts, three perspectives, 
two actors, and six different objects that were present or involved in the actions (kitchen 
context: sugar cup, honey jar, coffee jar; office context: bottle, pen box, aluminum box). 
Video catch trials consisted of six deviant exemplars of each of the eight actions (e.g., 
meaningless gestures or object manipulations, incomplete actions; 48 catch trial videos in 
total). All 240 videos were identical in terms of action timing, i.e., the videos started with 
hands on the table, followed by the action, and ended with hands moving to the same position 
on the table. Videos were gray scale, had a length of 2 s (30 frames per second), and a 
resolution of 400 x 225 pixels.  

The sentence stimuli were matched with the video stimuli in terms of stimulus variance (24 
sentences of eight actions; 192 sentence videos in total). All sentences had the structure 
subject-verb-object. For each action, we first defined the corresponding verb phrase: dà (s/he 
gives), prende (s/he takes), apre (s/he opens), chiude (s/he closes), si strofina (s/he rubs 
her/his), si gratta (s/he scratches her/his), fa segno di approvazione a (s/he makes a sign of 
agreement to), fa segno di disapprovazione a (s/he makes a sign of disagreement to). To 
create 24 exemplars per action, we crossed each verb phrase with 6 subjects: lei, lui, la 
ragazza, il ragazzo, la donna, l’uomo (she, he, the girl, the boy, the woman, the man) and 
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with 4 objects, which matched the objects used in the videos as much as possible. Change of 
possession: la scatola, il vaso, il caffe, lo zucchero (the box, the jar, the coffee, the sugar); 
object manipulation: la bottiglia, il barattolo, la cassetta, l’astuccio (the bottle, the can, the 
casket, the pencil case); communication: l’amica, l’amico, il college, la collega (friend, 
colleague); body action: il braccio, la mano, il gomito, l’avambraccio (the arm, the hand, the 
elbow, the forearm). As the crossmodal analysis focuses on the generalization across 
sentence and video stimuli, perceptual and syntactic differences between action sentences, 
such as sentence length and occurrence of prepositions, were ignored. Catch trial sentences 
consisted of six grammatically incorrect or semantically odd exemplars of each of the eight 
actions (e.g., lei apre alla bottiglia (she opens to the bottle), lui da l’amica (he gives the 
friend); 48 catch trial sentences in total). The sentences were presented superimposed on light 
grey background (400 x 225 pixels) in three consecutive chunks (subject, verb phrase, 
object), with each chunk shown for 666 ms (2 s per sentence), using different font types 
(Arial, Times New Roman, Comic Sans MS, MV Boli, MS UI Gothic, Calibri Light) and font 
sizes (17-22) to increase the perceptual variance of the sentence stimuli (balanced across 
conditions within experimental runs).  

In the scanner, stimuli were back-projected onto a screen (60 Hz frame rate, 1024 x 768 
pixels screen resolution) via a liquid crystal projector (OC EMP 7900, Epson Nagano, Japan) 
and viewed through a mirror mounted on the head coil (video presentation 6.9° x 3.9° visual 
angle). Stimulus presentation, response collection, and synchronization with the scanner were 
controlled with ASF(Schwarzbach, 2011) and the Matlab Psychtoolbox-3 for Windows 
(Brainard, 1997). 

Experimental Design. For both video and sentence sessions, stimuli were presented in a 
mixed event-related design. In each trial, videos/sentences (2 s) were followed by a 1 s 
fixation period. 18 trials were shown per block. Each of the nine conditions (eight action 
conditions plus one catch trial condition) was presented twice per block. Six blocks were 
presented per run, separated by 10 s fixation periods. Each run started with a 10 s fixation 
period and ended with a 16 s fixation period. In each run, the order of conditions was first-
order counterbalanced (Aguirre, 2007). Each participant was scanned in two sessions (video 
and sentence session), each consisting of 4 functional scans, and one anatomical scan. The 
order of sessions was counterbalanced across participants (odd IDs: videos-sentences, even 
IDs: sentences-videos). For each of the nine conditions per session there was a total of 2 
(trials per block) x 6 (blocks per run) x 4 (runs per session) = 48 trials per condition. Each of 
the 24 exemplars per action condition was presented twice in the experiment. 

Task. Before fMRI, we instructed and trained participants for the first session only (videos or 
sentences). The second session was instructed and practiced within the scanner after the four 
runs of the first session. Participants were asked to attentively watch the videos [read the 
sentences] and to press a button with the right index finger on a response button box 
whenever an observed action was meaningless or performed incompletely or incorrectly 
[whenever a sentence was meaningless or grammatically incorrect]. The task thus induced the 
participants to understand the actions, while minimizing the possibility of additional 
cognitive processes that might be different between the actions but similar across sessions. 
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For example, tasks that require judgments about the actions along certain dimensions such as 
action familiarity (Quandt et al., 2017) might lead to differential neural activity related to the 
preparation of different responses, which could be decodable across stimulus type. 
Participants could respond either during the video/sentence or during the fixation phase after 
the video/sentence. To ensure that participants followed the instructions correctly, they 
completed a practice run before the respective session. Participants were not informed about 
the purpose and design of the study before the experiment.  

Post fMRI survey. After the fMRI session, participants judged the degree of person- and 
object directedness of the actions in the experiment. For each action, participants answered 
ratings to the following questions: Object-directedness: “How much does the action involve 
an interaction with a physical, inanimate object?” Person-directedness: “How much does the 
action take into account the actions and reactions of another person?” In addition, they were 
asked to estimate how much they verbalized the actions during the video session 
(Verbalization: “During watching the action videos, did you verbalize the actions, that is, did 
you have verbal descriptions (words, sentences) in your mind as if you were talking to 
yourself?”), how much they visually imagined the action in the sentence session (Imagery: 
“During reading the sentences, did you visually imagine concrete action scenes?”), and how 
similar their verbal descriptions were to the sentences (Verbalization-sentence 
correspondence) and how similar the imagined action scenes were to the videos; (Imagery-
video correspondence, respectively). For all ratings, 6-point Likert scales (from 1 = not at all 
to 6 = very much) were used.  

Representational dissimilarity models (RDMs). To investigate the representational 
organization of voxel patterns that encode crossmodal action information, we tested the 
following model RDMs:  

To generate models of Person- and Object-directedness, we computed pairwise Euclidean 
distances between the group-averaged responses to each of the actions from the ratings for 
person- and object directedness. For comparison, we also tested categorical models that 
segregated the actions along person- and object directedness without taking into account 
more subtle action-specific variations. 

To generate a model of semantic relationship between the actions (Action semantics 
hereafter) that is not solely based on either person- or object-directedness, but rather reflect 
semantic relations between action concepts, we computed hierarchical distances between 
action concepts based on WordNet 2.1 (Miller, 1995). This model captures a combination of 
semantic relations between actions, such as whether actions are subparts of each other (e.g. 
drinking entails swallowing) or oppose each other (e.g. opening and closing).  We used 
WordNet because it is supposed to reflect conceptual-semantic rather than syntactic relations 
between words. Semantic relations should therefore be applicable to both action sentences 
and videos. We selected action verbs by identifying the cognitive synonyms (synsets) in 
Italian that matched the verbs used in the action sentences and that corresponded best to the 
meaning of the actions ('open.v.01', 'close.v.01', 'give.v.03', 'take.v.08', 'stroke.v.01', 
'scratch.v.03', 'agree.v.01', 'disagree.v.01'). We computed pairwise semantic distances 
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between the eight actions using the shortest path length measure, which reflects the 
taxonomical distance between action concepts.  

In a similar way, we generated a model of semantic relationship between the target objects 
(inanimate objects, body parts, persons) of the actions in the 4 action categories (Object 
semantics). As for the action verbs, we selected Italian synsets that matched the object nouns 
in the sentences. As there were four objects per action category, the distances were averaged 
within each category. 

To generate models of task difficulty (RT and Errors), an independent group of participants 
(N=12) performed a behavioral 2-alternative forced choice experiment that had the same 
design and instruction as the fMRI experiment except that participants responded with the 
right index finger to correct action videos/sentences (action trials) and with the right middle 
finger to incorrect action videos/sentences (catch trials). Errors and RTs of correct responses 
to action trials were averaged across participants. The Error RDM was constructed by 
computing the pairwise Euclidean distances between the 8 accuracies of the sentence session 
and the 8 accuracies of the video session. The model thus reflects how similar the eight 
actions are in terms of errors made across the two sessions. The RT RDM was constructed in 
a similar way except that the RTs of each session were zscored before computing the 
distances to eliminate session-related differences between video and sentence RTs.  

To generate a model reflecting potential differences in saliency due to Unusualness between 
the actions, we asked the participants of the behavioral experiment described in the previous 
paragraph to judge how unusual the actions were in the videos and sentences, respectively 
(using 6-point Likert scales from 1 = not at all to 6 = very much). The Unusualness RDM 
was constructed by computing the pairwise Euclidean distances between the 8 mean 
responses to the sentence session and the 8 mean responses to the video session. 

Data acquisition. Functional and structural data were collected using a 4 T Bruker MedSpec 
Biospin MR scanner and an 8-channel birdcage head coil. Functional images were acquired 
with a T2*-weighted gradient echo-planar imaging (EPI) sequence with fat suppression. 
Acquisition parameters were a repetition time of 2.2 s, an echo time of 33 ms, a flip angle of 
75°, a field of view of 192 mm, a matrix size of 64 x 64, and a voxel resolution of 3 x 3 x 3 
mm. We used 31 slices, acquired in ascending interleaved order, with a thickness of 3 mm 
and 15 % gap (0.45 mm). Slices were tilted to run parallel to the superior temporal sulcus. In 
each functional run, 176 images were acquired. Before each run we performed an additional 
scan to measure the point-spread function (PSF) of the acquired sequence to correct the 
distortion expected with high-field imaging (Zaitsev et al., 2004).  

Structural T1-weigthed images were acquired with an MPRAGE sequence (176 sagittal 
slices, TR = 2.7 s, inversion time = 1020 ms, FA = 7°, 256 x 224 mm FOV, 1 x 1 x 1 mm 
resolution). 

Preprocessing. Data were analyzed using BrainVoyager QX 2.8 (BrainInnovation) in 
combination with the BVQXTools and NeuroElf Toolboxes and custom software written in 
Matlab (MathWorks). Distortions in geometry and intensity in the echo-planar images were 
corrected on the basis of the PSF data acquired before each EPI scan (Zeng and Constable, 
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2002). The first 4 volumes were removed to avoid T1 saturation. The first volume of the first 
run was aligned to the high-resolution anatomy (6 parameters). Data were 3D motion 
corrected (trilinear interpolation, with the first volume of the first run of each participant as 
reference), followed by slice time correction and high-pass filtering (cutoff frequency of 3 
cycles per run). Spatial smoothing was applied with a Gaussian kernel of 8 mm FWHM for 
univariate analysis and 3 mm FWHM for MVPA. Anatomical and functional data were 
transformed into Talairach space using trilinear interpolation.  

Action classification. For each participant, session, and run, a general linear model (GLM) 
was computed using design matrices containing 16 action predictors (2 predictors per action, 
each based on 6 trials selected from the first half (blocks 1-3) or the second half (blocks 4-6) 
of each run), catch trials, and of the 6 parameters resulting from 3D motion correction (x, y, z 
translation and rotation). Each predictor was convolved with a dual-gamma hemodynamic 
impulse response function (Friston et al., 1998). Each trial was modeled as an epoch lasting 
from video/sentence onset to offset (2 s). The resulting reference time courses were used to 
fit the signal time courses of each voxel. In total, this procedure resulted in 8 beta maps per 
action condition and session.  

Searchlight classification (Kriegeskorte et al., 2006) was performed for each participant 
separately in volume space using searchlight spheres with a radius of 12 mm and a linear 
support vector machine (SVM) classifier as implemented by the CoSMoMVPA toolbox 
(Oosterhof et al., 2016) and LIBSVM (Chang and Lin, 2011). We demeaned the data for each 
multivoxel beta pattern in a searchlight sphere across voxels by subtracting the mean beta of 
the sphere from each beta of the individual voxels. Demeaning was done to minimize the 
possibility that classifiers learn to distinguish actions based on global univariate differences 
in a ROI that could arise from different processing demands within each stimulus type due 
non-conceptual differences between actions (e.g., some action scenes might contain more vs. 
less motion information, differences in sentence length). In all classification analyses, each 
action was discriminated from each of the remaining seven actions in a pairwise manner 
(“one-against-one” multiclass decoding). For searchlight analyses, accuracies were averaged 
across the eight actions (accuracy at chance = 12.5%) and assigned to the central voxel of 
each searchlight sphere. In the crossmodal action classification, we trained a classifier to 
discriminate the actions using the data of the video session and tested the classifier on its 
accuracy at discriminating the actions using the data of the sentence session. The same was 
done vice versa (training on sentence data, testing on video data), and the resulting accuracies 
were averaged across classification directions. We also tested whether the generalization 
order matters, i.e., whether generalization from action videos (training) to sentences (testing) 
resulted in different clusters than generalization from action sentences (training) to videos 
(testing). However, both generalization schemes resulted in similar maps and contrasting the 
generalization schemes using paired t-tests revealed no significant clusters. In the within-
video action classification, we decoded the eight actions of the video session using leave-one-
beta-out cross validation: We trained a classifier to discriminate the actions using 7 out of the 
8 beta patterns per action. Then we tested the classifier on its accuracy at discriminating the 
actions using the held out data. This procedure was carried out in 8 iterations, using all 
possible combinations of training and test patterns. The resulting classification accuracies 
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were averaged across the 8 iterations. The same procedure was used in the within-sentence 
action classification. Individual accuracy maps were entered into a one-sample t-test to 
identify voxels in which classification was significantly above chance. Statistical maps were 
thresholded using Threshold-Free Cluster Enhancement (TFCE; Smith and Nichols, 2009) as 
implemented in the CoSMoMVPA Toolbox (Oosterhof et al., 2016). We used 10000 Monte 
Carlo simulations and a one-tailed corrected cluster threshold of p = 0.05 (z = 1.65). Maps 
were projected on a cortex-based aligned group surface for visualization. Significant 
decoding accuracies below chance (using both two- and one-tailed tests) were not observed. 

ROI analysis. To specifically investigate differential effects of crossmodal and within-
session decoding in frontoparietal and posterior temporal areas that are commonly activated 
during action observation and sentence comprehension, we performed a ROI analysis based 
on the conjunction (Nichols et al., 2005) of the FDR-corrected RFX contrasts action videos 
vs. baseline and action sentences vs. baseline. ROIs were created based on spheres with 12 
mm radius around the conjunction peaks within each area (Talairach coordinates x/y/z; IFG: -
42/8/22, PMC: -39/-7/37, IPS: -24/-58/40, LPTC: -45/-43/10; no conjunction effects were 
observed in the right hemisphere except in ventral occipitotemporal cortex). From each ROI, 
classification scheme (crossmodal, within-video, within-sentence), and participant, decoding 
accuracies were extracted from the searchlight maps and averaged across voxels. Mean 
decoding accuracies were entered into ANOVA, one-tailed one-sample t-tests and Bayesian 
comparisons(Rouder et al., 2009). Bayes factors were computed using R (version 3.4.2) and 
the BayesFactor package (version 0.9.12)(Morey et al., 2015). Using one-sided Bayesian 
one-sample t-tests, we computed directional Bayes factors to compare the hypotheses that the 
standardized effect is at chance (12.5%) vs. above chance, using a default Cauchy prior width 
of r = 0.707 for effect size. Bayes factor maps were computed using the same procedure for 
each voxel of the decoding maps. 

 

Crossmodal representational similarity analysis (RSA). For further investigation of the 
representational organization in the voxels that encode crossmodal action information we 
performed an ROI-based multiple regression RSA (Kriegeskorte et al., 2008; Bracci et al., 
2015) using crossmodal classification accuracies (Fairhall and Caramazza, 2013). ROIs were 
defined based on TFCE-corrected clusters identified in the classification analysis. From each 
ROI voxel, we extracted the pairwise classifications of the crossmodal action decoding, 
resulting in voxelwise 8 x 8 classification matrices. Notably the selection of action-
discriminative voxels, which is based on on-diagonal data of the pairwise classification 
matrix, does not bias toward certain representational organizations investigated in the RSA, 
which is based on off-diagonal data of the pairwise classification matrix (see below). 
Classification matrices were averaged across voxels, symmetrized across the main diagonal, 
and converted into representational dissimilarity matrices (RDM) by subtracting 100 – 
accuracy (%), resulting in one RDM per ROI and participant.  

The off-diagonals (i.e., the lower triangular parts) of the individual neural and the model 
RDMs were vectorized, z-scored, and entered as independent and dependent variables, 
respectively, into a multiple regression. We tested for putative collinearity between the 
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models by computing condition indices (CI), variance inflation factors (VIF), and variance 
decomposition proportions (VDP) using the colldiag function for Matlab. The results of these 
tests (max. CI=3, max. VIF=2.6, max DVP=0.8) revealed no indications of potential 
estimation problems (Belsley et al., 1980). Correlation coefficients were Fisher transformed 
and entered into one-tailed signed-rank tests. Results were FDR-corrected for the number of 
models included in the regression. 

To compare the performance of individual models, we used correlation-based RSA, i.e., we 
computed rank correlations between the off-diagonals of neural and model RDMs using 
Kendall’s τA as implemented by the toolbox for representational similarity analysis (Nili et 
al., 2014). Comparisons between rank correlations were computed using FDR-corrected 
paired two-tailed signed-rank tests. 

To investigate the performance of models along the dorsal-ventral axis, we used a path-of-
ROI analysis (Konkle and Caramazza, 2013) as described in Wurm et al. (2017): Dorsal and 
ventral anchor points were based on the most dorsal and ventral voxels, respectively, of the 
cluster identified in the crossmodal action classification (Talairach x/y/z; dorsal: -43/-58/20; 
ventral: -43/-50/-10). Anchor points were connected with a straight vector on the flattened 
surface. Along this vector, a series of partially overlapping ROIs (12 mm radius, centers 
spaced 3 mm) was defined. From each ROI, neural RDMs were extracted, averaged, and 
entered into correlation-based RSA as described above. Resulting correlation coefficients 
were averaged across participants and plotted as a function of position on the dorsal-ventral 
axis. 

Data sharing. Materials, neuroimaging data, and code are available upon request. 
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Supplementary Material 

 
Supplementary Results 

Behavioral results. During fMRI, participants performed a catch trial detection task. In both 
the video and sentence session, they detected incorrect actions with good accuracy 
(sentences: 83% ± 2.2 SEM, videos: 80% ± 2.9 SEM). The rate of false alarms was low for 
all 8 actions (sentences: 0.9% ± 0.3 SEM, videos:  1.5% ± 0.6 SEM) and uncorrelated 
between the two sessions (r(6) = -0.32, p = 0.44) suggesting that there were no action-specific 
similarities in task difficulty/confusability across sessions. A similar result was obtained in 
the behavioral control experiment, in which participants performed a 2-alternative forced 
choice task (Supplementary Table 1). 

The Post-fMRI ratings for verbalization and visual action imagery revealed, irrespective of 
session order, no strong tendencies to verbalize during the video session (mean ratings; 
sentence first: 3.9 ± 0.5 SEM, video first: 2.7 ± 0.6 SEM; on a Likert scale from 1 to 6) and 
to imagine the actions during the sentence session (sentence first: 3.1 ± 0.4 SEM, video first: 
3.8 ± 0.5 SEM; mixed ANOVA interaction: F(1,19) = 3.71, p = 0.07). However, the 
correspondence between verbalized actions and sentences during watching the action videos 
was stronger when the experiment started with the sentence session as compared to starting 
with the video session. Likewise, the correspondence between imagined actions and actions 
shown in the videos was higher when the experiment started with the video session as 
compared to starting with the sentence session (mixed ANOVA interaction: F(1,19) = 11.31, 
p = 0.003). The responses to verbalization/imagery ratings and correspondence ratings 
correlated with each other, i.e., high verbalization ratings were accompanied by high 
verbalization-sentence correspondence ratings (r(19) = 0.45, p = 0.035), and high imagery 
ratings were accompanied by high imagery-video correspondence ratings (r(19) = 0.57, p = 
0.009), Together, these results suggests only weak tendencies to verbalize and to imagine the 
action across session; but if participants verbalized or imagined the actions, then the 
verbalized or imagined actions corresponded more strongly to the stimuli they recalled from 
the first session. 
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Supplementary Figure 1. Bayesian model comparison for crossmodal action decoding vs. chance. 
(a) Bayes factors indicating evidence for H1, i.e., the hypothesis that decoding accuracies are above 
chance. (b) Inverse Bayes factors indicating evidence for H0, i.e., the null hypothesis that decoding 
accuracies are not above chance. Maps are thresholded at BF = 3 and 1/3, suggesting moderate 
evidence for H1 and H0, respectively(Jeffreys, 1998). Different upper ends of scales for H1 (30 = 
very strong evidence) and H0 (10 = strong evidence) maps were chosen to account for asymmetries in 
ease to find evidence for H1 and H0, respectively.   (c) Likelihood map for H1 vs. H0 using a fixed 
scale (BF/(BF+1)*100). 
 
  

Evidence for H1 

Likelihood 
H1 H0 

0/100 100/0 50/50 

a b 

c 

Evidence for H0 

Likelihood of H1 vs. H0 

BF 
3 30 

BF 
1/3 1/10 



	 23 

 

0.69 (p= 0.0001) 
  
 
 
0.36 (p = 0.05) co

rr
el

at
io

n 

verbalization-sentence  
correspondence 

imagery-video  
correspondence 

b

c

a sentences first vs. videos first 

t(1
9)

, p
=0

.0
5,

 u
nc

or
re

ct
ed

 

2.1 

8.0 

-2.1 

-8.0 

verbalization visual imagery 

sentence first video first cluster thresholded at p = 0.001 (372 voxels) 

pMTG cluster thresholded at p = 0.00001 (28 voxels) 

pSTS cluster thresholded at p = 0.00001 (38 voxels) 



	 24 

Supplementary Figure 2. Modulation of crossmodal decoding accuracies by verbalization and visual 
imagery. (a) Independent two-tailed t-test between decoding accuracies of the participant group with 
session order sentences-videos (sentence first) and the participant group with session order videos-
sentences (video first). To reveal any trends of session order effects, maps were leniently thresholded 
and uncorrected. (b)  Correlations between decoding accuracies and rating scores for verbalization, 
visual imagery, correspondence between verbalized actions and sentences, and correspondence 
between imagined actions and videos (see Methods for details). Decoding accuracies were averaged 
across voxels that showed significant crossmodal decoding. As the cluster of the crossmodal decoding 
was relatively large (372 voxels) it could be that a true effect emerging from a subset of voxels in the 
cluster was averaged out. We therefore tested whether reducing the ROI size by including only the 
most significant voxels (p < 0.0001; 38 voxels in pMTG, 28 voxels in pSTS). Blue dots indicate 
participants of the “video first” group, red dots indicate participants of the “sentence first” group. (c) 
Whole brain maps of correlations between rating scores and crossmodal decoding accuracies. 
Outlines in a and c indicate the extent of the crossmodal action decoding cluster thresholded at p < 
0.001 (red), p < 0.0001 (orange), and p < 0.00001 (yellow). 
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Supplementary Figure 3. Robustness of crossmodal multiple regression RSA effects across different 
ROI sizes (a) and models used in the multiple regression RSA (b). Asterisks indicate FDR-corrected 
effects: * p < 0.05, ** p < 0.01 *** p = 0.001, **** p < 0.0001. Error bars/lines indicate SEM. 
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Supplementary Table 1. Clusters identified in the crossmodal, within-sentence, and within-video 
action decoding. 

Region x y z t p Accuracy 

crossmodal 
left pMTG -54 -61 4 7.78 8.94E-08 17.7 
left pSTS -48 -49 10 6.91 1.79E-07 16.9 
within video 
left LOTC -45 -64 1 18.24 3.11E-14 35.5 
right LOTC 45 -58 4 15.92 3.99E-13 35.0 
left aIPL -54 -28 31 14.61 1.95E-12 31.0 
right aIPL 54 -22 31 13.11 1.40E-11 27.5 
right IPS 24 -55 43 12.70 2.50E-11 31.1 
left IPS -27 -79 22 11.00 3.09E-10 30.4 
within sentences 
left LOTC -45 -55 1 7.03 1.00E-06 21.1 
right LOTC 45 -55 -2 7.59 1.31E-07 18.3 
left IPS -27 -58 43 7.00 1.00E-06 19.7 
right IPS 12 -70 34 8.09 4.93E-08 19.1 
left LOC -21 -85 1 11.30 1.96E-10 26.9 
right LOC 24 -82 1 9.36 4.75E-09 23.9 
left pSTG -45 -40 31 5.50 2.20E-05 20.5 
left VWFA -42 -52 -20 6.74 1.00E-06 19.7 
left IFG/IFS -42 23 22 5.48 2.30E-05 19.5 
right IFG/MFG -42 23 22 5.48 2.30E-05 19.5 
left PMC -54 2 31 5.34 3.10E-05 19.3 
right IFJ 33 8 34 6.96 1.00E-06 18.0 
left ATL -60 -13 -5 4.81 1.06E-04 18.3 
right ATL 60 -13 -2 4.00 7.12E-04 17.8 

 

Coordinates (x, y, z) in Talairach space. Decoding accuracy at chance is 12.5%. Maps were TFCE corrected. 
For the within video and within sentence action decoding, only main clusters with distinctive peaks are reported. 
Abbreviations: aIPL, anterior inferior parietal lobe; ATL, anterior temporal lobe; IFG, inferior frontal gyrus; 
IFJ, inferior frontal junction; IFS, inferior frontal sulcus; IPS, intraparietal sulcus; LOC, lateral occipital cortex; 
LOTC, lateral occipitotemporal cortex; MFG, middle frontal gyrus; PMC, premotor cortex; pMTG, posterior 
middle temporal gyrus; pSTG, posterior superior temporal gyrus ; pSTS, posterior superior temporal sulcus; 
VWFA, visual word form area. 
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Supplementary Table 2. Behavioral results of the fMRI experiment, the behavioral (two-alternatives 
forced choice) control experiment, and the rating (using Likert scales from 1 = not at all to 6 = very 
much; see Methods for details). 

  

 
open close give take stroke scratch agree disagree catch trials 

fMRI sentence session 
mean hit/CR rate 0.990 0.992 0.973 0.999 0.992 0.994 0.995 0.996 0.832 
SEM 0.003 0.003 0.005 0.001 0.003 0.003 0.003 0.003 0.022 
fMRI video session 
mean hit/CR rate 0.988 0.981 0.998 0.991 0.959 0.987 0.993 0.978 0.805 
SEM 0.003 0.008 0.001 0.004 0.016 0.006 0.004 0.012 0.029 
2AFC sentence session 
mean accuracy 0.986 0.993 0.972 0.979 0.979 0.993 1.000 1.000 0.819 
SEM 0.009 0.007 0.021 0.011 0.015 0.007 0.000 0.000 0.056 
mean RT 1961 1968 2044 1963 1973 1954 1986 1972 2121 
SEM 91 98 106 100 83 101 77 78 73 
2AFC video session 
mean accuracy 0.986 1.000 1.000 1.000 0.924 0.972 0.993 1.000 0.875 
SEM 0.009 0.000 0.000 0.000 0.024 0.012 0.007 0.000 0.035 
mean RT 1923 1903 1819 1821 1753 1689 1670 1657 1897 
SEM 66 69 71 67 93 90 85 80 70 
unusualness sentences 
mean rating 1.09 1.36 1.18 1.09 2.09 1.18 1.27 1.45 NA 
SEM 0.09 0.28 0.12 0.09 0.37 0.12 0.19 0.25 NA 
unusualness videos 
mean rating 1.18 1.00 1.36 1.36 2.18 1.45 1.91 2.00 NA 
SEM 0.12 0.00 0.20 0.28 0.44 0.28 0.31 0.36 NA 
Person-directedness 
mean rating 1.15 1.25 4.20 3.40 1.20 1.15 5.50 5.65 NA 
SEM 0.08 0.12 0.39 0.41 0.12 0.11 0.24 0.17 NA 
Object-directedness 
mean rating 5.80 5.80 5.65 5.75 1.65 1.70 1.15 1.15 NA 
SEM 0.09 0.12 0.17 0.12 0.32 0.35 0.11 0.11 NA 
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Supplementary Table 3. One-tailed t-tests and Bayesian comparisons for within-video, within-
sentence, and crossmodal decoding. 

 
within-video within-sentence crossmodal 

 
t(20) p BF t(20) p BF t(20) p BF 

LPTC 11.18 <0.0001 >1000 5.10 <0.0001 953.27 4.17 0.0002 138.61 
IPS 8.56 <0.0001 >1000 5.64 <0.0001 >1000 -1.20 0.8773 0.11 
PMC 7.33 <0.0001 >1000 2.78 0.0058 8.88 -0.85 0.7984 0.13 
IFG 5.55 <0.0001 >1000 3.91 0.0004 81.31 -0.08 0.5314 0.21 

 

 

 

 


