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Abstract 
The routine use of genomics for disease surveillance provides the opportunity for 
high-resolution bacterial epidemiology. 
  
However, current whole-genome clustering and multi-locus typing approaches do not fully 
exploit core and accessory genomic variation, and cannot both automatically identify, and 
subsequently expand, clusters of significantly-similar isolates in large datasets and across 
species. 
  
Here we describe PopPUNK (Population Partitioning Using Nucleotide K-mers; 
https://poppunk.readthedocs.io/en/latest/), software implementing scalable and expandable 
annotation- and alignment-free methods for population analysis and clustering. 
  
Variable-length k-mer comparisons are used to distinguish isolates’ divergence in shared 
sequence and gene content, which we demonstrate to be accurate over multiple orders of 
magnitude using both simulated data and real datasets from ten taxonomically-widespread 
species. Connections between closely-related isolates of the same strain are robustly 
identified, despite variation in the discontinuous pairwise distance distributions that reflects 
species’ diverse evolutionary patterns. PopPUNK can process 10 3-10 4 genomes as single 
batch, with minimal memory use and runtimes up to 200-fold faster than existing methods. 
Clusters of strains remain consistent as new batches of genomes are added, which is 
achieved without needing to re-analyse all genomes de novo. 
  
This facilitates real-time surveillance with stable cluster naming and allows for outbreak 
detection using hundreds of genomes in minutes. Interactive visualisation and online 
publication is streamlined through automatic output of results to multiple platforms. 
  
PopPUNK has been designed as a flexible platform that addresses important issues with 
currently used whole-genome clustering and typing methods, and has potential uses across 
bacterial genetics and public health research. 
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Introduction 
Determining whether a set of pathogen isolates are significantly more genetically similar than 
randomly-selected representatives from the circulating population is critical in identifying 
transmission pairs, localised outbreaks or global patterns of dissemination (Croucher and 
Didelot 2015). For phenotypically diverse bacterial pathogens, categorising sets of similar 
isolates is particularly valuable, as such clusters are often strongly associated with variation 
in clinically-relevant traits, including host range (Weinert et al. 2015; Reuter et al. 2014; 
Willems et al. 2012), virulence (Alikhan et al. 2018; Reuter et al. 2014; Weinert et al. 2015), 
propensity to cause nosocomial outbreaks (Willems et al. 2012; Aanensen et al. 2016) and 
antimicrobial resistance profile (Aanensen et al. 2016; Kallonen et al. 2017). Following the 
trends in these clusters over time provides critical information on population-level changes 
following the emergence of new strains (Kallonen et al. 2017), or resulting from interventions 
such as vaccine introduction (Croucher et al. 2013). Therefore the clustering of isolates into 
strains, and ascertaining the higher-resolution structure within these groupings, is a critical 
challenge in pathogen population genetics. 
 
The earliest bacterial typing approaches used phenotypic assays, such as antibody binding 
(serotyping), phage infection (phage typing) or metabolic properties (biotyping) (Barker and 
Old 1989). However, these categorisation methods were typically genus- or species-specific, 
and limited in resolution by the number of detectable outcomes. Later epidemiological 
studies instead favoured methods that could be generalised across multiple bacteria and 
which were designed to assay selectively neutral variation across multiple loci, thereby 
avoiding the risk of being confounded by a single recombination or selective sweeps. These 
typically employed gel electrophoresis to distinguish between alleles within conspecific 
genotypes, either based on protein charge (multilocus enzyme electrophoresis, MLEE), 
tandem repeat length (multilocus variable number tandem repeat analysis, MLVA), or 
variation in restriction site distributions (pulsed-field gel electrophoresis, PFGE). However, 
despite the the standardisation of such approaches by PulseNet International (Swaminathan 
et al. 2001, 2006), comparison of gels between laboratories remains difficult. 
 
Sequence data has the advantage of being more portable owing to its ease of 
standardisation and digitisation. Consequently, multilocus sequence typing (MLST) emerged 
as the gold standard epidemiological typing for bacteria in the late 1990s (Maiden et al. 
1998). MLST labels are defined by any set of unique sequences at several short fragments 
of unlinked housekeeping genes; treating any change regardless of number of 
polymorphisms as the same provides robust clustering in the presence of recombination 
(Feil et al. 2004; Turner et al. 2007). Continually-updated online MLST databases have 
facilitated rapid comparisons between global isolate sets collected over decades (Jolley et 
al. 2017; Aanensen and Spratt 2005). Furthermore, as each MLST label is made up from 
several separate allele labels from each gene in the scheme, minimum-spanning trees can 
be generated using eBURST (Feil et al. 2004). This allowed sequence types to be grouped 
together into clonal complexes. However, the fixed resolution of MLST has two problems: 
firstly, pathogens such as Mycobacterium tuberculosis and Salmonella enterica  serovar 
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Typhi exhibit so little variation that MLST often struggles to distinguish conspecific isolates 
(Achtman 2012). Secondly, at the other extreme, some pathogens recombine sufficiently 
frequently that the limited resolution of MLST causes infrequent spurious links between 
unrelated groups of isolates, resulting in ‘straggly’ clonal complexes encompassing highly 
divergent bacteria (Turner et al. 2007; Willems et al. 2012). 
 
Whole genome sequence data provides an opportunity to greatly improve the precision and 
resolution of bacterial typing. Core genome MLST (cgMLST) schemes have been designed 
as an extension to MLST by applying the same approach across the core genome, and have 
demonstrated their value at scales ranging from genus-wide taxonomy to investigation of 
nosocomial outbreaks in Neisseria  spp. (Bratcher et al. 2014), Listeria monocytogenes 
(Ruppitsch et al. 2015), Enterococcus faecium (De Been et al. 2015), Escherichia coli , 
Pseudomonas aeruginosa , Klebsiella pneumoniae  and Staphylococcus aureus (Mellmann et 
al. 2016). The advantage of these schemes is the speed and ease of assigning indices to 
alleles combined with the increased resolution of using larger proportions of the core 
genome. However, all such analysis are contingent upon, and limited to, the coding 
sequences identified in the original scheme: in the species-specific schemes listed above, 
this varied between 41% and 84% of the genes in a typical genome. This can only be 
achieved if there has been complete assembly of all these loci in the query genome. Further 
resolution is lost if these data are treated as a set of allele identifiers, rather than nucleotide 
sequences, as this obscures the level of similarity between non-identical alleles. 
Nevertheless, cgMLST is highly sensitive and can uncover deeper relationships between 
strains. This is a trade-off with specificity, meaning a minimum-spanning tree constructed 
using sequence types is fully connected, losing the simple and intuitive splitting of the 
population into clonal complexes (Feil et al. 2004). Some cgMLST studies have therefore 
resorted to using complexes from MLST (Maiden and Harrison 2016; Alikhan et al. 2018), 
with which they are highly consistent. 
 
Subdivision of genetically diverse populations is critical for phylogeny-based analyses, such 
as phylodynamic studies (Weinert et al. 2015; Croucher et al. 2013; Kallonen et al. 2017; 
Kremer et al. 2017) or recombination identification (Croucher et al. 2013; Weinert et al. 
2015). The identification of clusters from genomic data can be performed by partitioning a 
phylogeny (Prosperi et al. 2011), but has more typically used complex population structure 
analysis models: initially STRUCTURE (Pritchard et al. 2000) or BAPS (Corander et al. 
2008), and more recently hierBAPS (Cheng et al. 2013). Comparisons between the clusters 
generated by these algorithms and MLST clonal complexes again found high levels of 
overlap (Alikhan et al. 2018; Aanensen et al. 2016; Kallonen et al. 2017; Croucher et al. 
2013), indicating these groupings correspond to natural bacterial populations. These 
methods fully exploit the available polymorphic sites extracted from core genome 
alignments, though these can be computationally challenging to generate for large or diverse 
population samples. There are two additional difficulties encountered when applying these 
sophisticated analytical approaches to pathogen surveillance. The first is that the 
identifiability of clusters depends on their frequency in the population, with rarer strains often 
either grouped together or treated as admixtures of more common genotypes (Grad et al. 
2016; Willemse et al. 2016; Croucher et al. 2013), making changes in prevalence difficult to 
track prospectively. Secondly, these methods have to be rerun from scratch every time the 
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alignment changes, which is further complicated due to their large computational burden, 
meaning they lack the simple extendability of MLST-type schemes. 
 
Given the issues with core genome-dependent approaches, recent work has sought to 
improve the resolution of expandable typing schemes by exploiting the variation in accessory 
loci. Differences in gene content underlie much phenotypic variation between bacteria, and 
these are correlated with core genome divergence in multiple species (Croucher et al. 
2014b; Zhou et al. 2014; Holt et al. 2015; Aanensen et al. 2016), motivating the use of this 
information in epidemiological typing. Hence whole genome MLST (wgMLST) schemes have 
been developed to incorporate accessory genes, by adding an allele identifier which 
corresponds to its absence, effectively weighting the acquisition of a single gene the same 
as individual SNPs (Liu et al. 2016). However, as variation in mobile elements can import 
many genes over short timescales (Abudahab et al. 2017; Croucher et al. 2016) and 
potentially be confounding for resolving outbreaks (Zhou et al. 2013), it can be preferable to 
keep such variation distinct from that in the core genome. Additionally, unlike the 
well-defined and conserved loci comprising cgMLST schemes, many wgMLST loci are more 
difficult to align and define, and can be complicated by the difficulty of resolving orthologous 
and paralogous genes (Zhang et al. 2015). Additionally, the extensive gene content variation 
of many species means a fixed scheme designed only using an initial sample will miss many 
accessory genes, including any newly-emerged loci that enter the population through 
horizontal gene transfer (Alikhan et al. 2018), the detection of which represents a critical 
aspect of pathogen surveillance. Alternatively, wgMLST schemes can be continually updated 
through searching each new isolate for previously-unseen loci, but this necessitates every 
genome being compared to a continually-expanding set of typically rare loci, accompanied 
by annotation and extraction of any new genes to add to the scheme, which is both 
computationally-intensive and algorithmically complicated. 
 
Overall, typing based approaches such as MLST and its extensions suffer either from 
sub-optimal resolution or problems identifying biologically-meaningful clusters, whereas 
model-based population structure analysis is not suited to surveillance due to its 
computational burden and difficulty to extend to new isolates. To solve these methodological 
difficulties in a single approach, we have developed PopPUNK (Population Partitioning 
Using Nucleotide K-mers). By using efficient MinHash based comparisons between pairs of 
genome assemblies with k-mers (strings of bases of length k) of different lengths, we can 
distinguish divergence in orthologous sequence and variation in gene content. These 
distances are automatically and rapidly clustered to define strains, which we define here as 
sets of isolates significantly similar in both their core and accessory genomes relative to the 
rest of the species, in a frequency-independent manner. We have tested PopPUNK on 
simulated data and real datasets from ten bacterial species, demonstrating that the software 
rapidly and accurately estimates genetic distances between isolates. These are used to 
define clusters within samples more quickly than existing methods. Using network-based 
approaches, PopPUNK’s output can be easily queried and expanded, meaning it is able to 
fully exploit genomic data in a scalable manner appropriate for real-time surveillance of 
large, diverse bacterial populations. 
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Results 
 
 

 
Figure 1 : Summary of the PopPUNK algorithm. Step 1: For each pairwise comparison of 
sequences, the proportion of shared k-mers of different lengths is used to calculate a core 
and accessory distance. We use the fact that differences in gene content cause k-mers 
(examples highlighted in green) to mismatch irrespective of length, and whereas 
substitutions distinguishing orthologous sequences cause longer k-mers to mismatch more 
frequently than shorter k-mers. Step 2: The scatter plot of these core and accessory 
distances is clustered to identify the set of distances representing 'within-stain' comparisons 
between closely-related isolates. A network is then constructed from nodes, corresponding 
to isolates, linked by short genetic distances, corresponding to ‘within-strain’ comparisons. 
Connected components of this network define clusters. Step 3: The threshold defining 
within-strain links is then refined using a network score, n s, in order to generate a sparse but 
highly clustered network. Step 4: Finally, the network is pruned by taking one sample from 
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each clique. The distances between new query sequences and references are calculated, 
and 'within-strain' distances used to add new edges. The clusters are then re-evaluated as in 
step 3, with the nomenclature being kept consistent with the original reference cluster 
names. 

PopPUNK uses variable length k-mers to accurately resolve 
genetic divergence 
We proposed the probability that a k-mer will match between a pair of sequences, p match, is 
the product of accessory and core mismatches. Specifically, p accessory the probability it does 
not represent an accessory locus unique to one member of the pair, and p core, the probability 
it represents a shared core genome sequence that does not contain any mismatches. To 
calculate p core and p accessory, comparisons were run using the MinHash algorithm (Broder 
1997) as implemented in Mash (Ondov et al. 2016), which estimates the Jaccard similarity 
between reduced size k-mer ‘sketches’ of the two sequences. This is run for a selection of 
k-mer lengths between kmin and kmax, the former being determined by the minimum sequence 
length needed to avoid frequent false positive matches given the size of the genomes being 
compared (see Methods), and the latter by limited by memory-efficient MinHash processing 
(PopPUNK uses 29 by default). By determining the probability of k-mer matching p core over 
this k-mer size range, it is possible to estimate the density of single nucleotide 
polymorphisms (SNPs) distinguishing the pair across their shared core, defined as π (Nei 
and Li 1979). This is because longer k-mers are more likely to contain a SNP, as quantified 
by the probability of a k-mer perfectly matching between the pair: 
 

1 )pcore = ( − π k  
 
This approach assumes a random and uniform distribution of SNPs across the core, which is 
defined as those genomic regions in which nucleotide strings at least kmin-long can be 
matched, representing statistically significant similarity between the pair. Loci in which there 
are no kmin-long matches, resulting from either absence of the sequence in one member of 
the pair, or high sequence divergence of at least one SNP per kmin bases, are classified as 
belonging to the accessory genome; kmin thereby provides an intrinsic statistical distinction 
between the core and accessory regions in the pairwise comparison. Hence p accessory can be 
regarded as the Jaccard similarity between a pair in terms of their shared core sequence, 
allowing the definition of the accessory divergence between sequences, a , as the 
corresponding Jaccard distance: 
 

1 )paccessory = ( − a  
 
Unlike p core, p accessory is independent of k, allowing both π and a  to be jointly estimated from 
the assumption that p match is the product of p match and p accessory (Fig 1): 
 

1 )(1 )pmatch = ( − a − π k  
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To test whether this approach was effective in differentiating core and accessory 
divergences, we performed forward-time simulations of bacterial populations diversifying 
through base substitutions, large insertions and deletions (indels) and recombination using 
BacMeta (Sipola et al. 2018). Those simulations in which sequences diverged only through 
base substitutions all correctly identified a  < 5x10 -3, whereas π increased according to the 
set substitution rate over multiple orders of magnitude, even in the presence of 
recombination (Fig 2A and S1). To test the accuracy with which a  can be estimated, the 
substitution rate was fixed at 5x10 -6 bp -1 generation -1, and indels of a fixed size of 250 bp 
occured at varying rates relative to base substitutions to emulate changes of gene content. 
The calculated a co-varied with the indel rate, without substantially affecting the inferred 
distribution of π (Fig 2B and S1). With the indel rate was fixed at 0.05, the distributions of 
both a  and π converged towards a single mode as the rate of exchange through 
recombination was increased (Fig 2C), consistent with changes in the analogous core and 
accessory genetic distances observed in a study using a different framework to study the 
effects of sequence exchange (Marttinen et al. 2015). Hence PopPUNK's use of variable 
length k-mers can resolve variation in the genome content and sequence to generate a 
pairwise distance distribution that accurately reflects the population-wide distribution of 
genetic diversity. 
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Figure 2 : Detection of genetic diversity by PopPUNK in simulated populations. Each plot 
shows the deviation in gene sequence (π) and gene content (a ) estimated by PopPUNK 
from a sample of 25 isolates from each of 50 simulations run with the same parameters. (A) 
Deviation through base substitution only. As the rate of base substitution (base -1 
generation -1) was increased over two orders of magnitude, estimates of population-wide π 
increased accordingly, as shown by the distribution of pairwise core distances in the top row 
of histograms. The scatterplots beneath show a  measurements remained below 5x10 -3, 
demonstrating the specificity with which divergence was measured. (B) Deviation through 
insertions and deletions. To test the estimation of a  in a clonally-evolving population, 
simulations included insertions and deletions of 250 bp segments occurring at a rate defined 
relative to the fixed substitution rate of 5x10 -6 base -1 generation -1. Estimates of a  increased 
proportionately with this rate, without affecting the observed range of π. (C) Effects of 
recombination on the distribution of genetic diversity. With the insertion and deletion rate 
fixed at 0.05 relative to the substitution rate of 5x10 -6 base -1 generation -1, the rate of 
recombination relative to base substitutions was then varied. This resulted in a concentration 
of the estimated distances into a single mode, representing the changing population 
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structure as frequent exchange between isolates homogenises the divergence between 
them in both gene sequence and content. 
 
To determine the limits of resolution possible using PopPUNK, and therefore whether it 
could be used for surveillance of monomorphic pathogens or clonally-related outbreaks, 
distances were calculated between eight artificially-generated variants of a 2.2 Mb 
Streptococcus pneumoniae  genome distinguished by three biallelic SNPs (Fig S2). This 
necessitates the use of a sufficiently large sketch size (10 5), which determines the coverage 
of the genome in the k-mer representation. But with this increase even sequences 
distinguished by only a single SNP could be successfully resolved using a MinHash 
approach. This necessitates slightly longer runtimes, so we allow the user to select a larger 
sketch size than the default if there is a low level of divergence expected between isolates. 
Therefore given sufficiently high-quality data, PopPUNK can accurately resolve bacterial 
sequences at multiple scales of genetic divergence. 

PopPUNK identifies divergence between bacterial genomes 
across multiple species 
To test whether PopPUNK could also produce accurate estimates of a  and π when applied 
to real high-throughput sequencing data, the software was next applied to recent population 
genomics studies from ten diverse bacterial species. These were chosen to have varied 
ecologies, including enteric bacteria (Escherichia coli  and Salmonella enterica ), Gram 
negative respiratory pathogens (Haemophilus influenzae  and Neisseria meningitidis), 
streptococci (S. pneumoniae  and Streptococcus pyogenes), other Firmicutes pathogens 
(Staphylococcus aureus and Listeria monocytogenes), and two species in which limited 
genetic diversity has previously been detected (Neisseria gonorrhoeae  and Mycobacterium 
tuberculosis). The pangenome of these datasets were defined using Roary, from which the 
population-wide core genome was aligned and pairwise distances calculated using the 
Tamura-Nei (tn93) distance. These pairwise distances use only loci conserved across at 
least 99% of the isolates in each sample, rather than the pairwise definition of the core 
intrinsic to PopPUNK. The genome content divergence was measured as the Jaccard 
distance between the presence and absence of accessory coding sequences. In all cases, 
there was a strong linear correlation across the full range of both a  and π (Fig 3 and Table 
S1). For π, the linear relationship was close to the identity line, indicating PopPUNK was 
accurately estimating the per-base probability of sequence divergence using the default 
sketch size of 10 4. The exception was M. tuberculosis, for which the range of π was an order 
of magnitude lower than in other species. Therefore PopPUNK needed to be run with a 
sketch size of 10 5; despite this increase, the analysis remained fast and memory efficient 
(Table 2), and the estimated π values strongly correlated with the tn93 distances. 
 
For a , the best fit line was typically parallel to, but below, the line of identity. The difference in 
intercept is likely to represent an artefact of the default BLAST identity threshold used by 
Roary for clustering genes (95%), which causes divergent alleles of orthologous loci to be 
split into different genes, and the difficulties of automated annotation of draft genome 
assemblies, which can contain many contig breaks. In the case of S. pneumoniae , in which 
there is a high divergence between the Roary and PopPUNK analyses, the smaller 
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distances calculated by PopPUNK are very similar to those estimated by an independent 
annotation and analysis of gene content (Fig S4) using COGtriangles (Croucher et al. 2014b; 
Kristensen et al. 2010). Furthermore, the annotation-independence of PopPUNK means it is 
not sensitive to variation in the identification of coding sequences that might result from 
differing assembly quality or inconsistent gene calling.  
 
Manual inspection of genome alignments revealed the discrepancy between the distribution 
of a  in M. tuberculosis, inferred to reach up to ~10% by Roary but only ~1.5% by PopPUNK 
(Fig 3), primarily represents impact of frameshift mutations and the difficulty in consistently 
assembling and annotating coding sequences within the PE/PPE repeats (Bryant et al. 
2013). PopPUNK’s ability to align at least parts of these relatively high diversity loci likely 
account for the higher density of SNPs it infers in the core genome shared by compared 
strains (Cohen et al. 2015; Bryant et al. 2013). This annotation-independence also means 
PopPUNK can detect divergence in intergenic regions, increasing its sensitivity to 
widespread changes in regulatory regions (Oren et al. 2014). Additionally, PopPUNK was 
between six- and 200-fold faster than Roary, while using between five- and 45-fold less 
memory. Therefore PopPUNK is an efficient means of accurately measuring SNP and gene 
content divergence in species-wide genomic datasets. This can also be performed 
independently of the downstream clustering steps. 
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Figure 3: Comparison of core and accessory distances from PopPUNK (x-axis) and 
pan-genome construction with Roary (y-axis). For each species, the core distance was 
calculated as the Tamura Nei (tn93) distance from the core genome alignment; the 
accessory distance was calculated as the Hamming distance between accessory gene 
presence/absence. In each panel, the line of identity (red line) and a linear regression (blue 
line) are also plotted. 
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Table 1: Adjusted R2 between PopPUNK inferred core and accessory distances, and core 
and accessory distances inferred from a core genome alignment produced using Roary. We 
did not run Roary across the entire Salmonella  genus. We were unable to run R-hierBAPS 
on the S. pyogenes data within a limit of 18 days, as the large number of singleton clusters 
made computation inefficient. We calculated the Silhouette Index for each sample, using the 
PopPUNK core and accessory distances and the clustering method indicated in the table 
header. We show the average Silhouette Index over all samples. The adjusted Rand index 
representing overlap between PopPUNK clusters and R-hierBAPS clusters is shown, where 
identical clustering is one and completely different clustering is zero. *For Listeria 
monocytogenes the second level R-hierBAPS clusters are analysed, as the first level 
represents the deep split between lineages. 

Species Publication 
reference 

Adjusted R2 Number of clusters Average Silhouette Index 
(best = 1, worst = -1) 

Adjusted 
Rand 
index 
 

  Core Accessory PopPUNK R-hierBAPS 
(level 1/level 
2) 

PopPUNK R-hierBAPS 
(level 1) 

 

Staphylococcus 
aureus 
N = 284 

(Aanensen 
et al. 2016) 

0.96 0.69 27 9/29 0.58 0.53 0.852 

Escherichia coli 
N = 1508 

(Kallonen et 
al. 2017) 

0.98 0.97 130 24/101 0.40 0.41 0.965 

Salmonella 
enterica 
N = 847 

(Alikhan et 
al. 2018) 

0.91 0.97 12 10/32 0.54 0.53 0.999 

* Listeria 
monocytogenes 
N = 128 

(Kremer et 
al. 2017) 

1.00 0.96 31 3/18 0.60 0.55 0.924 

Haemophilus 
influenzae 
N = 75 

(Koelman et 
al. 2017) 

0.98 0.95 27 7/24 0.69 0.41 0.478 

Neisseria 
meningitidis 
N = 882 

(Lees et al. 
2017) 

0.99 0.96 45 15/66 0.61 0.40 0.775 

Neisseria 
gonorrhoeae 
N = 1102 

(Grad et al. 
2016) 

0.94 0.72 132 15/58 0.21 0.36 0.921 

Streptococcus 
pyogenes 
N = 675 

(Lees et al. 
2016) 

0.84 0.78 167 NA 0.76 NA NA 

Streptococcus 
pneumoniae 
N = 616 

(Croucher 
et al. 2013, 
2015) 

0.83 0.75 62 19/63 0.76 0.59 0.766 

Mycobacterium 
tuberculosis 
N = 219 

(Cohen et 
al. 2015) 

0.95 0.72 54 7/20 0.41 0.61 0.914 
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PopPUNK successfully resolves complex bacterial populations 
into strains 
The discontinuous distribution of a  and π between all pairs of sequences in a population has 
previously been shown to reflect the division of the population into strains in S. pneumoniae 
(Croucher et al. 2014b). The distances estimated by PopPUNK successfully replicated this 
(Fig S3). Such structure within the bacterial population is typically reflected by a separation 
between the shorter genetic distances, which can be regarded as within-strain comparisons, 
and the larger between-strain distances, which may form one or more clusters in the plot, 
depending on the bacterium’s evolutionary history (Fig 2). To test whether this also applied 
to other bacterial pathogens, the pairwise a  and π distributions were plotted for the other 
nine species-wide collections listed in Table 1 (Fig 4 and S5).  
 
Species known to exchange sequence through homologous recombination at similar 
frequencies to S. pneumoniae , such as Neisseria meningitidis (Fig 4), exhibited a similar 
distribution of pairwise genetic distances. The group of within-strain pairwise distances, 
found near the origin of the graph, was elongated, likely as a consequence of extensive 
diversification of strains through transfer of genomic islands and shuffling of core sequence 
through homologous recombination. The between-strain distances were primarily 
concentrated within a single dense modal cluster, consistent with the simulations involving 
high level of recombination in Fig 2. In contrast, Streptococcus pyogenes strains exhibit little 
evidence of recent diversification through homologous recombination (Nasser et al. 2014), 
hence the within-strain distances were tightly clustered near the origin of the graph (Fig S5). 
Nevertheless, between-strain distances remained concentrated in a single node, consistent 
with the much higher level of recombination inferred across broader samples (Didelot and 
Maiden 2010), resulting in the star-like internal structure of species-wide S. pyogenes 
phylogenies (Chalker et al. 2017). A different pattern was evident in other species in which 
homologous recombination is infrequently observed, such as Escherichia coli , Salmonella 
enterica  and Staphylococcus aureus (Fig 4 & S5). This exhibited much stronger evidence of 
deep population structure, characterised by multimodal between-strain distance distributions 
that likely reflect ancestral divergences that have not been overwritten by sequence 
exchange. The distribution of within-strain distances had high variance in the accessory 
direction, which is likely to reflect rapid diversification in gene content through movement of 
mobile genetic elements in the absence of core genome diversification through homologous 
recombination (Zhou et al. 2014; Aanensen et al. 2016; Kallonen et al. 2017). A more 
extreme version of this pattern was clear in Listeria monocytogenes and Haemophilus 
influenzae , which are composed of deep-branching lineages that result in small, tight 
clusters being formed in the π-a  distance space. This structure was apparent even using a 
small total number of samples. Across a range of ecologically and taxonomically distinct 
species, there are clear groups separated by both larger and smaller divergences appear on 
the plot, with the smaller divergences representing within-strain comparisons. 
 
In order to identify these clusters, two alternative approaches are implemented within 
PopPUNK: two-dimensional Gaussian mixture models (2D GMMs), which split the points into 
a user-specified maximum of K two-dimensional Gaussian distributions, or HDBSCAN, which 
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is run iteratively to identify fewer than a user-specified maximum number of clusters D (see 
Methods). The results of the application of both methods to the genomic datasets listed in 
Table 1 are shown in Fig 4: in each case, both methods were successfully able to resolve 
the pairwise distances into discrete clusters. The bacterial population can then be 
represented as a network in which each node corresponds to an isolate, and each 
within-strain relationship to an edge between these nodes (Fig 1). This network has the 
property that strains can be defined as the separate connected components (Fig 5). 
 

 
Figure 4: PopPUNK model fitting output for four archetypal examples (other species shown 
in Fig S5). Each row is a species, with each plot showing the distribution of core and 
accessory distances, with points coloured by their predicted cluster. The cluster closest to 
the origin is the within-strain cluster. The two-dimensional Gaussian mixture model (2D 
GMM) is in the left column, which also shows ellipses with the mean and covariance of the 
fitted mixture components. The HDBSCAN plot in the centre column additionally shows 
unclassified noise points as black. The final column shows the fits when maximising the 
network score to refine the 2D GMM fit. Listeria monocytogenes has clearly separated 
clusters which are well predicted by all methods. Although there is more complex structure 
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on the plots, Escherichia coli  and Neisseria meningitidis have a within-strain cluster also well 
captured by all approaches. In Streptococcus pneumoniae  recombination makes the 
boundary between clusters less distinct, and the mixture model includes too many links (Fig 
5). HDBSCAN is more accurate, but the refinement of the initial fit provides the most 
accurate and intuitive demarcation of the within-strain links. Streptococcus pyogenes 
exhibits low within-strain recombination, hence has a dense cluster of points near the origin 
of the graph, but high between-strain recombination, resulting in the single, broad 
between-strain set of points. Network score fit refinement is required for an accurate model 
fit in this case.  
 

 
 
Figure 5: Network and query assignment for S. pneumoniae . (A) Cytoscape view of the 
network for the SPARC dataset using the 2D GMM fit. Nodes (dots) are samples and edges 
are those pairwise distances classified as 'within-strain'. The nodes are coloured by clusters 
for the refined fit in panel (B) showing which clusters are incorrectly merged in the mixture 
model fit. (B) As in (A), but showing the network after fit refinement. High stress edges 
causing clusters to be merged have been removed after maximising the network score. (C) 
Boxplots showing the similarities between cluster assignment when running PopPUNK in 
different modes. The different model types (2D GMM or HDBSCAN) implemented in 
PopPUNK were each fitted to either the Massachusetts or Maela S. pneumoniae population 
defined in (Corander et al. 2017), then refined through maximisation of n s. The three 
non-reference populations were then added in successive batches, either through 
comparisons to the full dataset or a representative set of reference sequences selected 
based on network structure, in all possible permutations. Comparisons of clustering similarity 
were then calculated between all these permutations in which the final population added was 
the same using the Rand index (Rand 1971); only those isolates in the most recent 
extension of the network were used. These values are shown separated according to the 
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starting reference population (Massachusetts or Maela), initial model (2D GMM or 
HDBSCAN), and comparison method (bar colour; full database or references only). 

PopPUNK can exploit network properties to refine strain 
definitions 
Neither the 2D GMM or HDBSCAN methods alone could satisfactorily resolve the 
recombinogenic populations into strains, primarily due to the diffuse nature of the 
within-strain distribution, which likely reflects the heterogenous rates of diversification 
observed in different strains (Croucher et al. 2013; Didelot et al. 2013). For the 2D GMMs, 
this was manifested as insufficiently specific, elongated within-strain distributions, which 
incorrectly included between-strain links as edges. For HDBSCAN, the expectation of a 
background noise in the distribution meant some pairwise distances between closely-related 
isolates on the fringes of the main density of within-strain points were omitted from the 
appropriate cluster. Only a few spurious connections can have a dramatic effect on strain 
definitions, as a single edge can cause large clusters to be merged, as previously observed 
for MLST clonal complexes (Turner et al. 2007). Increasing the threshold corresponding to 
within-strain connections reaches a transition point at which there is a dramatic increase in 
the density of edges in the network, and a decrease in network transitivity (Fig S6). This 
represents a small proportion of the many between-strain distances being included as 
edges, greatly increasing the connectivity of the network, by linking between tightly-knit 
components with spurious, high-stress edges. However, decreasing the threshold typically 
reduces the network density while increasing the transitivity of edges (Fig 5A), owing to the 
strong non-overlapping community structure of the network, meaning components 
corresponding to strains are highly internally connected. Therefore a network score statistic 
ns ranging between zero and one was defined: 
 

ransitivityns = t (1 ensity)− d  
 
For each dataset, this statistic was first calculated by separating within and between-strain 
distances. With the 2D GMM this was using a threshold lying on the decision boundary 
between the within- and between-strain clusters, and with HDBSCAN the point equidistant 
between the means of the within- and between-strain clusters. The position of this boundary 
was then optimised to maximise ns (see Methods). This provided an intuitive boundary 
separating the within-strain distances (Fig 4), and tended to be consistent whether initialised 
from either a 2D GMM or HDBSCAN (Fig S3). Inspection of the network before and after this 
refinement showed that small numbers of spurious edges between high frequency clusters 
were removed, and low frequency clusters were kept distinct (Fig 5B). This resulted in a 
greater number of more robust clusters, and therefore higher clustering specificity. 
 
For the populations listed in Table 1 these strain definitions were evaluated relative to the 
top level clusters identified from the core genome alignment using R-hierBAPS (Tonkin-Hill 
et al. 2018). PopPUNK used 15 to 74-fold less memory and ran between ten and 100-fold 
faster than R-hierBAPS (Table 2). The biggest differences in performance were observed in 
relatively small collections containing extensive core genome divergence (Fig 3), presumably 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/360917doi: bioRxiv preprint 

https://paperpile.com/c/C2TDEM/r78R9+d2Xdo
https://paperpile.com/c/C2TDEM/lbn5
https://paperpile.com/c/C2TDEM/06z1
https://paperpile.com/c/C2TDEM/06z1
https://doi.org/10.1101/360917
http://creativecommons.org/licenses/by/4.0/


representing the complexity of fitting a the BAPS model to such data. The number of clusters 
estimated by each method was similar (Table 1), with an average adjusted Rand index of 
0.852 indicating a high level of overlap. Based on the Silhouette distance calculated from the 
π and a  distances, the clustering identified by PopPUNK was of similar, or better, quality 
than that of BAPS, with the notable exceptions of N. gonorrhoeae  and M. tuberculosis, which 
lack the assumed strain structure (Fig S4). For instance, in the case of S. enterica , the 
clusters identified agreed perfectly with a recent reappraisal of species and subspecies 
definitions (Alikhan et al. 2018), whereas using BAPS leads to two cases of subspecies 
being merged, and a cluster with a single member being added to another larger cluster. 
This analysis shows PopPUNK is able to efficiently and accurately identify strains within a 
range of species-wide bacterial population genomic datasets. 
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Table 2: Resource and result comparison for each dataset. For all methods we quote the 
total CPU time used, and maximum memory. Both PopPUNK and R-hierBAPS use 
multithreading with close to 100% efficiency, so total wall-time was lower than these 
estimates roughly by a factor of the number of cores used. 

Species Publication 
reference 

PopPUNK 
microreact 

PopPUNK/ 
R-hierBAPS 
microreact 

Resource use (single thread) 

    Roary R-hierBAPS PopPUNK 

Staphylococcus 
aureus 
N = 284 

(Aanensen 
et al. 2016) 

https://microreac
t.org/project/HJJ
Epu1Rf  

https://microreact.
org/project/rJCRZ
Fx0M  

11.2 hrs CPU 
3.6 GB RAM 

6.3 hrs CPU 
4.9 GB RAM 

0.6 hrs CPU 
0.3 GB RAM 

Escherichia coli 
N = 1508 

(Kallonen et 
al. 2017) 

https://microreac
t.org/project/B1t
M9YyAM  

https://microreact.
org/project/B1kLl9
yAG  

144 hrs CPU 
36.2 GB RAM 

1662 hrs CPU 
44.7 GB RAM 

22.2 hrs CPU 
0.8 GB RAM 

Salmonella 
enterica 
N = 847 

(Alikhan et 
al. 2018) 

https://microreac
t.org/project/Skg
0j9sjz  

https://microreact.
org/project/Sk7br
UBWX  

101 hrs CPU 
21.0 GB RAM 

24.4 hrs CPU 
142 GB RAM 

2.6 hrs CPU 
0.5 GB RAM 

Listeria 
monocytogenes 
N = 128 

(Kremer et 
al. 2017) 

https://microreac
t.org/project/S1k
tRPJCM  

https://microreact.
org/project/r1gDQ
cyRf  

30.7 hrs CPU 
1.9 GB RAM 

27.2 hrs CPU 
7.8 GB RAM 

0.2 hrs CPU 
0.2 GB RAM 

Haemophilus 
influenzae 
N = 75 

(Koelman et 
al. 2017) 

https://microreac
t.org/project/BJ_
seO1CM 
 
 

https://microreact.
org/project/HyUhL
te0G 

21.2 hrs CPU 
1.0 GB RAM 

11.2 hrs CPU 
5.2 GB RAM 

0.1 hrs CPU 
0.2 GB RAM 

Neisseria 
meningitidis 
N = 882 

(Lees et al. 
2017) 

https://microreac
t.org/project/H1
ZgUY1Af  

https://microreact.
org/project/SkZe9
tlAM  

17.2 hrs CPU 
8.1 GB RAM 

193 hrs CPU 
37.0 GB RAM 

2.8 hrs CPU 
0.5 GB RAM 

Neisseria 
gonorrhoeae 
N = 1102 

(Grad et al. 
2016) 

https://microreac
t.org/project/BkI
hiwSx7  

https://microreact.
org/project/S1KgT
KteQ  

26.2 hrs CPU 
10.9 GB RAM 

239 hrs CPU 
21.0 GB RAM 

2.6 hrs CPU 
0.6 GB RAM 

Streptococcus 
pyogenes 
N = 675 

(Lees et al. 
2016) 

https://microreac
t.org/project/BJ
NtbheCf  

NA 9.3 hrs CPU 
5.3 GB RAM 

R-hierBAPS 
did not finish 
within 18 days 
with 12 cores 

0.7 hrs CPU 
0.3 GB RAM 

Streptococcus 
pneumoniae 
N = 616 

(Croucher 
et al. 2013, 
2015) 

https://microreac
t.org/project/SJx
xLMcaf  

https://microreact.
org/project/ByIBs
u--X  

9.2 hrs CPU 
5.8 GB RAM 

32.6 hrs CPU 
9.0 GB RAM 

0.7 hrs CPU 
0.3 GB RAM 

Mycobacterium 
tuberculosis 
N = 219 

(Cohen et 
al. 2015) 

https://microreac
t.org/project/HJ
MChNF-X 

https://microreact.
org/project/rJ4lfHt
ZX  

19.7 hrs CPU 
5.0 GB RAM 

4.1 hrs CPU 
4.2 GB RAM 

0.4 hrs CPU 
0.6 GB RAM 

 

PopPUNK rapidly integrates new genomic data into clusters 
By first generating a reference database and defining a model by which a  and π distances 
can be assigned as being within- or between-strain, PopPUNK allows the network by which 
strains are defined to be extended. New batches of genomes can then be included without 
needing to refit the model or recalculate all pairwise distances. This can result in existing 
strains expanding in number, merging with others, or new strains not previously represented 
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in the database being founded. By automatically rebuilding an updated database, PopPUNK 
allows iterative expansion through addition of successive batches of genomes. The accuracy 
of this approach was tested using a dataset of 4,107 draft S. pneumoniae genomes resulting 
from the combination of four different populations, sampled from Massachusetts (USA), 
Southampton (UK), Nijmegen (Netherlands) and Maela (Thailand) (Corander et al. 2017). 
Both the 2D GMM and DBSCAN models were fitted and subsequently refined using network 
properties using either the Massachusetts or Maela collections as the initial reference set. 
The three non-reference populations were then added as individual batches in every 
possible permutation to test the consistency of clusters from different starting points. The 
final clusterings of the isolates in the last population to be added were compared using the 
Rand index. This metric varies between zero, indicating completely dissimilar clusterings, 
and one, indicating identical clusterings (Rand 1971). When comparing the different orders 
in which the non-reference populations were added, using the same reference database and 
refined models, the Rand indices were all above 0.992 (Fig 5). Hence by expanding the 
network in this way, PopPUNK can accurately and consistently assign batches of genomes 
to strains. 
 
Comparisons were also made between queries that were assigned using different initial 
model fits, to test the sensitivity across the starting parameters of PopPUNK. Whether a 
different population (Massachusetts or Maela), or a different method (2D GMM or 
HDBSCAN) was used to initialise the model, there was a slight decrease in the 
reproducibility of the clustering, although the mean Rand index was still greater than 0.99 
(Fig 5). These were all highly similar to the results obtained when all 4,107 isolates were 
clustered in a single step, regardless of which spatial clustering approach was used (Fig S8). 
The clustering observed after successive additions of query sequences to the network of 
genomes therefore exhibits reassuringly little sensitivity to the original choice of population 
and model fit. 
 
The addition of batches by calculating the distance to every sample in the original clustering 
is inefficient, as the tight clusters of isolates within the same strain will each be separated 
from a given query by similar π and a  distances, making a high proportion of comparisons 
redundant. By default, PopPUNK reduces a full database to a set of reference genomes, 
which includes just one representative from each clique (i.e. a fully-connected component) 
within the network (Fig 1). This allows for faster and more efficient analysis of new batches 
of data, from which new references can be extracted through applying the same search for 
cliques. To test whether this approach caused any decrease in clustering reproducibility, the 
four test populations of S. pneumoniae  were successively integrated to the reference 
Massachusetts or Maela datasets as before, but this time using cliques to pare the database 
down to a set of references after each expansion of the network. When the cluster 
assignments of the genomes in the last population to be added were compared between the 
reference-based approach and with the previous analyses using the full databases, again a 
high degree of correspondence was measured by the Rand index (Fig 5). Although there 
was a detectable decline in the consistency of strain assignments using these 
reference-based searches, this decrease was even smaller than the use of different initial 
model fits. Correspondingly, only a small decrease in similarity to the single-step clustering 
was measured (Fig S8). The final networks of all four combined populations contained a 
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median of 256.5 references (range: 212-398): this almost 20-fold reduction in the database 
size resulted in a median 2.6-fold decrease in CPU time required for the addition of the final 
batch. Using this network-based design, PopPUNK can thereby efficiently and accurately 
combine multiple batches of genomes through continually updating a database of 
representative sequences that span the full diversity of the sampled population. 

PopPUNK outputs can be used directly for interactive 
browser-based analysis 
To facilitate simultaneous analysis of population structure in conjunction with associated 
epidemiological data, the outputs of PopPUNK can be directly uploaded to the 
freely-available online epidemiology platform Microreact (Argimón et al. 2016). This is 
achieved through using the pairwise π matrix to construct a neighbour-joining tree, either 
natively within PopPUNK using dendropy (Sukumaran and Holder 2010), or by running 
RapidNJ (Simonsen et al. 2011). The pairwise a matrix is used to generate a t-SNE 
projection using the sklearn package (Pedregosa et al. 2011), which is displayed using 
Microreact’s network interface developed for PANINI (Abudahab et al. 2017). Links to 
examples of such analyses are provided in Table 2. We have also included options for 
outputting the results of PopPUNK in formats appropriate for the online visualisation 
software Phandango (Hadfield et al. 2017) and GrapeTree, the browser-based viewer used 
in Enterobase (Zhou et al. 2017). The underlying network can also be investigated using 
Cytoscape (Shannon et al. 2003). 
 
The combined results arising from querying one dataset against another using PopPUNK 
can also be displayed with these platforms, with the additional isolates highlighted in the 
output. This can be used for iteratively merging similarly-sized datasets, as illustrated in Fig 
5C (an example of such a merging in S. pneumoniae : 
https://microreact.org/project/SkZ23iPbX). This means PopPUNK can be applied as a rapid 
tool for ruling out potential outbreaks. As an example, we queried 175 S. pneumoniae 
isolates from the multidrug-resistant PMEN14 lineage (Croucher et al. 2014a) against the 
diverse Massachusetts species-wide carriage population sample of 616 isolates 
(https://microreact.org/project/BkNqKdPb7 ). This identified all the query isolates as 
belonging to a single strain, and generated a phylogeny in which they were confined to one 
clade and an accessory projection representing gene content differences, in less than six 
minutes using sixteen CPUs and less than 200 MB RAM. Repeating this analysis using an 
optimised reference database of 63 representative sequences, the same process completed 
in under four minutes (https://microreact.org/project/Hk-_F0oWX). Hence PopPUNK provides 
a simple and efficient means to intuitively and interactively analyse complex data using a 
platform that facilitates online collaboration and publication. 

PopPUNK can be used for analysis of low diversity pathogens 
In the cases of N. gonorrhoeae and M. tuberculosis, R-hierBAPS generated substantially 
better clustering than PopPUNK, as judged by the Silhouette index. This likely represents 
the absence of true strains in these species, which are homogeneous compared with the 
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other species studied, and therefore do not exhibit the discontinuous but correlated 
divergence in π and a assumed in the clustering stage. In N. gonorrhoeae , the accessory 
genome content consists of a small number of prophage, three plasmids and the 80 kb 
gonococcal genomic island (GGI), all of which can vary independently of core genome 
divergence (Morse et al. 1986; Hamilton et al. 2005; Bennett et al. 2010). Using the fit based 
on the network score, we were able to successfully split the population into 132 clusters. 
Inspection in Microreact revealed a clade composed of a polyphyletic mixture of clusters 5 
and 10. Their close relationship within the core genome tree suggested the difference in 
clustering reflected divergence in their accessory genome. To identify the specific loci 
responsible for this split, microbial genome-wide association software (pyseer) was used 
with these isolates, finding 3,679 k-mers distinguishing the clusters 5 and 10 (Lees et al. 
2016, 2018a). The top hits recovered following mapping of these k-mers to reference 
sequences were the GGI and phage sequence, confirmed as being the distinctive loci 
through manual inspection. 

 

 
Figure 6: PopPUNK analysis of Neisseria gonorrhoeae . (A) Result of optimising the position 
of the decision boundary on the combined distances (red dashed line), as well as core and 
accessory only (dashed gray lines). These methods resulted in 132, 114 and 92 clusters 
respectively. (B) Example of a single core cluster, which is split into separate clusters using 
either the combined or accessory boundary. Shown is the phylogeny, with tips coloured by 
combined cluster. (C) Accessory t-SNE, with the clusters in b highlighted, confirming they 
diverge. (D) Manhattan plot of k-mers associated with the subcluster split in panel (B), which 
show the GGI is responsible for this difference. 
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For cases where there is independent core and accessory evolution, such as within a 
lineage, we therefore also implemented a more suitable model which just uses one of the 
core or accessory distances, rather than a combined score. All three clusterings can be 
jointly inspected using the Microreact output (for example 
https://microreact.org/project/S1KgTKteQ). In this particular cluster, the core distances no 
longer separated the isolates with the GGI and prophage, whereas the accessory distances 
gave a similar clustering to the combined boundary.  
 
Applying the same analysis to M. tuberculosis (https://microreact.org/project/rJ4lfHtZX) 
demonstrated the PopPUNK phylogeny accurately reconstructed the previously-identified 
lineages in this population (Cohen et al. 2015). While the top-level R-hierBAPS effectively 
identified these lineages, the PopPUNK core genome sequence clusters were much more 
finely grained, resembling the categorisation into spoligotypes, which are informative for 
more detailed epidemiology. As PopPUNK’s clusters can be easily assigned to lineages or 
R-hierBAPS clusters using the core phylogeny, this ensures the high-resolution links 
identified using this software can also be used to for analysis at broader levels. 
 
Such detailed epidemiology can also be valuable within more diverse species, such as when 
analysing of individual strains. As an example of such an hierarchical study of within-strain 
diversity, a PopPUNK analysis of the S. pneumoniae  PMEN14 lineage (Croucher et al. 
2014a) was compared to previous accessory genome study using PANINI, which applies 
t-SNE to the accessory gene presence/absence matrix generated by Roary (Abudahab et al. 
2017) (Fig S9). Due to the lower sequence divergence within a single lineage, PopPUNK 
was run with sketch sizes of 10 4 (https://microreact.org/project/H1UsF5CxX) and 10 5 
(https://microreact.org/project/H1Av59ClQ). In both cases, the phylogeny and accessory 
clusterings were similar, with the t-SNE projection recapitulating the main results from the 
PANINI analysis: group 5, lacking the Tn 916 antibiotic resistance element, were resolved as 
being separate from the rest of the population, while groups two and three, both carrying two 
prophage, were separated from the non-lysogenic group one, despite them being 
polyphyletic in the core genome tree. 
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Discussion 
Current typing and model-based clustering methods do not fulfil all the needs of a population 
analysis tool for bacterial genomic epidemiology. Here we have introduced PopPUNK, a 
novel suite of algorithms for analysing large species-wide bacterial population genomic 
datasets overcoming the technical and computational limitations of previous approaches. 
Our methods are based upon the rapid estimation of pairwise distances between isolates 
both in terms of divergence between their shared sequences and differences in their gene 
content. The use of MinHash optimised k-mer comparisons, which are independent of 
annotation and alignment, means these methods are highly efficient in both memory and 
CPU usage. Compared to construction of a core-genome alignment, our method is up to 200 
times faster and produces comparable results. The use of k-mer comparisons also fully 
exploits the information available in the entire genome assembly, without being limited to 
comparisons with a predefined set of common loci. These distances provide a clear 
overview of the population structure and the evolutionary mechanisms through which it is 
shaped, reflecting the degree to which the population is split into deep lineages, the scale of 
accessory genome variation between isolates, and the inferred effects of recombination on 
population structure. By altering the MinHash sketch sizes, PopPUNK users can optimise for 
speed, with default parameters rapidly identifying strains in diverse species, or precision, up 
to the level of single nucleotide resolution in the pan-genome. The software is also flexible in 
its application of machine learning techniques to these distributions of distances, making it 
applicable across a wide variety of population structures and collection sizes. As these 
spatial-clustering approaches are refined, and new methods become available, PopPUNK’s 
modularity means the repertoire of these techniques used by the software can be further 
expanded. 
 
For species with discontinuous π-a  distributions, categorisation of the population into 
clusters of related isolates is epidemiologically critical both for following longitudinal trends 
and understanding the distribution of clinically-important traits in cross-sectional samples. 
Depending on the nature of the pathogen, PopPUNK can divide collections into sequence 
clusters, using the divergence between shared sequences (Palys et al. 1997); genomotypes, 
defined as being similar in the accessory loci they harbour (Doolittle 2002); or strains, here 
defined as those isolates similar in both their core genome and gene content. The 
consistency of PopPUNK’s clusters with those identified by BAPS, which in turn match well 
with those identified by MLST and wgMLST (Alikhan et al. 2018), emphasises the likelihood 
that such clusters represent coherent natural populations. In each mode, PopPUNK applies 
a stringent threshold that minimises the probability of spurious links, corresponding to edges 
with high betweenness, which eventually lead to ‘straggly’ clusters  containing 
distantly-related isolates linked indirectly through intermediates. This is achieved both 
through careful identification of the within-strain distances, and pruning the resulting 
networks such that the proportion of transitive relationships is maximised. This approach 
also avoids the problem of clusters arising from diverse sets of rare genotypes, rather than 
lineages descended from a recent common ancestor  (Grad et al. 2016; Willemse et al. 
2016; Croucher et al. 2013). PopPUNK instead separates these into multiple small, distinct 
groupings, emulating one of the most desirable properties of a high quality MLST scheme.  
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Importantly, the stringency of the within-strain threshold also ensures strain definitions are 
persistent, and therefore robust to the addition of further batches of data, as demonstrated 
by the analysis of different combinations of four globally distributed S. pneumoniae  datasets. 
PopPUNK is therefore ideally suited to addressing the current limitations of k-mer-based 
epidemiological methods which suffer from the absence of an appropriate curated database 
or a stable strain nomenclature (Nadon et al. 2017). The outputs can be readily shared using 
the browser-based Microreact platform, and PopPUNK databases can be downloaded, 
queried and extended by different users in a non-centralised manner, allowing new batches 
of data to be continuously integrated in ongoing analyses. The speed of our software makes 
it capable of handling the thousands of bacterial genomes that will routinely be generated 
through surveillance of common bacterial infections. This is a consequence of the fast 
annotation- and alignment-free sequence analysis methods used, and the integration of data 
into a network structure, which allows the overall population to be represented by a small 
number of reference sequences. Our software has the potential to underpin global online 
surveillance databases for bacterial pathogens, which is particularly relevant as public health 
agencies around the world seek to fully exploit the benefits of genomic epidemiology. 
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Methods 

Rapid calculation of core and accessory divergences 
PopPUNK uses pairwise comparisons through k-mer matching between two sequences (s1 
and s2) at multiple k lengths to distinguish divergence in shared sequences, π (Nei and Li 
1979), from divergence in accessory locus content, here defined as a , the Jaccard distance 
between the sequence content: 
 

(s , )a 1 s2 = 1 − (s  ⋃ s )1 2

(s  ⋂ s )1 2  

 
For any given k, a MinHash algorithm can efficiently estimate a ,. However albeit with 
confounding by divergence due to π that prevents matching between k-mers in the core 
genome common to (s1,s2) is confounding. Assuming that such sequence mismatches are 
distributed evenly throughout the genome, a  can be estimated independently of k and π by 
calculating a function for each (s1,s2) pair that relates the proportion of shared k-mers p match, 
π, and a over a series of k-mer lengths k: 
 

1 )(1 )pmatch = ( − a − π k  
 
Which we fit as a linear relationship in log space by minimizing the least squares divergence, 
and constraining a > 0; π > 0: 
 

og(p ) log(1 )  log(1 )l match =  − a + k − π  
 

As both distance estimates are symmetrical, only a single comparison is calculated between 
each (s1,s2) pair, corresponding to the upper triangle of a square distance matrix, or (n-1)* n /2 
comparisons. We use Mash (Ondov et al. 2016) with a default sketch size of 10 4 to efficiently 
calculate p match for every second k-mer size from k = kmin to k = kmax (29, by default). We 
choose the minimum k-mer size kmin for longer sequences such that the probability of a 
random k-mer match p random is less than 5%: 
 

 
 

Where L is the genome length and log(4) enters due to the alphabet size (assuming minimal 
gaps or unspecified bases). For typical bacterial genomes with L  between 1-8 Mb, this 
corresponds to a kmin of either 12 or 13. 

Automated classification of within-cluster distances 
We implemented two models to classify which distance pairs (π, a ) are within the same 
cluster, the choice of which depends on the dataset being used. The first fits a 
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two-dimensional Gaussian mixture model (2D GMM) to a random subsample of up to 10 5 
distance pairs using variational Bayes inference. We use the default implementation in 
scikit-learn 0.19 with a Dirichlet Process prior on weights, choosing the best final likelihood 
from five k-means initial starts. The maximum allowed number of mixture components (K) 
can be specified by the user, depending on the plotted distribution of pairwise π and a 
distances; by default, K is set to two. We use membership of mixture component closest to 
the origin (checking that it contains at least one point in the reference database, as the 
Dirichlet process prior allows mixture component weights to be set ≃ 0) to define 
within-cluster distances. All distance pairs are then classified with the fitted model. 
 
The alternative approach uses HDBSCAN to classify a subsample of 10 5 points using the 
Boruvka ball tree algorithm (McInnes et al. 2017). This set of points is iteratively analysed 
with progressive reductions in both the minimum number of samples, which defines the how 
conservative the clustering is, and the minimum cluster size, which determines the threshold 
number of points a cluster must contain, until there are fewer than D clusters (100, by 
default), and extent of the points in the cluster closest to the origin (assumed to represent 
within-strain distances) do not overlap with those in the most numerous cluster (assumed to 
represent between-strain distances) on either axis.  

Use of within-cluster distances to define a reference network 
and clusters 
We use networkx v2.1 (Hagberg et al. 2008) to construct an undirected graph with 
unweighted edges to define population clusters. Each sample in the reference database is a 
node in this graph, and distances classified as within-cluster by the above model are added 
as edges between the corresponding nodes. Clusters are then simply defined by extracting 
the connected components of this network, and ordered by the number of isolates they 
contain, from largest to smallest. Evaluation of the network structure uses a score, n s: 
 

ransitivityns = t (1 ensity)− d  
 
This score ranges between zero and one, with values close to the upper bound 
corresponding to a good fit, as every isolate in a cluster should share a within-cluster link to 
every other member of the cluster. This is achieved in spite of the sparseness enforced by 
the (1 - density) term, which is necessary to subdivide the overall population (Fig S6). After 
definition of clusters, we randomly select just one member of each clique in the network 
(sets of nodes where each member node is mutually connected to every other member 
node) to use in an updated reference database. This removes redundancy in the distances 
that need to be calculated for database querying, and speeds the assignment of further 
batches of data. 

Refinement of distance classification using network properties 
Both the 2D GMM and HDBSCAN rapidly and robustly identified the main clusters of within- 
and between-strain distances in π-a  space, which were typically well-resolved. However, 
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being conservative in assigning points to the within-strain cluster is not intrinsic to these 
methods, which treat clusters symmetrically. The relatively small numbers of false positive 
within-strain assignments from the low density of points between clusters strongly impacted 
upon network structure by linking components, and consequently the strain definitions. 
Therefore a model refinement mode was developed to precisely delimit the range of π-a 
distances that were treated as within-strain links, in order to maximise n s. If a 2D GMM or 
HDBSCAN model has already been fitted, then we construct a line between the means of 
the within- and between-strain clusters, then draw a decision boundary normal to this line 
(Fig 1). If neither model fitted satisfactorily, then the mean positions of the within- and 
between-strain cluster means can be provided manually.  
 
We then allow this triangular boundary, distinguishing within- and between-strain distances, 
to be moved over a user-set range forward and backward from the starting point. We 
globally maximise n s first by testing the network score when placing the boundary at 40 
equally spaced points over the allowed range. Local maximisation near this global optimum 
is then performed using Brent's method. We have also made it possible to run this 
optimisation with a vertical boundary (using core distances, π, only) or a horizontal boundary 
(using accessory distances, a , only) if desired. 

Defining the cluster of query sequences using a previous 
reference database 
New sequences can be rapidly assigned to either a pre-existing cluster, or start to form a 
new cluster, by addition to the reference network. First, distances are calculated between 
each query and each member of the reference database using the variable k-mer method as 
above. New queries are added as nodes in the network, and those distance pairs classified 
as within-cluster are added as edges. As before we define clusters as the connected 
components of this network, while ensuring labelling consistency with the reference fit. By 
only calculating reference-query distances rather than all distances, we can perform 
assignment of M queries using a reference database with N  members using NM distance 
calculations rather than (N+M)2. If the database is being updated for further querying, all M2 
query-query distances are also calculated (for a total of NM + M2 distances) so that cliques in 
the network can still be used to extract representatives for each cluster. However, in practise 
the construction of M sketches is the most computationally expensive step, which gives 
roughly linear query time in both cases. 

Output and visualisation 
We automatically produce plots to diagnose dataset characteristics, quality of model fit and 
assignment of distances to clusters using matplotlib v2.1.2 (Hunter 2007). For the distances 
selected for model fitting, we plot contours of a kernel density estimate using an 
Epanechnikov kernel. This can also be used to identify outliers with contamination; we 
provide a program to remove these isolates from reference databases. Plots are generated 
for each model type showing details of its fitted parameters, together with cluster assignment 
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of the distances. For 2D GMMs, we also plot equal likelihood contours and the decision 
boundary for within- and between-cluster assignments (Fig S3). 
 
While a neighbour joining tree constructed using pairwise Jaccard distances directly has 
been shown to be reasonably accurate, using core genome divergence gives a more 
accurate tree topology (Lees et al. 2018b). We therefore use dendropy or RapidNJ to 
produce a midpoint rooted neighbour joining tree from the core distances (Simonsen et al. 
2011; Sukumaran and Holder 2010), and t-SNE to perform clustering of accessory distances 
(Abudahab et al. 2017). To enable interactive visualisation of these outputs, PopPUNK can 
write files formatted for Microreact (Argimón et al. 2016), Phandango (Hadfield et al. 2017) 
and GrapeTree (Zhou et al. 2017). Each of these can be automatically joined with other 
user-provided metadata for visualisation. We also produce output for Cytoscape (Shannon et 
al. 2003) for inspection and analysis of the network. 

Code optimisation for large datasets 
We optimised our code such that datasets with up to ~10 4 samples could be analysed in a 
single step. Where possible, we used numba v0.36.2 to compile functions (Lam et al. 2015) 
and exploited multithreading of Mash sketching and distance calculations. We also 
multithreaded the regressions to calculate core and accessory distances, using the 
sharedmem package (v0.3.5) to avoid copying and storing large distance matrices in main 
memory (Feng et al. 2017). We infer sequence labels of rows in distance matrices by their 
order, rather than storing them in memory. For larger datasets, fitting a reference model to a 
subset of samples, then adding in query sequences iteratively makes analysis tractable. 

Comparison with other methods using both simulated and real 
data 
To determine the specificity of PopPUNK in distinguishing sequence divergence from 
differences in gene content, forward-time simulations were run using BacMeta (Sipola et al. 
2018). A population of 1000 bacteria, each represented by 100 loci each one kilobase long, 
was simulated for 1000 generations. Insertions and deletions were fixed at a length of 250 
bp. Recombinations always exchanged a complete locus, and were independent of 
sequence divergence between donor and recipient. A sample of 25 genomes were output 
from the final generation of each simulation, which were analysed using PopPUNK using 
default settings. Pairwise distance estimates from 50 independent simulations were then 
combined for plotting. 
 
To compare with other clustering methods, we selected a range of previously published 
datasets on ten different bacterial species (Aanensen et al. 2016; Kallonen et al. 2017; 
Kremer et al. 2017; Koelman et al. 2017; Lees et al. 2016; Grad et al. 2016; Lees et al. 2017; 
Croucher et al. 2013, 2015; Alikhan et al. 2018; Cohen et al. 2015). For each dataset, as 
well as PopPUNK, we ran Roary (Page et al. 2015) to construct a pan-genome, using a 
BLAST sequence identity cutoff of 95%. We calculated core distances using the Tamura Nei 
(tn93) distances in the core genome alignment. For accessory distance, we used the 
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Jaccard distance between the accessory gene presence/absence vectors. For comparison 
with another high-performance clustering algorithm, we ran the R version of hierBAPS 
(https://github.com/gtonkinhill/rhierbaps) using between 8-16 cores depending on dataset 
size. We estimated the maximum cluster size by dataset, using the output from Roary and 
information from published analyses of these datasets. For qualitative comparison in 
Microreact, for each species we also generated a maximum-likelihood tree from the core 
genome alignment SNPs using IQ-TREE v1.6 with a GTR+I+G+ASC model (Nguyen et al. 
2015). 
 
For species with a monomorphic population structure there is not necessarily a clear 
correlation between a and π. In this case it is logical to define independent sets of clusters 
using the two distances separately. An example of this is Neisseria gonorrhoeae , which we 
describe fully in the Results. We used a subset of isolates, all of which were in the same 
cluster based on π but contained two different clusters based on a . We performed a 
genome-wide association study to determine the specific genes responsible for the two 
different a -based clusters using pyseer v1.1.0 to associate k-mers counted from the entire 
π-based cluster, and using the a-based cluster as the phenotype. Default settings were 
used, with the kinship matrix generated using the maximum-likelihood tree under a mixed 
effect association model (Lees et al. 2018a). We mapped the significant k-mers to two 
reference genomes, which between them contain all known accessory elements for N. 
gonorrhoeae. 

Data access 
Code is available on github https://github.com/johnlees/PopPUNK (Apache 2.0 license) and 
through the python package index (PyPI). Documentation can be found on readthedocs 
http://poppunk.readthedocs.io/. Online and interactive Microreact instances produced for 
each data set are listed in table S1. PopPUNK databases with the best model fits for each 
species can be downloaded from https://doi.org/10.6084/m9.figshare.6683624 . 
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