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Abstract

In recent years, many efforts in clinical and basic research have fo-
cused on finding molecular features of tumor samples with prognostic
or classification potential. Among these, the association of the expres-
sion of gene signatures with survival probability is of special interest
given its relatively direct applicability in the clinic and its power to
shed insights into the molecular basis of cancer.

Although great efforts have been invested in data processing to
control for unknown sources of variability in a gene-wise manner, little
is known about the behaviour of gene signatures with respect to the
effect of technical variables.

Here we show that the association of signatures with survival may
be biased due to technical reasons and propose a simple and low in-
tensive methodology based on correction by expectation under gene
randomization. The resulting estimates are centred around zero and
ensure correct asymptotic inference. Moreover, our methodology is ro-
bust against spurious correlations between global dataset tendencies
and clinical outcome.

All tools (will be soon) available in the "HRunbiased" R package
as well as processed datasets for colorectal and breast cancer.

In recent years, many efforts in clinical and basic research have focused
on finding molecular features of tumor samples with prognostic or classifi-
cation potential [1] . Large cohorts consisting of transcriptional and genetic
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data have been generated with the aim of characterizing tumor subtypes,
understanding biological processes linked to tumorigenesis and identifying
molecular profiles associated with clinical parameters |2, 3, 4]. Among these,
the prognostic power associated to the expression of single genes or gene sig-
natures has been of special interest, potentially leading to insight into the
mechanisms involved in relapse and metastasis, and to the development of
prognostic tests for clinical application [5, 6, 7, 8] (Fig 1a).

Summarization of expression data from gene sets to measure a feature
of interest is justified by biological and statistical reasons. Studies on large
cohorts have shown that pathways are altered through a wide variety of
mechanisms, resulting in very low prevalence of single gene alterations [9]
(Fig 1b above). As a consequence, transcriptomic analyses at the gene level
may suffer from low statistical power and reproducibility [10, 11]. From the
statistical perspective, the real status of a pathway is more accurately and
sensitively captured by a combination of the expressions of its genes [12]
(Fig 1b below). A variety of methods are available for transcriptomic data
summarization: average of standardized expression values [12], reduction to
a unique component derived from Single Value Decomposition (SVD) and
related methods [13], or summaries based on Gene Set Enrichment Analysis
(GSEA) [14, 15].

High-throughput data is susceptible to technical variability that can mask
true biological information (decrease of statistical power) and/or lead to erro-
neous conclusions (bias) [16, 17| even if substantial effort has been invested in
data processing [18, 19]. For this reason, a number of statistical approaches
exist that aim to identify and control for unknown sources of variability while
estimating gene expression in a gene-wise manner |18, 20|. Nevertheless, the
impact of such effects on gene set summarization may be severe due to possi-
ble coordinated effects on all or a large fraction of genes [19, 21|. Therefore,
an evaluation of this phenomenon is needed in the specific context of gene
set summarization.

In this work, we evaluate two widely used methodologies for pathway
summarization: Gene Set Variation Analysis (GSVA) [15] and a z-score
based method (ZScore) [12]. Concerns regarding bias and statistical power
are explored in a collection of public datasets [22, 23, 24, 25| focusing on
cancer prognosis assessment. Drawbacks associated to these methodologies
are identified and addressed using a simple strategy. Implications of these
findings on conventional statistical inference are discussed, specially concern-
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ing the interpretation of asymptotic tests.
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Figure 1: (a) Schematic representation of the process to estimate the asso-
ciation of gene signatures and prognosis. (b) Genomic alterations (above)
in PIK3a pathway genes in TCGA BRCA samples and their corresponding
expression (below). (c¢) Density of IHR-stat for random signatures. For ZS-
core, all cohorts showed biased means and asymmetric distributions. The
proportion of significant tests deviates from the theoretically expected 0.05
and are unequally distributed among protective and risk effects. (d) Density
of IHR-stat after correction by GS. Both methods of tested result in centred
distributions with equal variances for all signature sizes tested. (e) Ran-
domization simulations. Relapse status and time were randomized in order
to study spurious associations between random signatures and outcome. In
all instances, the IHR of random signatures converge towards the IHR of the
GS as the signature size increases.

We downloaded and processed 3 independent cohorts of colorectal cancer
(CRC) and 6 independent cohorts of breast cancer (see online methods 1),
and generated random signatures ranging in size from 1 (single gene) to 500.
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For any signature, we applied two strategies for pathway summarization: i)
ZScore: gene expression values were converted to z-scores and averaged for
each sample, using a similar approach to that in [12]; and ii) GSVA: Gene
Set Variation Analysis [15] was applied on each sample and resulting scores
were used as summaries. In both cases scores were centred and scaled to
make association measures comparable. For each dataset separately, a Cox
model was fitted to each score to evaluate their relationship with disease-
free-survival (See online methods 2). The log hazard ratio (IHR) and its
associated test statistic (IHR-stat) were used as measures of association.
Methods based on SVD represent a variation of the ZScore approach and
were not evaluated in this work, as they are prone to be dominated by a
small number of genes capturing specific signal which can be different from
the biological target (Supp. Fig. 8.1).

For the ZScore method, we found that means of the random IHR deviated
from zero in a substantial amount and in different direction depending on
the dataset under study, suggesting a strong component of technical origin
causing these deviations (Fig lc, Fig. S1). Moreover, the proportion of ran-
dom signatures that had significant association with relapse was far from
the expected 5% under the hypothesis of IHR = 0 at 5% significance level,
compromising the validity and interpretation of statistical inference based on
asymptotic assumptions. As the number of genes increased, correlation be-
tween random signatures and a Global Signature (GS) including all genes in
the dataset quickly converged to 1 (Fig. S3), translating also to convergence
in terms of IHRs (Fig. le). These results were confirmed in different simu-
lated scenarios and were evident even when only small deviations from zero
were observed in average at the gene level (Supp. mat. 3 for permutations-
based study). In contrast, GSVA scores were approximately centred in the
(a-priori) expected value of zero with similar distributions for all considered
sizes (Fig 1c).

These observations motivated the use of the GS to correct the signatures
by the expected value if their genes were selected at random, following an
analogous strategy to that in [22]. Two approaches were used for GS cor-
rection: 1) for each sample, we subtracted the Global Signature (GS) values
to those obtained by the ZScore method before performing hypothesis test-
ing (GS-cor); and ii) the GS was included as a covariate in the Cox models
used for prognosis evaluation (GS-adj). The resulting IHRs of random signa-
tures from GS-cor and GS-adj showed densities centred around zero and with
similar variances across all signature sizes (Fig 1d). Moreover, asymptotic
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inference provided an approximate coverage of 5% under the null hypothesis
of zero IHR, and similar to those using GSVA scores (Supp. Tables 3.1-3.6).

Despite the conceptual similarities among GSVA, GS-cor and GS-adj
(see online methods 3), one key difference lies in that GS-adj accounts both
for the magnitude and the direction of the GS scores and their correla-
tion with the target signature in relation to the outcome by means of the
variance-covariance matrix of the model coefficients. To explore this aspect,
we compared the summarization methods in different simulated scenarios
(See online methods 4)); for type I error, random signatures were catego-
rized according to their correlations with the GS before assessment, while a
set of positive control genes (F-TBRS) known to be associated with higher
risk in colorectal cancer [23] was used for evaluation of type II error.

For methods based on a-priori correction (GSVA and GS-cor), random
signatures produced IHRs distributions shifted from zero in an amount that
depended on the correlation between the target signature and the GS (Fig
2a). This dependency was also observed for type II error: while negative
correlations increased the chance to detect the association between F-TBRS
and relapse, positive correlations considerably decreased statistical power.
These results indicate that GSVA and GS-cor are not exempt from biases
such as those in Fig. 1b and result in impaired asymptotic inference, possibly
due to overcorrection of the global tendency of the dataset. On the contrary
IHRs derived from GS-adj showed virtually identical and centred distribu-
tions for all correlation levels in the null hypothesis setups (Fig 2a), and only
the expected decrease in statistical power was observed as (anti)correlation
of GS and F-TBRS increased due to collinearity (Fig 2b). In the real CRC
data GS-adj performed equally or better than GS-cor and GSVA in terms of
statistical power except for GSE14333 (Fig 2c - Supp. mat. 4); in agreement
with the simulation results, this dataset was the only one showing a clear
inverse association between the GS and relapse (Fig lc, Fig 2a) and negative
correlation with the F-TBRS (corr = -0.2), which suggests overcorrection of
GSVA and GS-cor as an explanation for their apparent higher performance
(Supp. mat. 2 for extra simulations).

For settings where the GS is suspected to carry unknown or unidentifiable
biological information, we modified the definition of GS by including only
low variable genes in its computation (LV-adj), assuming that they are less
likely to carry real biological information. For the CRC datasets, we found
an increase in statistical power at expense of efficiency in bias correction
(Fig 2d). Main surrogate variables or main factors found by the SVA [1§]
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Figure 2: (a) The IHR-stat depends on the correlation between GS and tar-
get signature. A simulation experiment shows large biases in the IHR for
all methods except the GS-adj. These biases depend on the correlation be-
tween the GS and the signature of interest.(b) Simulation power analysis. In
the GSVA and GS-cor methods, negative correlations between F-TBRS and
GS increase the chance to detect significant associations between F-TBRS
and relapse, while positive correlations harmed considerably their statisti-
cal power. GS-adj behaved as expected with maximum power at or near
zero correlation between covariables. (c) Power analysis in CRC datasets.
The power was measured as the proportion of F-TBRS signature rejections
at alpha significance level. A highly different behaviour was observed in
the GSE14333 dataset where the correlation between GS and the F-TBRS
signature and the association between GS and the outcome were both neg-
ative. (d) Correction by low variable genes. Two y-axis plots showing the
average |HR-stat for random signatures and the proportion of rejections at
a = 0.01(0.05) for F-TBRS signatures. The distribution of the IHRs for LV-
adj random signatures were not completely centred around zero, while the
percentages of significant positive controls were slightly higher than those
obtained from GS-adj scores, indicating an increase in statistical power at
expense of efficiency in bias correction (Tables S5.1-S5.3)
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or RUV [20] approaches, respectively, were also considered for the adjusted
Cox models without improving the results of LV-adj (Supp. mat. 5).

All the analyses in this work were also performed on a selection of BRCA
datasets using the MammaPrint [7] signature for prediction of relapse [Supp.
mat. 1], which provided analogous conclusions. Although in a lesser de-
gree, issues related to biases and type II error persisted when datasets were
combined through merging their expression matrices (Online methods 5 for
details) (Supp. mat. 6).

In conclusion, we raise awareness on the usage of gene expression sig-
natures to find associations with survival and prognosis in high-throughput
data since, due to the existence of unknown sources of technical variation,
the derived estimates may be biased and the corresponding inference inaccu-
rate. Our results show that these biases are driven by overall trends that are
present in the gene correlation structure of the expression matrix and by the
association of these trends with the outcome, are possibly dataset specific,
and quickly increase with the signature size. To address this problem, we
propose a simple, flexible and low-intensive computational method (GS-adj)
that summarizes the overall data signal to be used as a confounding factor in
the statistical analysis. In contrast to existing methodology, our suggested
approach accounts not only for the magnitude but also for the correlation
of the GS and the signature being evaluated and their association with the
outcome. This strategy ensures the validity of standard asymptotic infer-
ence for signature testing, and confers advantage in terms of accuracy and
interpretability in comparison to other methods based on a-priori correction
such as GSVA (Supplementary discussion).

The methods and interpretations derived in this work can be naturally ex-
tended to a vast range of domains of high-throughput data such as pro-
teomics, methylation or metabolomics, and many other types of outcomes
such as continuous measures (correlation) or binary status (logistic regres-
sion). Finally, we provide preprocessed datasets for CRC and BRCA (to
be available soon) and a set of tools to diagnose custom datasets and to re-
port adjusted IHR and p-values for different covariates (to be available soon).
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