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Abstract: We develop a new approach for stochastic analysis of biochemical reaction systems 

with arbitrary distributions of waiting times between reaction events. Specifically, we derive a 

stationary generalized chemical master equation for a non-Markovian reaction network. 

Importantly, this equation allows to transform the original non-Markovian problem into a 

Markovian one by introducing a mean reaction propensity function for every reaction in the 

network. Furthermore, we derive a stationary generalized linear noise approximation for the 

non-Markovian system, which is convenient to the direct estimation of the stationary noise in state 

variables. These derived equations can have broad applications, and exemplars of two 

representative non-Markovian models provide evidence of their applicability. 

 

Introduction.-The theory of Markov processes is well established, and has found its applications 

in an array of scientific fields including biology, chemistry, physics, epidemiology, ecology, and 

finance [1-3]. An important foundation of this theory is the chemical master equation (CME) 

[1,2,4], which can be simulated using numerical methods [5-8], or can be analytically solved in 

some cases [1,2,9-14].The mathematical tractability of Markov processes enables great 

simplifications in problem formulation, leading to important successes in the description of many 

stochastic processes ranging from gene regulation and mass transport to disease spreading and 

animal species interactions [1-3]. 

A Markovian biochemical process is memoryless, that is, the probabilities that future reaction 

events happen depend only on the present state of the system, independent of the prior history. 

However, many biochemical processes have memory or are non-Markovian. Non-exponentially 

distributed waiting times [15-18] and time delays [19-22] between reaction events can lead to 

memory. Non-Markovity has also been verified by the increasing availability of time-resolved 

data on different kinds of interactions [23-29]. The continuous time random walk (CRTW) 

provides a systematic starting point to account for arbitrary waiting time distributions between 

reaction events [30-38].  
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Recently, a generalized chemical master equation (gCME) was derived, which is capable of 

accounting for non-exponential interreaction times and the resulting non-Markovian character of 

reaction dynamics in time [38]. But the problem with the gCME is that the so-called “memory 

functions” are implicitly expressed by waiting time distributions and/or distributed delays. This 

leads to notorious difficulties in obtaining the system’s behavior, greatly limiting applications of 

the gCME (although numerical calculations can sometimes provide useful information [39-44]). 

While a dynamic distribution exactly captures stochastic behavior of a chemical reaction system, 

steady-state distribution is an important quantity needed to characterize the stationary behavior of 

the underlying system. To assess how experimental data can be informative, it is also needed to 

calculate or simulate aspects of steady-state distribution [45-47].  

In order to obtain information on stationary behavior of a non-Markovian biochemical system, 

we introduce a mean reaction propensity function for every reaction to replace the memory 

function in the traditional treatment. Thus, the original ‘memory functions’ are currently converted 

into memoryless functions expressed explicitly by the integrals of the given waiting time 

distributions over the full time. Importantly, we derive a stationary gCME (sgCME), which allows 

to transform the original sticky non-Markovian problem into a mathematically tractable 

Markovian one. With this novel formulation, we further derive a stationary generalized linear 

noise approximation (sgLNA) for the original non-Markovian system, which allows the direct 

estimation of the stationary noise in state variables. These derived stationary equations can have 

broad applications and are particularly useful for the analytical derivation of stationary 

distributions in, e.g., a gene model of bursty expression with general waiting time distributions 

(Note: this is an issue unsolved in previous works).  

General Theory.-Consider a general chemical reaction network consisting of N  different 

species (denoted by jX , 1,2, ,j N= L ) that participate in L  different reactions of the form 

1 1

N N

ij j ij j
j j

r X p X
= =

→∑ ∑ , 1, 2, ,i L= L                          (1) 

where ijr  and ijp  are stoichiometric coefficients, taking non-negative integers, and the 

differences ij ji jis p r= −  are stored in a N L×  stoichiometric matrix S . Denote by jn  the 

molecule number of species jX  and by ( )T

1, Nn n= Kn  the state vector, where T  represents 
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transpose. Let ( );i tψ n  be the probability density function (PDF) of the thi  reaction waiting 

time (depending on the system state, n ), and ( );i tΨ n  be the cumulative distribution function. 

In the following, we consider only the non-Markovity resulting from non-exponential waiting 

times between reaction events whereas the non-Markovity generated by distributed delays will be 

discussed later. 

The time-evolutional gCME of the above network system has been established [31,33,34,38], 

but solving this equation has been thwarted to date. Instead, here we consider steady-state 

behavior of the system. Assume that the stationary probability of the system exists, and denote it 

by ( )P n . Then, based on the chemical CRTW theory [38], we can derive the following stationary 

equation (see the Supplemental Online Material [48] for its derivation) 

( ) ( )
1 1

1 0ji

NL
s

i
i j

K P−

= =

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
∑ ∏ E n n                          (2) 

where jis−E  is a step operator with the operation rule below: it removes jis  molecules from 

species jX  in the thi  reaction, i.e., ( ) ( )1, , , ,jis

j ji Nf f n n s n− = −K KnE  for any function 

( )f n . Symbol ( )iK n  represents the mean propensity function of the ith reaction, accounting for 

the transition probability from a given state n  to any other state. Importantly, we can show that 

( )iK n  is explicitly expressed by given waiting time distributions, that is, 

( )
( ) ( )

( )

+

0

+

10

; 1 ;

1 ;

i j
j i

i L

jj

t t dt

K
t dt

ψ
∞

≠
∞

=

⎡ ⎤− Ψ⎣ ⎦
=

⎡ ⎤− Ψ⎣ ⎦

∏∫

∏∫

n n

n
n

, 1, 2, ,i L= L                  (3) 

See the Supplemental Online Material [48] for the derivation of Eq. (3). Equation (2) and Eq. (3) 

altogether constitute the final sgCME, which governs stationary behavior of the original 

non-Markovian reaction system.  

First, we observe that function ( )iK n  depends only on state variable n , independent of the 

prior history. In other words, the mean reaction propensity functions associated with the original 

non-Markovian process are memoryless. Then, we point out that the sgCME has important 

implications. For example, if we compare Eq. (2) with the common CME for the same structure 

reaction network with rate-limited reactions or with exponentially distributed waiting times 
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(which is a certain Markovian chemical network), then we find that Eq. (2) is actually the 

stationary version of this CME. Moreover, if ( )iK n  is taken as the ‘reaction propensity function’ 

(possibly a rational rather than polynomial-type function of n ) of the thi  reaction in this 

Markovian network, then we successfully convert a non-Markovian problem into a Markovian 

problem.  

   In particular, if the waiting times for some reaction are exponentially distributed, e.g., if 

( ) ( ) ( )
( ) ( )0,; i t

i it e tλψ λ −
∞= Inn n  for some i , where ( )A xI  is an indicator function of set A , i.e., 

( ) 1A x =I  if x A∈  and ( ) 0A x =I  otherwise, and ( )iλ n  represents the transition probability 

of this reaction, implying ( ) ( )
( ) ( )0,; 1 i t

i t e tλ−
∞Ψ = − Inn , then we find (see the Supplemental Online 

Material [48] for derivation)  

( ) ( )i iK λ=n n                               (4) 

In other words, if the waiting times for some reaction follow an exponential distribution, then the 

corresponding ( )iK n  is equal to the reaction propensity function of this reaction. If all the 

reaction waiting times are exponentially distributed, then the corresponding sgCME is reduced to 

the common stationary CME (sCME). 

   To help the reader further understand the physical meaning of function ( )iK n , we state some 

facts. First, ( ) ( ); 1 Ψ ;i j
j i

t t dtψ
≠

⎡ ⎤
⎡ ⎤−⎢ ⎥⎣ ⎦

⎣ ⎦
∏n n  represents the probability that the thi  reaction 

happens within the infinitesimal waiting time [ ],t t dt+ , so the integral 

( ) ( )+

0
; 1 ;i j

j i

t t dtψ
∞

≠

⎡ ⎤− Ψ⎣ ⎦∏∫ n n  represents the cumulative possibility that the thi  reaction takes 

place within the full time. Then, the equality 

( ) ( ) ( )+ +

110 0
1 ; ; 1 ;

L L

j i jij
j i

t dt t t t dtψ
∞ ∞

==
≠

⎡ ⎤ ⎡ ⎤− Ψ = − Ψ⎣ ⎦ ⎣ ⎦∑∏ ∏∫ ∫n n n  always holds, so the integral 

( )+

10
1 ;

L

jj
t dt

∞

=
⎡ ⎤− Ψ⎣ ⎦∏∫ n  represents the mean waiting time that all the reactions happen. Thus, 

function ( )iK n  represents the mean transition probability of the thi  reaction within the mean 

waiting time.  

As an application of Eq. (2) with Eq. (3), we consider an interesting case where the waiting 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/360123doi: bioRxiv preprint 

https://doi.org/10.1101/360123


5 

 

time for every reaction in the reaction network is assumed to follow a power-law distribution of 

Pareto type, that is, ( ) ( ) ( )( ) ( ) 1
0,( ) ( ) i i

i i i t t
α αψ α τ +

∞= n nn n I  [49]. This distribution is characterized 

by both a positive scale parameter ( )iτ n  and a positive shape parameter ( )iα n . Note that if 

( ]( ) 0,1α ∈n , such a waiting time is a parsimonious model for infinite-mean random variables due 

to the generalized central limit theorem [49]. In this case, the corresponding system is weakly 

ergodicity breaking [50,51], which is a common characteristic of anomalous transport in 

heterogeneous environments and can lead to a fractional-in-time differential equation [50]. In spite 

of this, we can show (see the Supplemental Online Material [48] for detail) 

( ) ( ) ( )1

1

1
( ) 1 1 ( )

max ( )

L

i i jj
j

j L

K α α
τ =

≤ ≤

= − ∑n n n
n

                   (5) 

which is finite, independent of the convergence of raw moments of the power-law distribution.  

   Time delays, which account for the non-Markovian nature of many random processes, play a 

key role in many problems involving biochemical reactions or mass transport [19-22]. If a 

distributed delay is introduced to the above reaction network, then we can show (see the 

Supplemental Online Material [48] for derivation) 

 ( )
( ) ( )

( ) ( ) ( ) ( )

+

0

+

0
1

; 1 Ψ ;

; 1 Ψ ;

i j
j i

i L
d r
i i j

i j i

t t dt

K
t t dt

ψ

τ ψ τ

∞

≠

∞

= ≠

⎡ ⎤−⎣ ⎦
=

⎡ ⎤− +⎣ ⎦

∏∫

∑ ∏∫

n n

n
n n n n

             (6) 

where ( ) ( )+

0
;d d

i it t dtτ ψ
∞

= ∫n n  represents the mean delay time of the thi  reaction with the 

PDF ( );d
i tψ n  and is assumed to finite. If we denote by rτ  the waiting time for the next reaction 

(i.e., the inter-reaction waiting time without delay), then ( ) ( )+

10
1 Ψ ;

Lr
jj

t dtτ
∞

=
⎡ ⎤= −⎣ ⎦∏∫n n  

represents the mean inter-reaction waiting time. In particular, if ( ) ( )d d
iτ τ=n n  (which is 

called the mean global delay time) for 1 i L≤ ≤ , i.e., if all the mean delay times ( )d
iτ n  are 

equal, then we have (see the Supplemental Material [48] for derivation) 

( )
( ) ( )

( ) ( )

+

0
; 1 Ψ ;i j

j i
i g r

t t dt

K

ψ

τ τ

∞

≠

⎡ ⎤−⎣ ⎦
=

+

∏∫ n n

n
n n

                      (7) 

which indicates that the mean reaction propensity function of a reaction only depends on the mean 

global delay time, independent of the delay probability distribution. We point out that Eq. (7) is 
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the generalization of a previous result in ref. [38] wherein an approximation was made. 

Although we have derived the nice mathematical form of the sgCME for a general 

non-Markovian biochemical network (i.e., Eq. (2) with Eq. (3)), characterizing fluctuations in the 

individual reactive species is still difficult in some cases. On the other hand, it is well known that 

for a stochastic system, statistical quantities of the state variables, such as the first-order raw 

moments (or means) and the second-order central moments, are often most interesting since they 

can simply characterize the fluctuations in the state variables of the system. Here, we present a 

stationary generalized linear noise approximation (sgLNA) for the above non-Markovian system. 

Recall that for a given Markovian reaction system, the equations governing dynamics of the 

first-order raw moments (or means) and the second-order central moments of the state variables 

have been derived [1,2]. In order to calculate these statistical quantities in the above 

non-Markovian reaction system, we construct a Markovian biochemical process using ( )iK n . 

More precisely, we construct a Markovian reaction network such that it has the same structure as 

the original non-Markovian reaction network but takes ( )iK n  as the probability transition 

function of the thi  reaction, where 1, 2, ,i L= L . For such a constructed Markovian system, we 

can easily derive its rate equations, e.g., at steady state (see the Supplemental Online Material 

[48]), they are assumed to take the form [1,2] 

( ) 0K =S x                                   (8) 

which is called a stationary generalized reaction rate equation, where ( )T

1, , Nx x= Lx  with ix  

representing the concentration of reactive species iX , ( )ijs=S  is a stoichiometric matrix, and 

( ) ( ) ( )( )T

1 , , NK K= LK x x x  is a N-dimensional vector. If the solution of Eq. (8) is denoted by 

Sx , then Sx  is the vector of the stationary mean concentrations of the state variables in the 

original non-Markovian system. 

In order to derive analytical formulae for calculating the second-order central moments of the 

state variables in the original non-Markovian reaction system, we adopt the Ω-expansion method 

[1,2]. Let Ω represent the volume of the system and write 1 2= Ω + Ωn x z . For convenience, we 

introduce two matrices SA  and SD , the entries of which are given by ( )S1
=

j

L

ij ik x kk
A s K

=
∂∑ x  
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and ( )S1

L

ij ik jk kk
D s s K

=
=∑ x , respectively. Then, the covariance matrix  

( )( )( )T

S S S= − −x x x xΣ   satisfies the following Lyapunov matrix equation (see the 

Supplemental Online Material [48] for derivation) 

T
S S S S S+ + =Α Α D 0Σ Σ                              (9) 

From this algebraic equation, we can easily obtain the stationary second-order central moments of 

the state variables in the original non-Markovian system. 

   Implementations.-Here we apply the above general theory to two representative examples. 

First, birth-and-death processes, with some straightforward additions such as innovation, are a 

simple, natural and formal framework for modeling a vast variety of biological processes such as 

population dynamics, speciation, genome evolution [1,2,52]. Therefore, the first example we will 

analyze is a generalized birth-death process, which constitutes a fundamental model of 

non-Markovian evolutionary dynamics. This process can be described by two reactions: 

( )1 ;t n Xψ∅ ⎯⎯⎯→  and ( )2 ;t nX ψ⎯⎯⎯→∅ , where ( )1 ;t nψ  and ( )2 ;t nψ  are waiting time distributions 

of birth and death respectively, and n  represents the molecule number of species X . This 

model is general and can include almost previously studied models of birth-death processes as its 

special cases [1,2,52]. According to the above sgCME, the steady-state equation corresponding to 

this process is given by [48] 

( ) ( ) ( ) ( ) ( ) ( )1
1 21 + 1 0K n P n K n P n− − − =E E                      (10) 

where ( )iK n  ( 1, 2i = ) can be obtained through Eq. (9). From Eq. (10), we can obtain the 

iterative relation: ( ) ( ) ( ) ( )2 1 1 1K n P n K n P n= − − , from which we can further obtain the explicit 

expression of stationary distribution  

( ) ( ) ( )
( )

1

1 2

1
0

n

i

K i
P n P

K i=

−
= ∏                               (11) 

In particular, if ( ) ( ) ( ) ( )1 1 0,,t n t tψ ψ ∞= I , and ( ) ( ) ( )2
2 2 0,, ntt n ne tλψ λ −

∞= I , then we can have 

( ) ( ) ( )
( )

1
1 2

12 1 1 2

0

1

n

i

P i
P n

n i

ψ λ
λ τ ψ λ

−

=

=
−∏
%

%

                           (12) 

where ( )1ψ ⋅%  is the Laplace transform of function ( )1 tψ , and ( )+

1 10
1 t t dtτ ψ

∞
≡ ∫  is the 
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reciprocal of the mean birth waiting time. Furthermore, if ( ) ( )( ) ( ) ( )1 1 11
1 1 1 0,; k k tt n k t e tλψ λ − −

∞= Γ I  

in which ( )Γ ⋅  is the common gamma function, then we can obtain stationary distribution 

( ) ( )( ) ( )( )1
2 2

0 1 ; 2 ; 2 !n

n
P n F nλ λ λ λ

−
= , where we denote 1 2λ λ λ=  and 0 1F  is a generalized 

hypergeometric function [53]. In addition, we can obtain the analytical mean and variance given 

by ( )112 1kn λ= −  and 11 1
12 k kλ−Σ =  respectively. The Fano factor, which is defined as the 

ratio of the variance over the mean, is given by ( )1 11 1 1
12 2 1k kF k− ⎡ ⎤= −⎣ ⎦ . In the Supplemental 

Material [48], we also analyzed the case that waiting times for the birth process follow an 

exponential distribution and those for the death process follow a general distribution. In addition, 

we presented a numerical method for the case that waiting time distributions for birth and death 

processes are all general. 

Numerical results are demonstrated in Fig. 1. From this figure, we observe that results 

obtained by sgCME and by sgLNA are in good agreement. Similarly, results obtained by Gillespie 

stochastic simulation (lines in Fig. 1(a)) are also in good accord with those obtained by theoretical 

prediction (empty circles in Fig. 1(a)). In addition, we observe from Fig. 1(b) and 1(c) that the 

larger the 1k  is, the smaller are the mean and the Fano factor, implying that non-Markovity can 

reduce the mean and noise of the outcome. Note that 1 1k =  corresponds to the case of 

exponential waiting times.  

 

Fig. 1 Comparison between results obtained by sgCME, and those obtained by sgLNA (seeing the 

analytical results below Eq. (12)), in a non-Markovian birth-death process, (a) Probability 

distribution; (b) Dependence of mean on bL  ( 1k= ); (c) Dependence of Fano factor on bL . Some 

parameter values are set as 1 1 2, 10 , 1b bk L Lλ λ= = = , where either the values of bL  are indicated 

in (a) or its change range is set in (b) and (c). 

As a simplification, the dynamics of gene expression probabilities is described often by 
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coupled birth-death processes, where birth corresponds to protein synthesis while death occurs via 

degradation. Therefore, we next consider a model of gene self-regulation, which is described by 

( )1 ;DNA DNA Proteint nψ⎯⎯⎯→ +  and ( )2 ;Protein t nψ⎯⎯⎯→∅ , where n  represents the number of 

protein molecules [11,54,55]. We point out that this model belongs to the above discussed case in 

the absence of feedback, but it can be a more general birth-death process in other cases. For 

analytical consideration, we assume that waiting time distributions for protein birth and death take 

the forms: ( ) ( )( ) ( )( ) ( )
( ) ( )1 11 1

1 1 1 0,;
k n tkt n n k t e tλψ λ −−

∞= Γ I  where ( )1 nλ  is a function of n , and 

( ) ( ) ( )2
2 2 0,; tt n e tλψ λ −

∞= I , respectively. Furthermore, we consider the case that function ( )1 nλ  is 

linear in n , e.g., ( ) ( )1 0 1+n n nλ λ=  (corresponding to linear feedback) is set, where 1λ  is a 

constant and 0n  is a positive integer. By simple calculations, we can show 

( ) ( )( ) ( )( ) ( )( )1 1 1

1 2 0 1 2 0 1 0 1+ + +
k k k

K n n n n n n n n nλ λ λ λ λ⎡ ⎤ ⎡ ⎤= + −
⎣ ⎦ ⎣ ⎦

 and ( )2 2K n nλ= . In particular, if 

1 01, 1k n= = , then ( ) ( )1
n

P n ρ ρ= −  is a geometric distribution, where 1 21ρ λ λ= −  and 

0,1,2,n = L . For the case of nonlinear feedback, similar analysis can be carried out but the results 

are more complex. 

In contrast to the above analyzed gene model that corresponds to constitutive expression, there 

is another expression way, i.e., bursty gene expression. Therefore, we next consider the second 

example, which is an on-off model of bursty gene expression with non-exponential waiting times 

(referring to Fig. 2(a)). The biochemical reactions be described by four reactions: 

( )on ;OFF ONtψ⎯⎯⎯⎯→n , ( )off ;ON OFFtψ⎯⎯⎯⎯→n , ( )g ;
ON ON mRNA

t
B

ψ⎯⎯⎯→ + ⋅n
, and ( )deg ;

mRNA
tψ⎯⎯⎯⎯→∅n

, 

where functions ( )on ;tψ n , ( )off ;tψ n , ( )g ;tψ n  and ( )deg ;tψ n  are all waiting time distributions, 

state vector ( )1 2, ,
T

n n m=n  with 1n off=  and 2n on=  as well as m  representing the numbers 

of DNA molecules at off and on states as well as the number of mRNA molecules respectively, 

and the burst sizes B  follow a geometric distribution ( ) ( ) 1
1

kk
bP B k b b

+= = +  ( 0,1,k = L) with 

b  being the average burst size. For analytical consideration, we assume that on and off waiting 

times follow respectively Erlang distributions ( ) ( ) ( )( )on on on 11
on on 1 on;

k k n tt n f k t e λψ λ − −= Γn  and 
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( ) ( ) ( )( )off off off 21
off off 2 off;

k k n tt n k t e λψ λ − −= Γn , and transcription and degradation waiting times follow 

respectively exponential distributions ( ) 2
g 2; n tt n e μψ μ −=n  and ( ) deg

deg deg; mtt me λψ λ −=n . Then, we 

can derive the analytical expressions of ( ) ( ) 1,2,3,4iK i =n  (see the Supplemental Online 

Material [48] for detail). Numerical results are demonstrated in Fig. 2(b-d).  

From Fig. 2(c), we observe that if on =1L  is fixed, the mRNA mean is monotonically 

increasing in offL  but if off =1L  is fixed, it is monotonically decreasing in onL . In both cases, the 

mRNA mean almost keep unchanged after a certain value of onL  or offL . However, the change 

tendency for the rate of the mRNA variance over the square of the mRNA mean is opposite to that 

of the mRNA mean (comparing Fig. 2(d) with Fig. 2(c)). Figure 2(b) shows stationary mRNA 

distributions in three special cases, which can further verify the change tendency in Fig. 2(c) and 

2(d). These analyses indicate that non-Markovity plays an unneglectable role in affecting gene 

expression.  

 

Fig. 2 Effect of non-Markovianity on gene expression. (a) Schematic for a model of stochastic 

transcription, where the times that the gene dwells at ON and OFF states follow general 

distributions, and mRNA is synthesized in a bursty manner and degrades in a multistep manner 

(leading to a non-exponential waiting-time distribution). (b) Stationary mRNA distributions in 

three representative cases. (c) Dependence of the mRNA mean on onL  if offL  is fixed or on offL  

if onL  is fixed. (d) Dependence of the mRNA noise intensity on parameter onL  (or offL ). Some 
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parameter values are set as 10μ = and 2b = , whereas other parameters are determined by 

relations: on onk L= , on on5Lλ = , off offk L=  and off off5Lλ = .  

Conclusions.-We have derived an exact sgCME and a sgLNA from the gCME for a general 

reaction network with arbitrary (exponential or non-exponential) waiting time distributions or/and 

with distributed delays. These derived equations allow one to retain analytical and/or numerical 

tractability, being general in scope, and thus of a potential applicability in a wide variety of 

problems that transcend pure physics applications. The derived sgCME is particularly useful in 

deriving stationary distributions in some sticky non-Markovian biochemical systems, as 

demonstrated in this article. The power of the sgCME can be enhanced by analyzing other 

examples such as non-Markovian random walks and diffusion on networks [56-63], and 

non-Markovian open quantum systems [64]. We expect that our analytical frameworks will be of 

use for studies of a variety of phenomena in biological and physical sciences, and indeed in other 

areas where individual-based models with general waiting time distributions and/or delayed 

interactions are relevant.  
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