
Human-level saccade detection performance using deep
neural networks

Marie E. Bellet1†, Joachim Bellet2−4,†, Hendrikje Nienborg2, Ziad M. Hafed2,4∗& Philipp Berens1,2,5∗

1Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany

2Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Ger-

many

3International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen,

Germany

4Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany

5Bernstein Center for Computational Neuroscience, Tübingen, Germany

*co-corresponding authors

†M.E.B. and J.B. contributed equally to this work

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


Saccades are ballistic eye movements that rapidly shift gaze from one location of visual space

to another. Detecting saccades in eye movement recordings is important not only for studying

the neural mechanisms underlying sensory, motor, and cognitive processes, but also as a clin-

ical and diagnostic tool. However, automatically detecting saccades can be difficult, particu-

larly when such saccades are generated in coordination with other tracking eye movements,

like smooth pursuits, or when the saccade amplitude is close to eye tracker noise levels, like

with microsaccades. In such cases, labeling by human experts is required, but this is a tedious

task prone to variability and error. We developed a convolutional neural network (CNN) to

automatically detect saccades at human-level performance accuracy. Our algorithm sur-

passes state of the art according to common performance metrics, and will facilitate studies

of neurophysiological processes underlying saccade generation and visual processing.
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Introduction

Eye tracking is widely used in both animals and humans to study the mechanisms underlying per-

ception, cognition, and action, and it is useful for investigating neurological and neurodegenerative

diseases in human patients1–5. This is in part due to practical reasons: recording eye movements

is relatively easy6, while, at the same time, eye movements can be highly informative about brain

state7, 8.

The most prominent type of eye movement, in terms of eyeball rotation speed, is a ballistic

shift in gaze position, called saccade. This type of eye movement occurs 3-5 times per second,

and it can realign the fovea with interesting scene locations within only ∼50 ms. Naturally, sac-

cades cause dramatic changes in visual input when they occur, and they therefore impact neural

processing in different visual areas and also in a variety of ways9–17. This even happens for the

tiniest of saccades, called microsaccades, that occur when gaze is fixed18–27. Therefore, studies not

quantitatively analyzing microsaccades can miss important behavioral and neural modulations in

experiments28. Saccades and microsaccades are, additionally, key discrete events in eye tracking

traces that can be useful for parsing other eye movement epochs (e.g. smooth pursuits, ocular

drifts, ocular tremors) for further analysis. Therefore, detecting saccades is typically the first step

in any quantitative analysis of behavior or neural activity that might be impacted by these eye

movements.

Several algorithms have been proposed for automating the task of saccade detection (re-

viewed by 29). For example, Engbert and Mergenthaler developed a method for classifying sac-
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cades and microsaccades based on an adaptive threshold30. This algorithm (which we refer to here

as EM) is particularly popular because of its simple implementation and ease of use, as well as its

ability to detect even microsaccades. However, this algorithm, like others, may still mislabel some

microsaccades due to high eye tracker noise (as is typical with video-based eye trackers) as well as

small catch-up saccades occurring during smooth pursuit. Other existing algorithms31, 32 have the

added advantage of providing additional labels for fixations and post-saccadic oscillations (PSO).

Despite their success, several shortcomings still render the use of existing algorithms either

less reliable than desired or, at the very least, cumbersome. While the performance of many pub-

lished algorithms is promising29, 32, it does not reach the level of trained human experts. Also, none

of the existing algorithms shows convincing performance for all eye movement-related events that

may need to be analyzed (e.g. fixations, saccades, PSO, blinks, smooth pursuits). In addition,

equipment-dependent hyperparameters, such as thresholds, need to be chosen for most algorithms,

a fact that renders broad usability difficult. For example, even simple changes in eye tracking

hardware, involving changes in sampling frequency or measurement noise, require re-tuning of

such parameters. Re-tuning is also needed when the ranges of eye movement amplitudes being

studied are modified (e.g. microsaccades versus larger saccades). Perhaps most importantly, ob-

jective parameter estimation in existing algorithms is currently a challenging task because of a

limited amount of available reliably labeled data. Finally, in many cases, applying available online

resources is not straightforward. As a result of all of the above shortcomings, current laboratory

practice often still involves experimenters spending substantial amounts of time to carefully relabel

parts of their data after automatic saccade detection.
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Here we propose a convolutional neural network (CNN) for classifying eye movements.

The architecture of the network is inspired by U-Net, which has successfully been used for im-

age segmentation33. We evaluated our network (U’n’Eye) on three challenging datasets contain-

ing small saccades occurring during fixations or smooth pursuits. On these datasets, U’n’Eye

reached the performance level of human experts in labeling saccades and microsaccades, while

being much faster. The network also beat state-of-the-art algorithms on a benchmark dataset

not just for saccade detection, but also for PSO. It can be trained quickly, even on a standard

laptop, and its adaptability to different datasets makes U’n’Eye the novel state-of-the-art eye

movement detection algorithm. An open source implementation of U’n’Eye is available online

(https://github.com/berenslab/uneye), and an easily accessible web service will be

provided. Our labeled datasets will also be freely available upon publication.
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Results

Design of a convolutional neural network for eye movement classification. We developed a

CNN that predicts the state of the eye for each time point of an eye trace. The aim of the network

was to segment eye movement recordings (Fig. 1) into epochs containing saccades/microsaccades

(orange highlights) versus epochs not containing these eye movements (but see also below for

additionally classifying PSO using our network). Our primary goal was to have a network that

can seamlessly handle the challenging scenarios of tiny microsaccades during fixation (Fig. 1A),

small catch-up saccades embedded in relatively high smooth pursuit eye velocities (Fig. 1B),

and microsaccades and saccades occurring in recordings with higher noise levels associated with

video-based eye trackers when compared to, say, scleral search coil techniques34, 35 (Fig. 1C).

We therefore trained and tested the network on three different challenging datasets (see Methods

and Table 1), which contain labels for fixations and saccades manually determined by human

experts. We also tested our network on artificially generated noisy eye movement traces, in which

the ground truth for saccade times was known (Methods) (Fig. 1D). Finally, we compared our

network’s performance to different existing algorithms, both on our datasets and also on a publicly

available benchmark dataset31.

The network operates on the eye velocity signal and requires no other preprocessing. Eye

velocity is computed as the differential of eye position, and chunks of eye velocity signals are

then input to the network. Briefly, the network’s architecture is based on the U-Net, a CNN for

pixel-by-pixel image segmentation33, which we modified to process one dimensional signals and
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Figure 1: Examples of eye traces containing saccades for detection. (A) Microsaccades during
fixation recorded with a video-based eye tracker. (B) Catch-up saccades during smooth tracking
recorded with scleral search coils. (C) Microsaccades during fixation recorded with a video-
based eye tracker. (D) Simulated saccades. Left panels are the 2D representation of the eye
trajectory over 1 second of recording. Right panels are the horizontal and vertical eye position
of the corresponding traces on the left, now presented as a function of time; in this case, an
upward deflection in the shown traces corresponds to a rightward or upward eye movement for
the horizontal and vertical components, respectively. Note that in B, we refer to the non-saccadic
smooth change in eye position as "fixation" for simplicity, since the primary goal of our algorithm
was to detect saccades, irrespective of whether they happened during fixation or embedded in
smooth pursuit eye movements.

7

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


output a predictive probability for each eye movement class at every time point (Fig. 2A). A ma-

jor change compared to the original U-Net architecture is that we introduced batch normalization

(BatchNorm) layers36. BatchNorm layers subtract a mean from their input and divide it by a stan-

dard deviation. Both of these parameters are estimated for each layer over mini-batches of training

samples during learning. This method normalizes the distribution of activations across the network

layers, allowing for higher learning rates and reducing over-fitting (see below)37. We also applied

a rectified linear unit (ReLu) function between each convolutional and batch normalization layer.

The ReLu function, or heavy-side step function, introduces nonlinearities in the network, allowing

it to apply arbitrary-shaped functions to the input data. Finally, the U-shaped architecture of the

network leads to temporal downsampling and upsampling in the hidden layer representations (Fig.

2). Downsampling is achieved by max pooling (MaxPool) operations that reduce the dimension-

ality of the network content, extracting relevant features. Upsampling is realized by transposed

convolution. Convolutional kernels and max pooling operations together lead to the integration of

information over time. Due to the network design, the probability assigned to each time bin can be

influenced by ±89 preceding and following time bins (Fig. 2B). Thus, U’n’Eye takes into account

a large enough signal in order to make point predictions of the correct eye movement class.

U’n’Eye achieves human-level performance. Our network achieved human-level performance

after training on our datasets. We first illustrate this with three example scenarios for detecting

saccades (Fig. 3). In the first example, a small microsaccade occurred with substantial oscillation

in eye position towards movement end, and with the amplitude of the movement being near the

eye tracker noise level (Fig. 3A). The human coder 1 considered the post saccadic oscillation as
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Figure 2: U’n’Eye. (A) Network architecture. The input matrix contains horizontal and vertical
eye velocity. T is the number of input time points (see B), and K is the user-defined number of eye
movement classes (e.g. "fixation" versus "saccade" in a binary classifier). The different network
layers are described in the text. (B) The output probability of one time bin is influenced by 89 time
samples before and after this time bin. For each layer of the network, the red color indicates the
range of influence of the time bin indicated by the red dot in the output. Traces show the projection
of the layer’s output onto its first principal component. The outputs of convolutional layers 6 and
7 resemble the final classifier’s output probability (Softmax), whereas early convolutional layers 1
and 2 seem to perform noise reduction.
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Figure 3: Examples of eye traces from all three datasets, with saccades being labeled by either
human coders, different instances of U’n’Eye, or a popular algorithm from the literature. (A) An
example microsaccade exhibiting substantial PSO. The top two traces show eye position as a func-
tion of time in an identical format to Fig. 1. Below the eye position traces, we show labels for
fixation or saccade made by two human experts (coder 1 and 2) as well as predictions of two sepa-
rate networks. Network 1 was trained on labels from coder 1, and network 2 was trained on labels
from coder 2. Note how each network matched the performance of the human coder. The very
bottom row shows the performance of the Engbert and Mergenthaler30 algorithm (referred to as
EM in all remaining figures), which suffered from a false alarm later in the trace due to eye tracker
noise. (B) Saccades embedded in smooth pursuit eye movements. Here, our network successfully
detected three catch-up saccades, all of which were missed by the EM algorithm. The reason that
they were missed is that the saccades were directed opposite to the ongoing pursuit, resulting in
momentary reductions in eye speed, as opposed to increases. (C) An example microsaccade em-
bedded in high eye tracker noise. Once again, the EM algorithm suffered from false alarms due to
eye tracker noise.
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part of the saccade, and so did our network trained on his training set. On the other hand, coder 2

determined that the saccade ended earlier, and our network trained on his training set did the same.

Thus, our network could match the criterion used by an individual human coder very well (Fig. 3A,

bottom). Moreover, our network successfully avoided a false detection by the EM algorithm on

these traces. In the second example, the EM algorithm missed all three saccades, but our network

successfully flagged them (Fig. 3B). Finally, the eye movement in the third example was collected

with a video-based eye tracker having substantially more noise (Fig. 3C). In this case, two errors

made by the EM algorithm were successfully excluded by our network.

To present more quantitative performance measures, we first tested our network on our in-

house datasets. We performed 10-fold cross-validation separately for all three datasets. In each

cross-validation round, 90% of the data was used for training the network, and the remaining 10%

were used to test performance. A separate validation set from each dataset was used to detect over-

fitting of the network. To prevent such over-fitting, we regularized the weights of the network using

the L2 penalty38 (Methods), preventing the parameters of the network from deviating excessively

from zero. Furthermore, we made use of early stopping. For this, a separate validation set was used

and the validation set error computed in each epoch. Training was stopped at the point of smallest

validation set error. For datasets 1 and 2, 950 sec of eye traces were used for cross-validation and

50 sec for validation. Thus, each training set contained 855 sec of data. For dataset 3, 330 sec were

used for cross-validation and 23 sec for validation, resulting in 297 sec of data in each training set.

Training took approximately 1 minute per second of training data on a CPU (Methods).
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When comparing our network’s performance to the velocity-threshold-based EM algorithm,

we again used 10-fold cross-validation to estimate the optimal parameter λ that sets the velocity

threshold dependent on noise level in that algorithm. As detailed below, we used different metrics

to evaluate performance of the algorithms. For the estimation of λ, we therefore optimized two

different performance metrics which led to slightly different scores of the EM algorithm.

Finally, similarity of the algorithms’ predictions to human labels was evaluated using three

metrics. To this end, we calculated Cohen’s kappa, which is a sample-by-sample similarity mea-

sure that takes chance agreement of two predictors into account39. As a second metric, we calcu-

lated the F1 score, which is an accuracy measure that considers precision and recall of a classifier.

Recall corresponds to the number of correctly detected saccades divided by the number of saccades

that were labeled by the human expert. Precision, on the other hand, is the number of correctly

classified saccades divided by the total number of saccades detected by the classifier (Methods).

The F1 score is defined as the harmonic mean of both, and it thus only measures how accurate sac-

cades were detected without taking into account their timing (i.e. exact saccade onset and offset

times). Correctly labeling saccade onset and offset can be crucial for further analyses. Therefore,

we additionally computed the absolute time difference in onset and offset of correctly predicted

saccades and of saccades labeled by the human experts. This measure reflects how well an algo-

rithm agrees with the human coder in terms of saccade start and end.

In all three datasets, U’n’Eye reached high similarity to the human coder (Fig. 4A, B, blue)

and outperformed the EM algorithm (Fig. 4A, B, dark and light pink; Table 2). This was the case

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


C
oh

en
’s

 k
ap

pa

F1

10

0

20

O
ffs

et
 d

iff
er

en
ce

 (m
s)

O
ns

et
 d

iff
er

en
ce

 (m
s)

Dataset ID

#1 #2 #3 #1 #2 #3

Dataset ID

A B

C D

B
et

te
r

B
et

te
r

U’n’Eye
EM Cohen’s kappa optimized

B
et

te
r

B
et

te
r

Human coder 2

0.4

0.6

0.8

1.0

EM F1 optimized

0.8

0.6

0.4

0.2

10

20

15

5

0

Figure 4: High performance of U’n’Eye. Each panel shows results from one performance metric
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independent of how the EM λ parameter was optimized. U’n’Eye also detected saccade onset and

offset in high agreement with the human labels. On average, saccade onset differences to human

labels were smaller than 3 ms, and saccade offset differences were smaller than 5 ms. Saccade onset

and offset labels by the EM algorithm deviated more strongly from the human-labeled saccades

(Fig. 4C, D, blue vs. pink; Table 2). This indicates that U’n’Eye saccade predictions were more

human-like than those of the threshold-based EM algorithm.

In the more challenging dataset 2, in which saccades occurred during smooth pursuit eye

movements, U’n’Eye substantially outperformed the EM algorithm. Here, saccade velocity was

close to the instantaneous velocity of the ongoing smooth pursuit movements. In fact, the min-

imum saccade peak velocity in this dataset was smaller than the median instantaneous velocity

during pursuit (Table 1). This explains why the threshold-based EM algorithm failed to detect a

large fraction of saccades in dataset 2, whereas U’n’Eye performed the best on this dataset when

compared to the other datasets. This was because the network architecture utilizes a substantial

time window (Fig. 2), which allows it to infer changes in the state of the eye even if the instanta-

neous velocity is low compared to the surrounding eye trace.

We next addressed the question whether U’n’Eye can achieve a similar level of inter-human

agreement when multiple human experts analyze the same data. For this, we used dataset 1, be-

cause, among the three datasets, it contained saccades with the widest range of amplitudes (from

as small as 0.02◦ up to a size of 11◦; see Table 1 for a reason why saccades as small as 0.02◦

were possible). We could thus assess inter-rater agreement for a broad range of saccades. Dataset
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1 was labeled by a second independent human coder (Fig. 3, upper panel; Fig. 4, dataset 1).

Coder 1 estimated saccade timing based on a combination of the raw eye traces and the smoothed

radial velocity, whereas coder 2 used the raw eye traces only. We trained independent networks

either with labels from coder 1 or coder 2 (Net 1 and Net 2, respectively), and we tested the net-

works’ performance on the 10 test sets from the 10-fold cross validation routine described above,

both against ground truth labels from coder 1 or coder 2. U’n’Eye‘s saccade labels were as sim-

ilar to both human coders as the human labels were to each other (Table 3). In terms of the F1

score, the inter-human agreement was not significantly different from the network-human agree-

ment (Table 4). Interestingly, Net 1 showed higher similarity scores than coder 2 when both were

compared to labels of coder 1 in the test sets, and vice versa for Net 2 and coder 2, reflected by

larger Cohen’s kappa scores and smaller onset and offset differences (Table 4, all p < 5 ·10−5 after

Bonferroni correction for multiple comparisons, Student’s paired samples t-test for Cohen’s Kappa

and F1 scores, and independent samples t-test for on- and offset differences). This indicates that

U’n’Eye‘s saccade estimation surpasses inter-rater consistency.

U’n’Eye misses only a small fraction of microsaccades We then analyzed the patterns of agree-

ment and disagreement between U’n’Eye and human labeling. For true positive saccades, the

two dimensional histogram of detected movements reflected the typical main sequence relation-

ship between peak velocity and amplitude of saccades (Fig. 5,A,D,G)40. A few false positives

were present within the range of the main sequence, suggesting that the human coder forgot to

label some saccades (for example, see the movement in the inset in Fig. 5B). Concerning the

rare false negatives that occurred, some of them had fairly large amplitudes (beyond eye tracker
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noise). Closer inspection revealed that there were pairs of successive saccades that had very short

inter-saccadic intervals. The network lumped them into one movement, whereas the human coders

separated them. Most remaining disagreements between the human and the network were associ-

ated with the smallest microsaccades, closest to eye tracker noise levels.

U’n’Eye: new state-of-the-art eye movement classifier. In order to compare our algorithm

to state-of-the-art methods for eye movement classification, we evaluated its performance on a

benchmark dataset31, which has previously been used for the comparison of 12 eye movement

classifiers29, 32. The dataset comprises 500 Hz eye tracking recordings from humans watching

videos, images, or moving dots, and it contains human labels for fixations, smooth pursuits, sac-

cades, PSO (Fig. 6A), and blinks. We therefore used U’n’Eye as a multi-class classifier to predict

saccades, PSOs, and blinks (Fig. 6B). Fixations and smooth-pursuit eye movements were both as-

signed to the fixation class. U’n’Eye output a predictive probability for each class (Fig. 6D), with

the prediction value corresponding to the class that maximized this predictive probability (Fig.

6C). We trained U’n’Eye on one part of the data and evaluated its performance on the test trials

listed in Andersson et al. (their Table 1129). U’n’Eye outperformed the state-of-the-art classifiers

for saccades and PSOs (Table 5). Moreover, U’n’Eye’s performance lied within the range of the

inter-coder agreement of the two human experts who labeled the dataset (Table 5). This result

indicates that U’n’Eye is very well suited for multi-class eye movement classification.

U’n’Eye performance is robust to missing labels. In machine learning, the quality of the training

data is crucial for the performance of a classifier, since the latter directly learns from the human
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Figure 6: Multiclass labeling by U’n’Eye. (A) An example saccade showing substantial post-
saccadic oscillation (PSO) from the data in 31. (B) An example full trace from the same dataset
showing sequences of saccades, PSO’s, and blinks. (C) For the trace in B, ground truth labels
are shown, in addition to labels by U’n’Eye. The latter successfully classified all ground truth
labels, except for one instance marked by a black vertical arrow. (D) Nonetheless, the predictive
probabilility of the network still showed a transient for the missed microsaccade (black arrow),
suggesting that additional post-processing may be used to improve the performance of U’n’Eye
even more.

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


ground truth labels. Human labeling, however, is prone to mistakes and lapses: saccades might

be missed by the human coder, leading to noisy labels. We therefore assessed how U’n’Eye’s

performance was influenced by noise-corrupted labels. We trained the network on simulated data

(Fig. 1D) for which we knew the ground truth. We then artificially removed a fixed fraction

of saccade labels. We also evaluated the network’s performance when trained on real data with

missing labels. U’n’Eye was robust to the presence of noisy labels (Fig. 7). The removal of 20%

of saccade labels during training led to a decrease of only 0.037 in Cohens kappa and 0.028 in

F1. Moreover, there was only 0.59 ms and 1.01 ms differences in onset and offset estimation,

respectively (Fig. 7A, B). This indicates that U’n’Eye can achieve good performance even if the

human coder misses some saccades in the training set.

Eye movement representation becomes disentangled along network layers We finally had a

closer look at how the network achieves the separation of two eye states (e.g. fixations and sac-

cades; Fig. 8A). In the velocity domain, saccades and fixations can show highly overlapping

distributions (Fig. 8B). This explains why velocity threshold-based algorithms can fail to distin-

guish fixations from saccades (Fig. 4). Here, we showed that U’n’Eye can differentiate between

fixations and saccades with high accuracy (Fig. 4). The classification was based on the output layer

of the network. To illustrate how this decision arises throughout the hidden layers, we performed

principal component analysis (PCA) on the features of each convolutional layer. The fraction of

explained variance by the first two principal components (PCs) reflects the U-shaped architecture

of the network (Fig. 8 C): in the middle layers, information is distributed across more components

than in early and late layers. We projected the hidden layer activations onto the PC space and la-
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Figure 7: Classification accuracy of networks trained with random missing labels. We used the
same performance metrics of Fig. 4, and we computed these metrics on the outputs of networks
trained on a simulated dataset (Fig. 1D) as well as on datasets 1 and 2. The simulated dataset
generated ground truth eye traces (with noise added later; Methods) using a model adapted from
41. For all datasets, we systematically removed fractions of labels from the training set to evalu-
ate degradations in U’n’Eye performance. Classification accuracy measured in terms of Cohen’s
Kappa (top row, left) and F1 score (top row,right) decreased with increasing label noise. The bot-
tom row shows performance in estimating saccade onset and offset times. Note that performance
in all metrics remained within a high range even with high noise fractions. The data show mean ±
standard deviation for 5 independent training and test procedures.
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beled time bins according to their ground truth labels (fixation or saccade, Fig. 8D). We observed

in higher layers that the two classes were better separated (Fig. 8D). Finally, in the output layer,

fixations and saccades became linearly separable (Fig. 8E). Thus, through training, the network

effectively learns to extract relevant features and to project those onto a plane where the two eye

movement classes are linearly separable.
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Figure 8: Disentanglement of fixations and saccades throughout the network. (A) Example eye
trace with a microsaccade. B) Distribution of dataset 2 in the velocity domain. Fixations and
saccades (shown in bluish and orangish colors, respectively) showed overlapping distributions.
(C) Fraction of explained variance by the two first principal components (PCs) of the network’s
convolutional layers. There was a reduction in the middle layers followed by a peak at the final
seventh layer. (D) Projection of hidden layer activations by eye traces of dataset 2 onto the first
two principal components. Fixation and saccade classes became better separated throughout the
hidden layers. (B - D) Dots indicate the time points of the example eye trace in A, and the rest of
the background data show the entire dataset time samples. (E) The probability output allowed for
a linear separation of the two classes. Time points with a saccade predictive probability above 0.5
were classified as a saccade.
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Discussion

In this study, we presented U’n’Eye, a convolutional neural network for eye movement classi-

fication. We demonstrated that U’n’Eye achieved human-level performance in the detection of

saccades and microsaccades. In addition, the network was able to predict other classes of eye

movements, which we exemplified with the detection of blinks and PSOs in a benchmark dataset.

Furthermore, we showed that U’n’Eye achieved excellent performance both when trained on

a single type of data with labels from one coder and when trained on different datasets with labels

from two coders. While datasets 1 and 3 used in this study contained data with only one type

of visual task and labels from one coder each, dataset 2 was composed of two different pursuit

tasks and contained labels from two different human coders. The dataset by Andersson et al. also

contained greatly varying types of saccades and other eye movements. Still, U’n’Eye achieved

good performance when trained and tested on this dataset. Note that the network might fail to

detect eye movements when tested on data that show a different distribution than the data it was

trained on. We therefore recommend to either train a network with a large variety of data or to

train separate specialized networks for each task.

U’n’Eye is publicly available and provides a user friendly interface as well as a web service

in which users can upload their data and receive classification outputs. No parameter tuning is

needed even for training (e.g. learning rate, and so on) since the standard settings were found to

work well across datasets. Instead, an experimenter just needs to provide a few hundred seconds of

labeled data to train the network once. Even if some labels are missing in the training data, U’n’Eye

23

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


can still reach high performance. We recommend, however, to use only carefully annotated data

for training, as this will improve results.

Of the few algorithm that are capable of detecting saccades as well as PSO31, 32, 42, U’n’Eye

achieves highest performance. Note that Zemblys et al. 42 reported higher absolute Cohen’s kappa

values for saccade and PSO detection, but obtained these on cleaner data than the benchmark

dataset from Andersson et al. 29. As their dataset was not available to us, we were not able to

assess U’n’Eye‘s performance on the same data.

Recently, a Bayesian approach for the detection of microsaccades based on a generative

model has been proposed43. Inherently, Bayesian methods provide estimates of uncertainty, in

addition to estimates of the quantity of interest. Indeed, it is an interesting future perspective to

combine U’n’Eye with Bayesian Deep Learning techniques to provide uncertainty estimates for

the detected eye movements44.

Future work will include combining datasets with different characteristics, such as different

sampling frequencies, in order to obtain a network that can generalize on a large range of data.

Such a network could be used by a large part of the scientific community, which would allow

for reproducibility of scientific results. We recommend that anyone who uses our algorithm to

publish the weights of the trained network so that eye movement detection can be reproduced. For

our own trained networks, all weights have been published online (https://github.com/

berenslab/uneye) along with the code of the network. This has the advantage that users

with similar data characteristics to one of our three datasets (e.g. microsaccades during fixation
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with a video-based eye tracker as in Dataset 3) can directly use our weights from the proper dataset

without having to retrain their own network. We will also make all three datasets publicly available,

facilitating the further development for eye movement detection algorithms.

Of course, it should be noted that some prediction errors may still occur with U’n’Eye.

However, such errors fall within the range of inter-rater variability across humans anyway. Also,

even when U’n’Eye does make mistakes, the predictive probability that it outputs can be used to

retrieve missed saccades (e.g. see the black arrow in figure Fig. 6). Therefore, post-processing

algorithms may be used to further optimize the output of U’n’Eye.

Finally, U’n’Eye’s capacity to learn non-linear relationships between an eye trace and some

annotated labels opens new horizons in neuroscience: the network could be used to understand the

properties of neural activities related in a complex manner to eye movements. For example, the

disentanglement in later layers (Fig. 8) could be used to quantitatively analyze the activity patterns

of pre-motor neurons in the brainstem, which themselves ultimately transform brain processing

into individual ocular muscle innervations. Furthermore, U’n’Eye could be turned into a generative

model for eye movements, as was shown for neural networks that are used for image classification

45. The information about eye movements that is contained in the network architecture might in the

future be used to identify variations in eye movement characteristics that could hint at underlying

pathologies.
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Methods

Datasets. All experiments used for collecting the datasets were approved by ethics committees at

Tuebingen University. Human subjects provided informed, written consent in accordance with the

Declaration of Helsinki. Monkey experiments were approved by the regional governmental offices

of the city of Tübingen.

Dataset 1 was collected from human subjects using the Eyelink 1000 video-based eye tracker

(SR Research, Ltd) sampling eye position at 1 kHz. The dataset contains mostly microsaccades

and small-amplitude memory-guided saccades.

Dataset 2 was collected from three male, rhesus macaque monkeys implanted with scleral

search coils (in one eye for each of the monkeys). The dataset contains catch-up saccades generated

during smooth pursuit. Eye position was again sampled at 1 khz. For the trials containing smooth

pursuit of sinusoidal target motion trajectories in this dataset, the data were obtained from the

experiments described in 46, 47.

Dataset 3 was collected from a single male macaque monkey using the Eyelink 1000 video-

based system sampling eye position at 500 Hz. The dataset contains microsaccades generated

during fixation. The data was obtained from experiments described in 48.

In all datasets, we manually detected saccades using a custom-made GUI in Matlab. The

GUI displayed horizontal and vertical eye position traces, as well as filtered radial eye velocity.

The GUI internally estimated saccade onset and end times using a combination of velocity and
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acceleration thresholds49. The user then manually interacted with the GUI to delete false alarms,

correct false negatives, and adjust estimation of onset and offset timing.

Simulated saccades. To test the performance of our network on noisy labeled data, we designed

artificial eye traces for which we knew the ground truth. Saccades ranging from 0.5 to 60◦ were

simulated using an adaptation of a model for saccade waveforms41. The model is a sum of a

soft ramp function, which follows the relationship between amplitude and peak velocity observed

in real saccades41. As it is originally one dimensional, we adapted it so that it generates two

dimensional trajectories. Saccade generation in time was made to follow a Poisson process with λ

equal to 3 saccades per seconds. Simulated blinks were also added by inducing sharp transients in

the eye traces. Finally, a Gaussian white noise with a standard deviation of 0.02◦ was added to the

trace. Then, as described in Results, we trained U’n’Eye under a variety of conditions in which we

intentionally removed a subset of saccade labels during training, in order to explore robustness to

missing labels (Fig. 7).

U’n’Eye: our convolutional neural network. The architecture of the convolutional neural net-

work (CNN) was inspired by U-Net, a CNN first used for image segmentation33. Here we modified

U-Net to meet the requirements of an eye movement classifier. The network was built of seven

convolutional layers with kernel size 5, each followed by a linear-rectifying unit (ReLU) and a

BatchNorm layer, both described in detail in Results. Batches consisted of samples of the same

duration. The input to the network was eye velocity, as a matrix of dimension N x T x 2, where

N is the batch-size, T the number of time-points and 2 the number of coordinates (horizontal and

vertical eye velocity). The number of input time-points could be variable but had to be a multiple
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of 25 bins due to the max pooling operations. The output of the network was a matrix of dimen-

sion N x K x T, where K was the user-defined number of classes. For example, we could have a

"saccade" and "fixation" class in the networks of Fig. 3 and we could also add other classes like

"PSO" in the network of Fig. 6.

We applied a softmax38 activation function to the output of the last convolutional layer x:

Softmax(xi) =
exi∑k
j=1 e

xj

(1)

where xi is the layer corresponding to class i. Thus, the network output y represented the sample-

by-sample conditional probability of each class (e.g. "fixation" or "saccade") given the eye-velocity

x and the network weights w:

Yk = p(k = 1|x,w) (2)

The final prediction of the algorithm represented the class that maximized this conditional proba-

bility:

k̂ = argmaxk p(k = 1|x,w) (3)

We chose the kernel sizes of the convolutional and max pooling operations in a way to capture a

relevant signal range around each time-point. Based on the given kernel sizes of the network, it

can be shown that the prediction of one time-bin is influenced by the preceding and following 89

time-bins of the velocity signal (2B, red color).
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Network training. We trained the network with mini-batches whose size depended on the total

number of training samples. We performed 10 training iterations in each epoch. Over-fitting on the

training set was prevented by computing the loss on a validation set and stopping training when the

validation loss increased for three successive epochs. We used a multi-class error function which,

for two classes, equals the cross entropy loss. Weight-regularization was done with L2-penalty38,

which corresponds to a Gaussian prior with zero mean over the network weights. The optimal

parameter λ was determined to be 0.01. The loss function was thus defined as:

L = −
N∑

n=1

K∑
k=1

tnk log y(xn , w) + λ ||w||22 (4)

where N is the number of time points and K the number of classes. The ground truth label tnk

equals 1 if the time point n belongs to class k. Gradient computation was done with PyTorch

autograd method.

We use Adam optimizer 50 with an initial learning rate of 0.001. Adam is a stochastic

gradient-based optimizer that uses adaptive learning rates for different weights of the network.

An additional step-decay by a factor of 2 was applied to the current learning rates when the loss on

the validation set increased during one epoch.

Postprocessing. In the case of binary prediction into the classes fixation and saccade, we provided

the possibility to define thresholds for minimum saccade duration and minimum saccade distance.

If thresholds were given, saccades closer than the minimum distance were merged and saccades

shorter than the minimum duration were removed. We obtained the results reported here with a
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minimum saccade distance threshold of 10 ms for dataset 1 and 3 and 5 ms for dataset 2, because

we previously observed that some saccades occurred very close in time in this dataset. For datasets

1-3, we used a minimum saccade duration threshold of 6 ms. The same thresholds were used for

the algorithm by Engbert & Mergenthaler30.

Data augmentation. U’n’Eye performs better with a bigger training set. However, we aimed

to reduce the amount of saccades that a user should provide to train U’n’Eye. In this study, to

increase the number of training samples, the input eye positions were rotated and added to the

original training samples:

x = xcos(θ) + ysin(θ) (5)

y = −xsin(θ) + ycos(θ) (6)

where x and y are the horizontal and vertical eye positions. We used θ = (1/4π, 3/4π, 5/4π, 7/4π).

Thus, we could increase by five fold the size of our training set without causing over-fitting.

Performance measures To evaluate the eye movement detection performance of our network, we

used the following metrics: CohenâĂŹs kappa, F1 score, and onset and offset time differences.

CohenâĂŹs kappa is a sample-based statistic. It reflects how much two coders agree on the

class that each time-bin belongs to, while controlling for chance agreement of the two coders. It is

given by:

κ =
p0 − pe
1− pe

(7)

where p0 is the proportion of time-bins for which two coders agree and pe is the proportion of
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time-bins for which agreement can be expected by chance.

For a binary classification of fixation versus saccades, the CohenâĂŹs kappa value pe is given

by

Pe =
1

N2
×

K∑
k=1

nkcoder1 × nkcoder2 (8)

where nkcoderX is the number of time-bins coderX assigned to class k.

The F1 score is a measure of classification accuracy that combines precision and recall of a

predictor. Precision is defined as the proportion of correctly classified saccades over all predicted

saccades. Recall is defined as the proportion of correctly classified saccades over all saccades in

the ground truth. The F1 score is the harmonic mean of these two measures. It is given by:

F1 = 2× TP

2 ∗ TP + FN + FP
(9)

where TP is the number of true positives, FN the number of false negatives, and FP the number of

false negatives. For all true positive saccades, we compared saccade timing between the ground

truth and prediction by calculating the absolute time differences between true and predicted sac-

cade onsets and offsets.

Evaluation on a benchmark dataset We evaluated U’n’Eye performance on a benchmark dataset

by Andersson et al.29. This dataset comprises 500 Hz eye-tracking data from humans looking

at images, movies, or moving dots. It contains human labels for the events fixations, smooth

pursuits, saccades, PSO and blinks. Events that the human experts did not assign to any of these
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classes were labelled as "others". For some trials, the dataset contained labels from two different

human coders. For other trials, only one label was available. We trained 20 independent networks

with different random initializations on the data with labels from one human coder (coder RA).

Performance was then tested on the trials with labels from two coders, which makes our result

comparable with previously reported results32. Note that we were not able to reproduce the inter-

rater measures reported by Andersson et al.29 in line with the results of Pekkanen and Lappi32.

For comparability with the NSLR-HMM algorithm32, we excluded the event labels "blinks" and

"other" for the calculation of the saccade and PSO Cohen’s kappa scores. The Cohen’s Kappa

scores for blinks were calculated excluding the label "other". However, the performance on this

class was not compared to other algorithms since it was not reported.

Compute time The computation times of our algorithm reported here were achieved on a personal

computer with a 3.1 GHz Intel Core i5 processor at 16 GB RAM running on Mac OS X 10.11.6.

Code and data availability All code is available from https://github.com/berenslab/

uneye. Data as well as a web service will be available upon publication.
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movement patterns. Vision research 103, 127–142 (2014).

9. Burr, D. C., Morrone, M. C. & Ross, J. Selective suppression of the magnocellular visual pathway
during saccadic eye movements. Nature 371, 511 (1994).

10. Ross, J., Morrone, M. C. & Burr, D. C. Compression of visual space before saccades. Nature 386, 598
(1997).

11. Zirnsak, M., Steinmetz, N. A., Noudoost, B., Xu, K. Z. & Moore, T. Visual space is compressed in
prefrontal cortex before eye movements. Nature 507, 504 (2014).

12. Colby, C., Goldberg, M. et al. The updating of the representation of visual space in parietal cortex by
intended eye movements. Science 255, 90–92 (1992).

13. Sommer, M. A. & Wurtz, R. H. Brain circuits for the internal monitoring of movements. Annu. Rev.
Neurosci. 31, 317–338 (2008).

14. Crevecoeur, F. & Kording, K. P. Saccadic suppression as a perceptual consequence of efficient sensori-
motor estimation. eLife 6 (2017).

15. Golan, T. et al. Increasing suppression of saccade-related transients along the human visual hierarchy.
eLife 6 (2017).

16. Reppas, J. B., Usrey, W. M. & Reid, R. C. Saccadic eye movements modulate visual responses in the
lateral geniculate nucleus. Neuron 35, 961–974 (2002).

17. Yao, T., Treue, S. & Krishna, B. S. Saccade-synchronized rapid attention shifts in macaque visual
cortical area mt. Nature communications 9, 958 (2018).

18. Hafed, Z. M., Chen, C.-Y. & Tian, X. Vision, perception, and attention through the lens of microsac-
cades: mechanisms and implications. Frontiers in systems neuroscience 9, 167 (2015).

33

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


19. Chen, C.-Y. & Hafed, Z. M. A neural locus for spatial-frequency specific saccadic suppression in
visual-motor neurons of the primate superior colliculus. Journal of neurophysiology 117, 1657–1673
(2017).

20. Yu, G., Yang, M., Yu, P. & Dorris, M. C. Time compression of visual perception around microsaccades.
Journal of neurophysiology 118, 416–424 (2017).

21. Gur, M., Beylin, A. & Snodderly, D. M. Response variability of neurons in primary visual cortex (v1)
of alert monkeys. Journal of Neuroscience 17, 2914–2920 (1997).

22. Leopold, D. A. & Logothetis, N. K. Microsaccades differentially modulate neural activity in the striate
and extrastriate visual cortex. Experimental Brain Research 123, 341–345 (1998).

23. Hass, C. A. & Horwitz, G. D. Effects of microsaccades on contrast detection and v1 responses in
macaques. Journal of vision 11, 3–3 (2011).

24. Bellet, J., Chen, C.-Y. & Hafed, Z. M. Sequential hemifield gating of α-and β-behavioral performance
oscillations after microsaccades. Journal of neurophysiology 118, 2789–2805 (2017).

25. Bosman, C. A., Womelsdorf, T., Desimone, R. & Fries, P. A microsaccadic rhythm modulates gamma-
band synchronization and behavior. Journal of Neuroscience 29, 9471–9480 (2009).

26. Herrington, T. M. et al. The effect of microsaccades on the correlation between neural activity and be-
havior in middle temporal, ventral intraparietal, and lateral intraparietal areas. Journal of Neuroscience
29, 5793–5805 (2009).

27. Hafed, Z. M. Mechanisms for generating and compensating for the smallest possible saccades. Euro-
pean Journal of Neuroscience 33, 2101–2113 (2011).

28. Hafed, Z. M. Alteration of visual perception prior to microsaccades. Neuron 77, 775–786 (2013).

29. Andersson, R., Larsson, L., Holmqvist, K., Stridh, M. & Nyström, M. One algorithm to rule them
all? an evaluation and discussion of ten eye movement event-detection algorithms. Behavior research
methods 49, 616–637 (2017).

30. Engbert, R. & Mergenthaler, K. Microsaccades are triggered by low retinal image slip. Proceedings of
the National Academy of Sciences 103, 7192–7197 (2006).

31. Larsson, L., Nyström, M. & Stridh, M. Detection of saccades and postsaccadic oscillations in the
presence of smooth pursuit. IEEE Transactions on Biomedical Engineering 60, 2484–2493 (2013).

32. Pekkanen, J. & Lappi, O. A new and general approach to signal denoising and eye movement classifi-
cation based on segmented linear regression. Scientific reports 7, 17726 (2017).

33. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image computing and computer-assisted intervention,
234–241 (Springer, 2015).

34. Fuchs, A. F. & Robinson, D. A. A method for measuring horizontal and vertical eye movement chroni-
cally in the monkey. Journal of applied physiology 21, 1068–1070 (1966).

34

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


35. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of
eye position: an improved method. Vision research (1980).

36. Klibisz, A., Rose, D., Eicholtz, M., Blundon, J. & Zakharenko, S. Fast, simple calcium imaging
segmentation with fully convolutional networks. In Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support, 285–293 (Springer, 2017).

37. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167 (2015).

38. Christopher, M. B. PATTERN RECOGNITION AND MACHINE LEARNING. (Springer-Verlag New
York, 2016).

39. Cohen, J. A coefficient of agreement for nominal scales. Educational and psychological measurement
20, 37–46 (1960).

40. Zuber, B., Stark, L. & Cook, G. Microsaccades and the velocity-amplitude relationship for saccadic
eye movements. Science 150, 1459–1460 (1965).

41. Dai, W., Selesnick, I., Rizzo, J.-R., Rucker, J. & Hudson, T. A parametric model for saccadic eye
movement. In Signal Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE, 1–6 (IEEE,
2016).

42. Zemblys, R., Niehorster, D. C., Komogortsev, O. & Holmqvist, K. Using machine learning to detect
events in eye-tracking data. Behavior research methods 1–22 (2017).

43. Mihali, A., van Opheusden, B. & Ma, W. J. Bayesian microsaccade detection. Journal of vision 17,
13–13 (2017).

44. Gal, Y. & Ghahramani, Z. Bayesian convolutional neural networks with bernoulli approximate varia-
tional inference. arXiv preprint arXiv:1506.02158 (2015).

45. Gatys, L. A., Ecker, A. S. & Bethge, M. A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576 (2015).

46. Hafed, Z. M., Goffart, L. & Krauzlis, R. J. Superior colliculus inactivation causes stable offsets in eye
position during tracking. Journal of Neuroscience 28, 8124–8137 (2008).

47. Hafed, Z. M. & Krauzlis, R. J. Goal representations dominate superior colliculus activity during ex-
trafoveal tracking. Journal of Neuroscience 28, 9426–9439 (2008).

48. Kawaguchi, K. et al. Using confidence inferred from pupil-size to dissect perceptual task-strategy:
support for a bounded decision-formation process. bioRxiv 269159 (2018).

49. Chen, C.-Y. & Hafed, Z. M. Postmicrosaccadic enhancement of slow eye movements. Journal of
Neuroscience 33, 5375–5386 (2013).

50. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

35

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgements We thank Konstantin-Friedrich Willeke and Antimo Buonocore for providing help

with labeling saccade data and Murat Ayhan for input on DNNs. This work was funded by the German

Ministry of Education and Research (FKZ 01GQ1601) and the German Research Foundation (EXC307,

SFB 1233, BE5601/4-1).

Author contributions MB, JB, ZH and PB designed the project; MB and JB developed the algorithm;

MB implemented the algorithm; JB simulated, acquired and labeled data; MB and JB analyzed the data; HN

provided data; ZH and PB supervised the project; MB, JB, ZH and PB wrote the paper.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to Z.M.H. and P.B.

(email: ziad.m.hafed@cin.uni-tuebingen.de, philipp.berens@uni-tuebingen.de).

36

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359018doi: bioRxiv preprint 

https://doi.org/10.1101/359018
http://creativecommons.org/licenses/by-nc/4.0/


Dataset 1 2 3
Subjects Humans Monkeys Monkeys
Eye tracker Eyelink 1000 Search coil Eyelink 1000
Sampling frequency (Hz) 1000 1000 500

Saccade type Microsaccades and
memory saccades

Saccades
during smooth
pursuit

Microsaccades

Mean duration ± std (ms) 44.58 ± 15.42 37.51 ± 8.81 23.12 ± 6.52
Median duration (ms) 42 36 22
Minimum duration (ms) 11 18 8
Maximum duration (ms) 169 97 54
Mean amplitude ± std (◦) 0.69 ± 0.93 1.07 ± 0.70 0.07 ± 0.04
Median amplitude (◦) 0.43 0.96 0.06
Minimum amplitude (◦) 0.02 0.04 0.003
Maximum amplitude (◦) 11.34 7.03 0.38
Mean peak velocity ± std (◦/s) 102.46 ± 68.82 68.23 ± 42.98 62.40 ± 19.75
Median peak velocity (◦/s) 81.91 56.59 59.57
Minimum peak velocity (◦/s) 17.81 11.49 25.50
Maximum peak velocity (◦/s) 547.72 450.44 167.77
Median instant. velocity (◦/s) 5.63 15.70 12.21

Table 1: Dataset characteristics. All statistics refer to saccades. Note that minimum saccade
amplitude may appear very low due to the existence of some saccades that had very strong dynamic
overshoot (a substantial saccadic movement followed by one lobe of a PSO almost to the original
eye position before saccade onset).
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Dataset Algorithm Cohen’s kappa F1 ∆ Onset (ms) ∆ Offset (ms)
#1 U’n’Eye 0.89 ± 0.02 0.96 ± 0.01 2.66 ± 0.34 4.11 ± 0.41

EM (kappa) 0.66 ± 0.02 0.80 ± 0.04 5.39 ± 0.49 11.28 ± 1.00
EM (F1) 0.62 ± 0.02 0.87 ± 0.03 5.87 ± 0.38 13.68 ± 0.94

#2 U’n’Eye 0.92 ± 0.01 0.96 ± 0.01 1.70 ± 0.29 2.19 ± 0.37
EM (kappa) 0.23 ± 0.04 0.48 ± 0.05 12.85 ± 3.82 14.64 ± 6.38

EM (F1) 0.23 ± 0.03 0.50 ± 0.05 11.37 ± 2.19 12.06 ± 2.12
#3 U’n’Eye 0.82 ± 0.01 0.94 ± 0.01 2.30 ± 0.27 3.88 ± 0.54

EM (kappa) 0.58 ± 0.04 0.75 ± 0.05 3.23 ± 0.55 6.86 ± 0.63
EM (F1) 0.54 ± 0.04 0.77 ± 0.04 3.24 ± 0.49 7.35 ± 0.66

Table 2: Comparison of U’n’Eye performance to the EM algorithm on the three datasets. EM
(kappa) is the EM algorithm optimized to maximize the Cohen’s kappa metric. EM (F1) is the
EM algorithm optimized to maximize the F1 metric. In bold are the best performances for each
dataset. In all cases, U’n’Eye outperformed the EM algorithm. Values report mean and standard
deviation across cross-validations.
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Cohen’s kappa F1 ∆ Onset (ms) ∆ Offset (ms)
Coder 1 vs Coder 2 0.83 ± 0.02 0.98 ± 0.01 3.72 ± 0.39 7.10 ± 0.34

Net 1 vs Coder 1 0.89 ± 0.02 0.96 ± 0.01 2.65 ± 0.34 4.11 ± 0.41
Net 2 vs. Coder 2 0.89 ± 0.01 0.96 ± 0.01 2.00 ± 0.11 4.81 ± 0.33
Net 2 vs. Coder 1 0.85 ± 0.01 0.96 ± 0.01 3.34 ± 0.34 5.58 ± 0.33
Net 1 vs. Coder 2 0.86 ± 0.01 0.96 ± 0.01 2.82 ± 0.32 6.57 ± 0.53

Table 3: Inter-rater comparison. The first row shows the similarity measures between labels from
two human experts (coder 1 and 2). Net 1 was trained on labels from coder 1, and net 2 was trained
on labels from coder 2. In bold are comparisons leading to best performances. Values report mean
and standard deviation across cross-validations. Inter-coder agreement was evaluated on the 10
test samples from cross-validation.
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Metric Comparison Test t-value p-value
Kappa to C1 N1 vs C2 paired t-test 18.38 2.98 . 10-7

Kappa rel. to C2 N2 vs C1 paired t-test 10.88 3.69 . 10-10

F1 rel. to C1 N1 vs C2 paired t-test -3.52 5.08 . 10-2

F1 rel. to C2 N2 vs C1 paired t-test -3.7 5.19 . 10-2

Onset distance rel. to C1 N1 vs C2 indep. t-test -6.6 2.98 . 10-5

Onset distance rel. to C2 N2 vs C1 indep. t-test -13.6 5.26 . 10-10

Offset distance rel. to C1 N1 vs C2 indep. t-test -17.9 5.28 . 10-12

Offset distance rel. to C2 N2 vs C1 indep. t-test -15.3 7.33 . 10-11

Table 4: Statistical tests in inter-rater comparison. Net 1 (N1) was trained on labels from coder
1 (C1), and net 2 (N2) was trained on labels from coder 2 (C2). All p-values were Bonferroni
corrected for multiple comparisons.
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saccades PSO blinks
U’n’Eye 0.89 0.71 0.83

Coder MN 0.90 0.73 0.91
NSLR-HMM32 0.82 0.42 -

LNS29 0.81 0.64 -

Table 5: Performance of U’n’Eye compared to state-of-the-art algorithms. Bold face indicates
highest values of an algorithm for each class. NSLR-HMM and LNS values were taken from the
respective publication (NSLR-HMM32, LNS29). For U’n’Eye, values are the median across 20
independent networks.
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