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Abstract

The pattern of molecular evolution varies among gene sites and genes in a genome. By
taking into account the complex heterogeneity of evolutionary processes among sites in a
genome, Bayesian infinite mixture models of genomic evolution enable robust phylogenetic
inference. With large modern data sets, however, the computational burden of Markov
chain Monte Carlo sampling techniques becomes prohibitive. Here, we have developed a
variational Bayesian procedure to speed up the widely used PhyloBayes MPI program,
which deals with the heterogeneity of amino acid propensity. Rather than sampling from
the posterior distribution, the procedure approximates the (unknown) posterior distribu-
tion using a manageable distribution called the variational distribution. The parameters
in the variational distribution are estimated by minimizing Kullback-Leibler divergence.
To examine performance, we analyzed three large data sets consisting of mitochondrial,
plastid-encoded, and nuclear proteins. Our variational method accurately approximated
the Bayesian phylogenetic tree, mixture proportions, and the amino acid propensity of
each component of the mixture while using orders of magnitude less computational time.

1 Introduction

Understanding the evolutionary variation of phenotypic characters and testing hypotheses
about the underlying mechanism are some of the main concerns of evolutionary biology. Be-
cause this variation needs be interpreted as an evolutionary history, accurately inferring the
phylogenetic tree is important. Otherwise, the uncertainty of phylogenetic inference must be
taken into account to obtain an unbiased picture of evolutionary variation.

The increasing amount of available genomic data enables reliable inference of phylogenetic
trees. Because molecular evolution is largely driven by nearly neutral or slightly deleterious
mutations Ohta (1973), this process is less prone to convergent evolution compared with the
evolution of phenotypic traits. The pattern of molecular evolution is statistically formulated by
Markov processes. The pattern and rate of molecular evolution is complex, however, depend-
ing on various factors affecting mutation rates and functional constraints. To model protein
evolution, Thorne, Goldman, and Jones (1996) introduced the concept of hidden states of sec-
ondary structure to describe sites of heterogeneity Goldman et al. (1996); Thorne et al. (1996);
Jones et al. (1996). Koshi and Goldstein (1998) developed a model of physico-chemical proper-
ties of amino acids, while Halpern and Bruno (1998) introduced a more advanced model with
position-specific amino acid frequencies.

Equilibrium amino acid frequencies, which reflect structural and functional constraints, vary
among sites within and among proteins. Inter-species comparative genomics approaches can
analyze a huge number of alignment columns, but the number of taxa is often insufficient to
estimate individual position-specific amino acid frequencies. To achieve a balance between
variance and bias, Lartillot and Philippe (2004) proposed a Bayesian non-parametric approach
based on a countable infinite mixture model, referred to as the CAT model. This model
specifies K of distinct processes (or classes), each characterized by a particular set of equilibrium
frequencies, and sites are distributed according to a mixture of these K distinct processes. By
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proposing a truncated stick-breaking representation of the Dirichlet process prior on the space
of equilibrium frequencies (Ferguson 1973; Green and Richardson 2001; Ishwaran and James
2001), the total number of classes can be treated as free variables of the model. A hybrid
framework between Gibbs-sampling and Metropolis-Hastings algorithm have been developed
to estimate all parameters of the model Papaspiliopoulos and Roberts (2008).

Existing approaches cannot take full advantage of the CAT model (Lartillot and Philippe
2004; Lartillot 2006), because the computational burden is prohibitive for inference based on
large data sets. Even well-designed sampling schemes need to generate a large number of
posterior samples through the entire data set to resolve convergence, and their convergence can
be difficult to diagnose. To provide faster estimation, Lartillot et al. (2013) developed a message
passing interface (MPI) for parallelization of the PhyloBayes MPI program. By implementing
Markov chain Monte Carlo (MCMC) samplers in a parallel environment, PhyloBayes MPI
allows for faster phylogenetic reconstruction under complex mixture models.

Here, we propose an alternative approach, a variational inference method (Jordan et al. 1999;
Bishop 2006; Blei et al. 2006; Hoffman et al. 2013). The basic idea of variational inference is
the formulation of the estimation of marginal or conditional probabilities as an optimization
problem rather than sampling-based inference. Variational methods, originally used in statis-
tical physics to approximate intractable integrals, have been successfully used in wide variety
of applications related to complex networks (Gopalan and Blei 2013) and population genetics
(Gopalan et al. 2016; Raj et al. 2014). In this article, we demonstrate that our algorithms are
considerably faster than PhyloBayes MPI while achieving comparable accuracies.

2 New Approaches

The CAT model formulates the substitutional heterogeneity across sites of protein sequences
as a mixture of different equilibrium amino acid frequencies, called profiles. By introducing a
Dirichlet process prior on these profiles, the number of categories, the profile of each category,
and the resultant phylogenetic tree are estimated from the data in a Bayesian framework. The
standard Markov chain Monte Carlo (MCMC) approach facilitates parameter estimation of this
parameter-rich model and enables robust inference of phylogenetic trees while allowing for the
complexity of protein evolution.

The rapid growth of genomic databases theoretically enables accurate classification of amino
acid sites in protein sequences, but the Monte Carlo integration becomes computationally more
challenging. To allow the CAT model to extract the maximum amount of relevant information
from the data, we have developed a variational Bayesian procedure. The core of the variational
framework is a mean-field approximation of the posterior distribution. We approximate the
posterior distribution with a mean field representation of the variational distribution, which is
much easier to work with computationally. In this approximation, the parameters and hidden
variables are assumed to be independent of one another. The parameters of the variational
distribution are obtained by minimizing the Kullback-Leibler (KL) divergence between the true
conditional distributions of the hidden variables given the observations and their variational
distributions. Inference becomes a single optimization problem that gives us approximate
analytical forms for the posterior distributions over unknown variables of the CAT model as well
as an approximate estimate of the intractable marginal likelihood. To deal with the uncertainty
of tree topologies, we have preserved the Gibbs sampling algorithm of tree topologies (Lartillot
et al. 2013).
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Table 1: Run times of variational inference and MCMC algorithms on real data
Data set Taxa Sites States MCMC VI
Data Set A 13 6,622 20 4.72 days 0.81 day
Data Set B 28 10,137 20 10.61 days 2.36 days
Data Set C 66 38,330 20 28.35 days 5.67 days

Both variational inference and MCMC algorithms were run in a parallel environment. The properties of the
parallel version were evaluated on a personal computer (Intel Core i7-6700 CPU 3.40GHz, 8 cores, 2 threads
per core, 4 cores per socket, 16 Gb RAM), under Linux Mint 17.3 Rosa.

3 Results

3.1 Runtime Performance

To compare the performance of our version of variational inference with that of the MCMC
algorithm of PhyloBayes MPI, we estimated the CAT model with both algorithms using real
data sets. This portion of the study was carried out using three real data sets, the largest
consisting of 38,330 amino acid positions from 66 species. The goals of this data analysis were
to demonstrate the numerical feasibility of our implementations and to ascertain the accuracy
of our variational inference approach. In our comparisons, all algorithms were timed under
equivalent computational conditions. Because of the intensive nature of the estimations, further
computational experiments will be required to test the performance of variational inference on
much more massive data sets.

First, we explored whether our new approximation approach could significantly reduce the
computational burden required to estimate all parameters of the CAT model. We focused our
analysis on the three real data sets described in detailed Data Sets5.6.

Table 1 illustrates the computational time required for estimation of all parameters in the
CAT-Poisson model when optimized using variational inference compared with sampling under
the MCMC algorithm across three data sets. These data sets contained drastically different
numbers of taxa and sites. For example, the number of taxa and sites in data set C were
approximately three times larger than those in data set B. The time complexity of each of
the above algorithms was found to increase regularly with the number of genes, species and
total aligned amino acid positions. Run times were significantly reduced in the variational
inference framework compared with those in the MCMC approach. While our procedure uses
the variational inference procedure to estimate parameters of the evolutionary process, we note
that we have retained the algorithm for Gibbs sampling of tree topologies. If this partial MCMC
algorithm can also be replaced by some other optimization, the computation burden will be
greatly reduced.

3.2 Accuracy of Estimated Topologies, Tree Lengths, and Profiles

The tree topology and branch lengths estimated by variational inference were almost the same
as those obtained by the MCMC algorithm (Figure 1).

By introducing a Dirichlet process prior, the CAT model provides a posterior distribution
of K, the number of separate categories, and the size of each category. The PhyloBayes MPI
program, which is based on a hybrid strategy between Gibbs sampling and Metropolis-Hastings
algorithm, first proposes allocation variables and stationary probabilities at all other sites.
These site to category reallocation proposals, which are driven by the posterior weights of the
mixture and profiles associated with each component of the mixture, are performed by Gibbs
sampling. Metropolis-Hastings algorithms are then used to consider the classes for sites. This
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Figure 1: Posterior consensus trees between MCMC (left) and variational inference (right)
approaches obtained using a mitochondrial data set (13 taxa and 6,622 amino acid positions
(Rodŕıguez-Ezpeleta et al. 2006))

Table 2: Classes estimated by variational inference and MCMC in data set A
No. Class (Number of Sites)

MCMC VI MCMC VI
9 (524) 59 (527) 12 (256) 48 (246)
4 (481) 4 (480) 8 (235) 40 (240)
23 (457) 92 (454) 11 (226) 32 (220)
21 (403) 82 (400) 19 (197) 26 (188)
5 (328) 5 (326) 35 (161) 63 (157)
16 (284) 33 (290) 1 (148) 1 (145)
18 (273) 39 (276) 22 (140) 35 (137)
15 (265) 28 (275) 2 (78) 2 (76)

Top-ranked estimated classes are listed along with the number of sites distributed in each class. The results
are for real data set A, with the number of sites calculated by counting sites allocated to each class.

strategy guarantees that the samplers leave the posterior distribution invariant. Our approach,
variational inference, proposes variational distributions for allocation variables and weights of
the mixture and profiles. The choice among alternative allocations of sites to categories is
driven by updating parameters of these variational distributions and computing the expected
values of these variables under variational distribution.

Table 2 compares some major categories estimated by MCMC and variational inference.
The size of each category was approximated by the number of sites assigned to that class.
The number of distinct categories was estimated for data set A representing 6,622 amino acid
positions. As can be seen in the table, variational inference accurately approximated posterior
mean sizes of these categories, their profiles were accurately estimated as well (Figure 2).

Taken together, these results demonstrate that the estimation time required by the varia-
tional inference framework compares favorably with that used by sampling algorithms such as
MCMC, while a sufficient level of accuracy under the CAT model is still guaranteed.

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2018. ; https://doi.org/10.1101/358747doi: bioRxiv preprint 

https://doi.org/10.1101/358747


Figure 2: Equilibrium frequency profiles of categories determined by MCMC and variational
inference algorithms based on a mitochondrial data set (13 taxa and 6,622 amino acid positions
(Rodŕıguez-Ezpeleta et al. 2006)). In the case of the first few categories, the two algorithms
performed similarly. A detailed comparison of the remaining categories between MCMC and
variational inference can be found in Table 2.

4 Discussion

We have developed a new framework for estimating all parameters of the CAT model, namely,
stochastic variational inference, that can considerably improve runtime performance as well as
significantly reduce the computational burden. In contrast to existing approaches designed for
the same purpose that rely on simulation framework, such as Gibbs-sampling and Metropolis-
Hastings algorithms (Lartillot and Philippe 2004; Lartillot 2006; Lartillot et al. 2013), stochastic
variational inference recasts the problem of inference as an optimization problem, thus allowing
us to design powerful tools for convex optimization. In this way, our approach proposes a
feasible family of variational distributions and then selects the family member closest to the true
intractable posterior distribution of interest by optimizing Kullback-Leibler (KL) divergence.

We have demonstrated through analysis of actual data sets that our method accurately ap-
proximates the posterior distribution of the CAT model with improved speed. This substantial
runtime enhancement with no loss of accuracy allows our method to be applied to the large data
sets that are steadily becoming the norm in phylogenetic and biological evolutionary studies.
Finally, our results were obtained on a modest computing platform. The implementation of a
variational inference version of PhyloBayes MPI to exploit advanced computing architectures
holds the promise of analyzing even larger data sets than the examples in our paper.

Bayesian models of sequence evolution allow substitutional heterogeneity across protein se-
quence sites to be taken into account. In particular, the CAT model treats the number of
substitutional categories as a free parameter and is able to uncover a level of heterogeneity
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much higher than that assumed by other mixture models. Under the variational inference ap-
proach, all of these special features of the CAT model are guaranteed. Given the increasing
size of studied data sets, ensuring statistical algorithms scale to a large number of species with
massive numbers of nucleotide positions is critical. We have shown that such analyses are time
consuming when undertaken with MCMC algorithms, which perform a large number of multiple
simulated iterations over the entire data set. With their more efficient optimization framework,
stochastic variational inference algorithms overcome this limitation without compromising all
of the principles and statistical assumptions behind the model. For improved estimations of
site-heterogeneous Bayesian mixture models with the massive data set, we recommend imple-
mentation of a variational inference version of PhyloBayes MPI.

5 Materials and Methods

5.1 CAT Model

We use an infinite mixture model that describes site heterogeneity with respect to the substi-
tution process. This model is similar to one proposed by Lartillot and Philippe (2004), but,
instead of sampling-based inference, we have developed a new approach that allows for efficient
inference of ancestral sequences. Our model, which does not assume that all sites of a protein
evolve under the same substitution process, is characterized by a 20x20 substitution matrix.
In addition, the model does not assume a fixed number of distinct substitution processes (or
classes) and respective amino-acid profiles; instead, these are treated as free variables of the
model. Poisson (or F81) Felsenstein (1981) Markov processes are considered to apply to all
substitution processes along the branches of a tree (Lartillot and Philippe 2004; Lartillot 2006).
Each Markov process is characterized by a rate matrix Q = [Qab], which can be expressed in
terms of a vector of stationary probabilities, or equilibrium frequencies πa, 1 ≤ a ≤ 20 such that∑20

a=1 πa = 1 and a set of relative rates, or exchangeability parameters, (ρab) , 1 ≤ a, b ≤ 20. We
determine the size of the segments adaptively as described below. This approach allows us to
work in the framework of a Bayesian mixture model with parameters representing the mixture
of distinct classes, the rates at each site. and branch lengths.

Given an amino-acid database including N aligned positions (columns) and P taxa, we label
the data matrix Dip as simply the possible states of the process operating at site i for i = 1,
. . . , N at the leaf indexed by p (1 < p < P ). We consider lj (1 < j < 2P − 3); ri (1 ≤ i ≤ N)
to be random variables that denote the branch j and the relative rate of substitution at each
site i. Formally, the CAT-Poisson model assumes that (i) a gamma distribution of shape 1
and scale β > 0 is the prior distribution of branch lengths, (ii) a gamma distribution of shape
α and scale α is the prior distribution of rates, and (iii) the prior distribution on profile π
is a flat Dirichlet distribution. Furthermore, Lartillot et al. (2013) has developed a Dirichlet
process mixture model formulated in terms of a stick-breaking construction over the equilibrium
frequency profile to generate an infinite number of mixtures of Poisson processes for describing
sites, with each mixture characterized by its own substitution matrix

{
Qk
}
, k = 1, ...,∞ and

only the stationary probabilities
(
πka
)
, a ∈ [1, ..., 20], k ∈ [1, ...,∞] differing. By proposing a new

random variable Vk which is the unit length of the kth stick, the stick-breaking representation
allows the construction of an infinite mixture structure. Moreover, each site i in an amino-acid
sequence belongs to a category k that is specified by the allocation variable zi ∈ [1, ...,∞].
The vector z = (zi) where i ∈ [1, ..., N ], is called the allocation vector. The allocations z =
(zi) are drawn i.i.d from a multinomial of the infinite vector of mixing proportions, namely,
ϕ = (ϕk) , k ∈ [1, ...,∞]. In addition, we use a data augmentation algorithm, that is proposed
(Nielsen 2002), to obtain the substitution mapping in the case of Poisson processes. The
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substitution mapping is described by the formula Ξij =
(
nij,

(
σhij
)
h=1,...,nij−1

)
, nij denotes the

number of substitutions on branch j and at site i,
(
σhij
)
h=1,...,nij−1

denotes the successive states

of the process and random variable wka is the total number of substitutions to state a at sites
which are assigned in cluster k, plus one if a is the state at the root of the tree. This algorithm
is used to simulate the mutational history for a single site. The probability distribution of nij
is defined by the Poisson distribution of rate parameter rilj and

(
σhij
)
h=1,...,nij−1

is drawn from(
πka
)
, a ∈ [1, ..., 20], k ∈ [1, ...,∞].

Given a data set of amino-acid sequences, Markov chain Monte Carlo (MCMC) sampling
methods have been proposed to approximate full parameters of this model (Lartillot and
Philippe 2004; Lartillot 2006). A parallel computing version has been developed to speed
up the estimation process, thus allowing faster inference the phylogenetic reconstruction under
a Dirichlet Mixture Process (Lartillot et al. 2013). Basically, however, MCMC methods, even
parallel MCMC, solve this problem based on sampling schemes from a Markov chain whose
stationary distribution is the posterior of interest and by updating an estimate of the model
parameters. When a database becomes too large for memory or iterative computation, these
approaches significantly increase the time complexity of inference.

5.2 Variational Inference

Variational inference is a class of methods that reformulate the problem of approximating
the posterior inference for complex probabilistic models as an optimization problem. The
central purpose of the variational inference algorithm is to approximate the true intractable
posterior distribution p(Φ,Ξ|D), Φ = {V, z, π, l, r} by finding an element of a tractable family
of probability distributions q(Φ,Ξ|Θ), called the variational distribution. These distributions
are parameterized by free parameters, called variational parameters Θ. Variational inference
fits these parameters to find a distribution close to the true intractable posterior distribution
of interest. The distance on probability space for a pair of probability distribution q(Φ,Ξ|Θ)
and p(Φ,Ξ|D) is measured with Kullback-Leibler (KL) divergence:

KL [q(Φ,Ξ|Θ)|p(Φ,Ξ|D)]
= Eq [log {q(Φ,Ξ|Θ)}]− Eq [log {p (Φ,Ξ|D)}]
= Eq [log {q(Φ,Ξ|Θ)}]− Eq [log {p (D,Φ,Ξ)}]
+ log p (D).

(1)

The term log p (D) in equation (1), which is the cause of computational difficulty in Bayesian
analysis, can be treated as a constant to estimate the variational distribution that is closest to
the posterior distribution:

q∗(Φ,Ξ|Θ) = argminKL [q(Φ,Ξ|Θ)|p(Φ,Ξ|D)].

By adopting the compromised target function KL [q(Φ,Ξ|Θ)|p(Φ,Ξ|D)], the variational infer-
ence maximizes the computational feasible target function:

L [q(Φ,Ξ|Θ)]
= Eq [log {p (D,Φ,Ξ)}]− Eq [log {q(Φ,Ξ|Θ)}] . (2)

Because
log p (D) = L [q(Φ,Ξ|Θ)] +KL [q(Φ,Ξ|Θ)|p(Φ,Ξ|D)] ,

the equation (2) is called Evidence Lower BOund (ELBO (Jordan et al. (1999))) It should be
noted that the value of the target function cannot be used for comparison between different
models of variational functions. Currently, the standard model checking process is to compare
the important aspects of q∗(Φ,Ξ|Θ) with those of MCMC runs by example data.
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5.3 Two Illustrative Examples

5.3.1 Variational Inference of Bayesian Ridge Regression

We consider the linear regression model. Given a data set of the explanatory variables xn =
(xn1, . . . , xnM)T and the dependent variable tn(n ∈ (1, ..., N)). The likelihood is

p (t|x,w, β) =
N∏
n=1

N
(
tn|wTxn, β−1

)
,

where w is the regression coefficient and β is the noise precision parameter. In order to simplify
the discussion, we assume that the noise precision parameter β is known and consider a con-
jugate Gaussian prior distribution over w, p (w|α) = N (w|0, α−1I). α determines the extent
of shrinkage. When α is known, the posterior distribution of w follows a normal distribution.
To allow for the uncertainty with this extent, a gamma prior distribution is introduced over α,
p (α) = Gam (α|a0, b0). In this case, the posterior distribution cannot be expressed explicitly.

In the variational framework, the mean field representation of w and α is

q (w, α) = q (w) q (α)

A practical variational distribution is

q (w) = N (w|mN , SN)

q (α) = Gam (α|aN , bN) .

The joint density and the mean-field family are combined in order to form the ELBO for
Bayesian ridge regression model. It is a function of the variational parameters mN , SN and
aN , bN .

L [q(w, α|mN , SN , aN , bN)] = Eq [log {p (w, α, t)}]
−Eq [log {q(w, α|mN , SN , aN , bN)}]
= Eq [log p (t|w)] + Eq [log p (w|α)] + Eq [log p (α)]
−Eq [log q (w|mN , SN)]− Eq [log q (α|aN , bN)].

Using the coordinate ascent algorithm, we update each variational parameter in turn as follows:

• update mN , SN : Given the values aN = a0
N , bN = b0

N ,mN = m0
N , SN = S0

N , the value of
mN , SN is updated as

mN = βS0
NX

T t

SN =
(
Eq [α] + βXTX

)−1
I =

(
a0N
b0N

+ βXTX
)−1

I,

where X is the design matrix (x1, . . . , xN)T .

• update aN , bN : Given the values aN = a0
N , bN = b0

N ,mN = m0
N , SN = S0

N , the value of
aN , bN is updated as

aN = a0 + M
2

bN = b0 + 1
2
Eq

[
wTw

]
= b0 + 1

2

(
mN

0TmN
0 + SN

0
)

Using the optimized value of the parameters, the posterior means are estimated as:

Eq [w] = mN

Eq [α] = aN
bN
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5.3.2 Variational Inference of Topic Model

The second example is the simplest topic model - Latent Dirichlet Allocation (LDA). In case
of LDA model, the observed variables are the words, organized into documents. The input
data wdn denote the nth word in the dth document. Across a collection, the documents share
the same mixture components which are called topics βk for k ∈ (1, ..., K). A vector of topic
proportions θd for d ∈ (1, ..., D) describes the degree to which each document exhibits those
topics. The LDA model assumes Dirichlet priors for both βk and θd:

p (βk|η) = Dir (βk|η, . . . , η)
p (θd|α) = Dir (θd|α, . . . , α).

The topic assignment zdn denotes each word in each document which is assumed to have
been drawn from a single topic. Therefore, the topics, topic proportions and topic assignments
are latent variables. The posterior distribution is written generally as

p(β, θ, z | w) =
p (β, θ, z, w)∫

β

∫
θ

∑
z p (β, θ, z, w) .

However, the denominator is computationally infeasible.
In the variational framework for topic models, we consider firstly the variational distributions

for latent variables. The mean-field variational family contains approximate posterior densities
of the form

q(β, θ, z) =
K∏
k=1

q (βk|λk)
D∏
d=1

q (θd|γd)
N∏
n=1

q (zd,n|φd,n) .

The factors q (βk|λk) and q (θd|γd) are the Dirichlet distributions on the kth topic with global
per-topic Dirichlet parameter λk and the dth document with local per-document Dirichlet pa-
rameter γd. The factor q (zd,n|φd,n) is a multinomial distribution on the nth observation’s topic
assignment; its local assignment probabilities are a K-vector φd,n. We construct the general
ELBO for LDA model by combining the joint density and the mean-field variational family,

L [q(β, θ, z|λ, γ, φ)] = Eq [log {p (β, θ, z, w)}]
−Eq [log {q(β, θ, z|λ, γ, φ)}]
= Eq [log p (w|β, θ, z)] + Eq [log p (z|β, θ)]
+Eq [log p (θ|α)] + Eq [log p (β|η)]
−Eq [log q (z|φ)]− Eq [log q (θ|γ)]− Eq [log q (β|λ)].

With the complete conditionals, we now use the coordinate ascent variational inference
algorithm which iterates between updating each local variational parameter and updating the
global variational parameter:

• update the local variational parameter: Given the values of φkdn = φk0
dn, γdk = γ0

dk, λkn =
λ0
kn, the values of φkdn and γdk are updated as

φkdn ∝ exp (Eq [log (θdk)] + Eq [log (βkn)])

= exp
(

Ψ (γ0
dk)−Ψ

(∑K
k′=1 γ

0
dk′

)
+Ψ (λ0

kn)−Ψ
(∑N

n′=1 λ
0
kn′

))
∑K

k=1 φ
k
dn = 1

γdk = α +
N∑
n=1

Eq
[
zkdn
]

= α +
N∑
n=1

φk0
d,n.

Here, Ψ(.) is the digamma function, the first derivative of the log Gamma function.
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• update the global variational parameter: Given the values of φkdn = φk0
dn, γdk = γ0

dk, λkn =
λ0
kn, the values of λkn are updated as

λk = η +
D∑
d=1

N∑
n=1

Eq
[
zkdn
]
wdn = η +

D∑
d=1

N∑
n=1

φk0
dnwdn.

5.4 Variational Inference of CAT Model

Using results from the simplest family of distributions as mean-field variational approximations
(Blei et al. 2006; Hoffman et al. 2013), each variable in the CAT-Poisson model is independent
and governed by its own variational parametric distribution. Moreover, we consider truncated
stick-breaking representations, proposed previously by Blei et al. (2006), for only the variational
distributions. The truncated level or the largest number of categories Kmax can be freely chosen.
The family of variational distributions in the CAT-Poisson model can be written as follows:

q(Ξ, z, V, π, l, r|Θ)

=
∏
j

q
(
lj|γj, γ

′

j

)
×
∏
i

q
(
ri|ζi, ζ

′

i

)
×

Kmax∏
k=1

20∏
a=1

q
(
πka |λka

)
×

Kmax∏
k=1

q
(
Vk|ϑk, ϑ

′

k

)
(3)

×
∏
i

Kmax∏
k=1

q
(
zki |φki

)
×
∏
ij

q (nij|ωij)

×
Kmax∏
k=1

20∏
a=1

q
(
wka|ιka

)
where

q
(
lj|γj, γ

′
j

)
= Gamma

(
lj|γj, γ

′
j

)
q
(
ri|ζi, ζ

′
i

)
= Gamma

(
ri|ζi, ζ

′
i

)
q
(
πka |λka

)
= Dirichlet

(
πka |λka

)
q
(
Vk|ϑk, ϑ

′

k

)
= Beta

(
Vk|ϑk, ϑ

′

k

)
q
(
zki |φki

)
= Multinomial

(
zki |φki

)
q (nij|ωij) = Poisson (nij|ωij)
q
(
wka|ιka

)
= Multinominal

(
wka|ιka

)
.

(4)

Θ =
{
γj, γ

′
j, ζi, ζ

′
i , λ

k
a, ϑk, ϑ

′

k, φ
k
i , ωij, ι

k
a

}
are free variational parameters. To guarantee the

tractability of computing the expectations of variational distributions, we choose variational
distributions from exponential families (Wainwright et al. 2008).

To estimate each variational parameter in the CAT-Poisson model (3,4), we consider dividing
the set of variational variables into two subgroups - global variables [Φg = (Ξ, π, l, r)] and local
variables [Φl = (V, z)]. The local variational variables (V, z) are per-data-point latent variables.
The kth local variable Vk is unit length of kth stick in stick-breaking representation which is
used to make the infinite vector of mixing proportions. The ith local variable zki of the mixture
component represents the allocation situation of site i of alignment of amino-acid sequences.
Each local variable

(
Vk, z

k
i

)
are governed by ”local variational parameters”

[
Θl =

(
ϑk, ϑ

′

k;φ
k
i

)]
.

Bishop (2006) has proposed coordinate ascent algorithm for solving the optimization problem
of these variables. The coordinate ascent algorithm tries to find the local optimum of the ELBO

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2018. ; https://doi.org/10.1101/358747doi: bioRxiv preprint 

https://doi.org/10.1101/358747


by optimizing each factor of the mean field variational distribution, while fixing the others. The
optimal q (z) and q (V ) are then proportional to the exponentiated expected log of the the joint
distribution,

q∗ (z) ∝ exp
(
E|z [log p (Ξ, V, z, π, l, r)]

)
+ const

q∗ (V ) ∝ exp
(
E|V [log p (Ξ, V, z, π, l, r)]

)
+ const.

Here, E|z and E|V denote expectations with respect to the variational distributions of all the
variables except for z or V. The global variables Φg potentially control any of the data. These
variables are governed by the ”global variational parameters”

[
Θg =

(
γ, γ

′
, ζ, ζ

′
, λ, ω, ι

)]
. The

coordinate ascent algorithm iterates t times to update local variational parameters based on
mapping data,

Θl = EΘg [η (Φ,Ξ)]

where η (.) are the natural parameters.
To estimate each global variational parameter in the CAT-Poisson model, we use the stochas-

tic variational inference (SVI) algorithm to optimize the lower bound in Equation (2) (Hoffman
et al. 2013). The stochastic variational algorithm is based on stochastic gradient ascent, the
noisy realization of the gradient. The natural gradients (?) are adopted to account for the
geometric structure of probability parameters (Robbins and Monro 1951). Importantly, nat-
ural gradients are easy to compute and give faster convergence than standard gradients. The
SVI repeatedly subsamples the data, updates the values of the local parameters based on the
subsampled data, and adjusts the global parameters in an appropriate way. Such estimates can
guarantee algorithms to avoid shallow local optima of complex objective functions.

In our setting, we sample a mapping data point Ξn at each iteration, and compute the
conditional natural parameters for the global variational parameters given N replicates of Ξn.
Then, the noisy natural gradients are obtained. By using these gradient, we update Θg at each
t iteration (with step size ρt)

∇̂ΘgL = prior +N {EΘl
[t (Φn,Ξn) , 1]} −Θg

Θ
(t)
g = Θ

(t−1)
g + ρt∇̂ΘgL

where t (.) denote the sufficient statistics.
Based on the subsampling techniques, this procedure reduces the computational burden by

avoiding the expensive sums in the above lower bound. The SVI algorithm thus significantly
accelerates the variational objective analysis of the large database. Applying the previously
proposed SVI framework (Hoffman et al. 2013), we can separate the computational cycle into
the following steps:

1. Sample amino acid data from the whole set of input data.

2. Estimate how each site is assigned to a category, on the basis of observational data and
the current approximation of variational parameters.

3. Update variational parameters

- Local parameters are assignment variables, and breaking proportions.

- Global parameters are equilibrium frequency profile, branch length, and rate across
sites.

The lower bound of the data in terms of the variational parameters is specifically described
in the Supplementary Material. Mathematical details of the variational objective function and
computational methods of noisy derivatives and updating of variational parameters are also
explained in that section.
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5.5 Parallelization and Tree Topology

To parallelize the algorithm at the single machine level and thus reduce runtimes, we adopted
the MPI parallelization of the PhyloBayes MPI program (Lartillot et al. 2013). Specifically, we
use one master process for dispatching computational tasks and collecting and summing results,
and with multiple slave processes executing the orders and returning all essential information
to the master. This parallel strategy helps to equally divide the computational burden among
slaves.

In addition, a partial Gibbs sampling algorithm for subtree pruning and regrafting (SPR)
is adopted to update the tree topology (Lartillot et al. 2013). In a parallel environment, the
task of the master process is to randomly select a subtree for pruning and send this information
to all slaves. The task of each slave process is to update the conditional likelihood vectors
of each resulting topology and the complete scan of all possible regrafting points. One single
log likelihood for each regrafting point is arranged into an array and sent back to the master
process. All arrays are collected and summed and lastly the Gibbs-sampling decision rule is
finally applied to select regrafting position.

5.6 Data Sets

Three real data sets were used for our computational experiments. Data set A was a mito-
chondrial data set which consisting of 33 proteins, 6,622 amino acid positions from 13 species.
Data set B was a plastid data set which composed of 50 plastidencoded proteins, 10,137 amino
acid positions from 28 species. A total of 13% and 5% amino acid positions were missing from
the mitochondrial and plastid data sets, respectively (Rodŕıguez-Ezpeleta et al. 2006; Lartillot
et al. 2013). Finally, data set C was a more challenging and larger complete set of mitochondrial
protein sequences derived from, a large alignment of EST and genome data, which consists of
197 genes, a total of 38,330 amino-acid positions from 66 species and with 30% missing data,
is constructed by (Philippe et al. 2011).

C++ code for the variational inference version of the CAT model to perform computational
experiments with these data sets is available at https://github.com/tungtokyo1108/.

6 Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online
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