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ABSTRACT 

How do high-level visual regions process the temporal aspects of our visual experience? 

While the temporal sensitivity of early visual cortex has been studied with fMRI in humans, 

temporal processing in high-level visual cortex is largely unknown. By modeling neural responses 

with millisecond precision in separate sustained and transient channels, and introducing a 

flexible encoding framework that captures differences in neural temporal integration time 

windows and response nonlinearities, we predict fMRI responses across visual cortex for stimuli 

ranging from 33 ms to 20 s. Using this innovative approach, we discovered that lateral category-

selective regions respond to visual transients associated with stimulus onsets and offsets but not 

sustained visual information. Thus, lateral category-selective regions compute moment-to-

moment visual transitions, but not stable features of the visual input. In contrast, ventral 

category-selective regions respond to both sustained and transient components of the visual 

input. Responses to sustained stimuli exhibit adaptation, whereas responses to transient stimuli 

are surprisingly larger for stimulus offsets than onsets. This large offset transient response may 

reflect a memory trace of the stimulus when it is no longer visible, whereas the onset transient 

response may reflect rapid processing of new items. Together, these findings reveal previously 

unconsidered, fundamental temporal mechanisms that distinguish visual streams in the human 

brain. Importantly, our results underscore the promise of modeling brain responses with 

millisecond precision to understand the underlying neural computations.  
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AUTHOR SUMMARY 

How does the brain encode the timing of our visual experience? Using functional 

magnetic resonance imaging (fMRI) and a temporal encoding model with millisecond resolution, 

we discovered that visual regions in the lateral and ventral processing streams fundamentally 

differ in their temporal processing of the visual input. Regions in lateral temporal cortex process 

visual transients associated with stimulus onsets and offsets but not the unchanging aspects of 

the visual input. That is, they compute moment-to-moment changes in the visual input. In 

contrast, regions in ventral temporal cortex process both stable and transient components, with 

the former exhibiting adaptation. Surprisingly, in these ventral regions responses to stimulus 

offsets were larger than onsets. We suggest that the former may reflect a memory trace of the 

stimulus, when it is no longer visible, and the latter may reflect rapid processing of new items at 

stimulus onset. Together, these findings (i) reveal a fundamental temporal mechanism that 

distinguishes visual streams and (ii) highlight both the importance and utility of modeling brain 

responses with millisecond precision to understand the temporal dynamics of neural 

computations in the human brain.  
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INTRODUCTION 

How do high-level visual areas encode the temporal characteristics of our visual 

experience? The temporal sensitivity of early visual areas has been studied with 

electrophysiology in non-human primates (1-4) and recently using fMRI in humans (5, 6). 

However, the nature of temporal processing in high-level visual regions remains a mystery for 

two main reasons. First, the temporal resolution of noninvasive fMRI measurements is in seconds 

(7), an order of magnitude longer than the timescale of neural processing, which is in the order 

of tens of milliseconds. Second, while fMRI responses are roughly linear for stimuli lasting 3-10 s 

(8), responses in visual cortex exhibit nonlinearities both for briefer stimuli, which generate 

stronger than expected responses (5, 6, 8-13), as well as for longer stimuli, which get suppressed 

due to adaptation (14). Since the standard approach using a general linear model (GLM) to 

predict fMRI signals from the stimulus (8) is inadequate for modeling responses to such stimuli, 

the temporal processing characteristics of human high-level visual cortex have remained elusive 

[but see (12, 14-17)].  

We hypothesized that if nonlinearities are of neural (rather than BOLD) origin, a new 

approach that predicts fMRI responses by modeling neural nonlinearities can be applied to 

characterize temporal processing in high-level visual cortex. Different than the GLM, which 

predicts fMRI signals directly from the stimulus, the encoding approach first models neural 

responses to the stimulus and from them predicts fMRI responses. Recent studies show that 

accurately modeling neural responses to brief visual stimuli at millisecond resolution better 

predicts fMRI responses than the GLM (5, 6, 18). In particular, an encoding model with two 

temporal channels – one sustained and one transient – predicts fMRI responses in early and 

intermediate visual areas across a wide range of stimuli varying in duration from 33 ms to 30 s 

(5). The encoding approach also enables testing a variety of temporal models and quantifying 

which best predicts brain responses. By building generative models of neural computations, this 

approach offers a key framework that can provide insights into multiple facets of temporal 

processing including integration time windows (19-21), channel contributions (5, 18, 22-25), and 

the nature of response nonlinearities (5, 6, 9-12, 18).  
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We considered three hypotheses regarding temporal processing in high-level visual 

cortex. One possibility is that temporal processing characteristics are similar across high-level 

visual regions but differ from those of earlier stages of the visual hierarchy. This hypothesis is 

based on results from animal electrophysiology showing longer latencies of responses in higher-

level regions compared to primary visual cortex, V1 (1), as well as research in humans showing 

longer temporal receptive windows (19, 20) and integration times (21) in ventral temporal cortex 

(VTC) and lateral temporal cortex (LTC) compared to early visual areas. A second possibility is that 

temporal processing is uniform across high-level regions that process a shared category (e.g. 

face-selective regions in VTC and LTC) but differs across regions that process different categories 

(e.g. face- vs. body-selective regions). This prediction is based on data showing differential 

responses to long-duration (21 s) images in face- vs. place-selective regions in VTC (14), as well 

as differential response characteristics to fast (8 Hz) visual stimulation in body-selective regions 

vs. other category-selective regions (15). A third possibility is that temporal processing differs 

across ventral and lateral visual streams rather than across categories. A large body of literature 

has documented that regions in LTC along the superior temporal sulcus (STS) show heighted 

responses to biological motion compared to stationary stimuli and other types of motion (26-33), 

unlike regions in VTC that may represent the static aspect of the stimulus (30, 31, 34). This 

predicts that lateral regions may show larger transient responses than ventral regions, which 

instead may show larger sustained responses. 

To test these predictions, we measured fMRI responses in high-level visual areas to 

images of faces, bodies, and words that were either sustained (one continuous image per trial, 

durations ranging from 3–20 s) (Fig. 1 A-B, experiment 1), transient [30 flashed, 33 ms long images 

per trial with interstimulus intervals (ISIs) ranging from 67–633 ms] (Fig. 1 A-B, experiment 2), or 

contained both transient and sustained components (30 semi-continuous images per trial, 

durations ranging from 67–633 ms per image with 33-ms ISIs) (Fig. 1 A-B, experiment 3). We also 

collected a separate functional localizer experiment to independently define regions selective to 

faces and bodies in VTC and LTC (Fig. 1C; Materials and Methods). We used face- and body-

selective regions as a model system as there are multiple clusters of these regions across the 

temporal lobe, and face and body regions neighbor on the cortical sheet (35). This organization 
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enabled us to (i) measure how the temporal dynamics of stimuli affect responses in each region 

and (ii) test if temporal processing characteristics vary across regions selective to different 

categories (e.g., faces or bodies) or across regions in different anatomical locations (e.g., ventral 

vs. lateral temporal cortex).  

 

 
Figure 1. Measuring brain responses to combinations of sustained and transient visual stimuli in high-level visual cortex. (A) 
Participants fixated centrally and viewed images of bodies, faces, and pseudowords (right) that were presented in trials of 
different durations interleaved with 12-s periods of a blank screen (left). Experiment 1: a single image was shown for the 
duration of a trial. Experiment 2: 30 briefly presented images from the same category (33 ms each), each followed by a blank 
screen, were presented in each trial. As the trial duration lengthens, the gap between images increases, causing the fraction 
of the trial containing visual stimulation to decline. Experiment 3: 30 semi-continuous images from the same category were 
presented in each trial with a constant 33-ms blank screen between consecutive images. As the block duration lengthens, the 
duration of each image progressively increases but the gap does not. (B) The same trial durations (3, 5, 10, or 20 s) were 
utilized across all three experiments, while the rate and duration of visual presentation varied between experiments. 
Corresponding trials in experiments 1 and 3 have almost the same overall duration of stimulation but different numbers of 
stimuli, whereas trials in experiments 2 and 3 have the same number of stimuli but different durations of stimulation. The 
same fixation task was used in the three main experiments. (C) Functional regions of interest in ventral temporal cortex (left) 
and lateral temporal cortex (right) selective to bodies (OTS and MTG) and faces (IOG and mFus), as well as human V4 (hV4) 
and human motion-sensitive area (hMT+). Regions in each anatomical section are shown in an example subject. 
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RESULTS 

Responses in High-Level Visual Cortex Exhibit Temporal Nonlinearities 

  To assess the feasibility of our approach, we first used a standard widely-used GLM (8) to 

predict fMRI responses in the three main experiments. Then, we compared these predictions to 

measured fMRI responses from two sample functional regions of interest: a ventral body-

selective region and a lateral body-selective region.  

In general, the GLM predicts longer responses for longer trials and similar responses in 

experiments 1 and 3 (Fig. 2A, blue and green). Responses in experiment 1 are predicted to be 

slightly higher than in experiment 3 because the 33-ms gaps between images in the latter 

experiment make up 1 s of baseline within each trial. Due to the nature of the hemodynamic 

response function (HRF), the GLM also predicts that peak response amplitudes in experiments 1 

and 3 will increase gradually from 3-s to 10-s trials and subsequently plateau for longer trial 

durations. In contrast, this model predicts substantially lower responses in experiment 2 

compared to the other experiments because the transient 33-ms stimuli in this experiment 

comprise only a small fraction of each trial duration (Fig. 2A, red). Therefore, the GLM predicts a 

progressive decrease in response amplitude from 3-s to 20-s trials in experiment 2, as the fraction 

of the trial in which stimuli are presented decreases (from 1/3 to 1/20 of the trial).  

Figure 2. Responses of body-selective regions in ventral and 

lateral temporal cortex exhibit nonlinearities that are not 

predicted by a linear model. (A) Predicted responses by a 
GLM for trials containing one continuous image (blue), thirty 
flashed (33 ms) images (red), and thirty longer images that 
span then entire trial duration except for a 33 ms 
interstimulus interval (ISI) following each image (green). 
Predictors are fit to OTS-bodies responses using data 
concatenated across all three experiments shown in (B). (B) 
Measured responses in a ventral region on the 
occipitotemporal sulcus (OTS) selective to bodies (OTS-
bodies) during the three experiments. (C) Measured 
responses in a lateral region on the middle temporal gyrus 
(MTG) selective for bodies (MTG-bodies) during the three 
experiments. In (B-C), lines: mean response time series 
across participants for trials with body images; shaded areas: 
standard error of the mean (SEM) across participants; 
Horizontal black bars: stimulus duration. 
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Strikingly, responses to body images in a ventral body-selective region (OTS-bodies; Fig. 

2B) and a lateral body selective region (MTG-bodies; Fig. 2C) both deviate from the predictions 

of the GLM, but in different ways.  

In contrast to the predictions of the GLM, responses in OTS-bodies to trials of 30 flashed 

images in experiment 2 (Fig. 2B, red) are substantially higher than in corresponding trial durations 

in experiment 1, when one stimulus is shown per trial (Fig. 2B, blue). This occurs despite the fact 

that stimuli are presented for only a small fraction of each trial duration in experiment 2 

compared to experiment 1. Furthermore, peak response amplitudes do not increase with trial 

duration in experiment 1 as predicted the GLM. Instead, we observe a systematic decrease in 

response after the first few seconds of stimulation in the 10-s and 20-s trials, which is consistent 

with prior reports of fMRI adaptation for prolonged stimuli in nearby face- and place-selective 

regions (14). Lastly, responses in experiment 3 (Fig. 2B, green) exceed responses in both 

experiment 1 (which has only one image per trial but similar overall durations of stimulation) and 

experiment 2 (which has the same number of images per trial but shorter stimulus durations). 

This observation suggests that both the number of stimuli in a trial and their duration impact 

response amplitudes, as in earlier visual areas such as V1 and hV4 (Fig. S1).  

Unlike OTS-bodies, MTG-bodies illustrates a largely transient response profile with 

substantially lower responses to the prolonged single images in experiment 1. Notably, for the 

10-s and 20-s trials, we observe a transient response following both the onset and the offset of 

the image but no elevation of response in the middle of the trial (Fig. 2C, blue). In contrast to the 

lack of robust responses in experiment 1, MTG-bodies shows surprisingly large responses to 

briefly flashed stimuli in experiment 2 (Fig. 2C, red). Additionally, responses in MTG-bodies during 

experiment 2 (Fig. 2C, red) and experiment 3 (Fig. 2C, green), which have 30 of stimuli per trial 

but of different stimulus durations, are similar and both exceed responses in experiment 1 which 

has a single stimulus per trial. This suggests that, unlike ventral regions, stimulus duration has 

little impact on MTG-bodies responses, which resemble responses in neighboring motion-

sensitive hMT+ (Fig. S1). 

 These data demonstrate that (i) varying the temporal characteristics of visual 

presentations in the millisecond range has a profound effect on fMRI responses in high-level 
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visual cortex, (ii) the standard GLM is inadequate for predicting measured fMRI responses to 

these types of stimuli in high-level regions, in agreement with prior data in earlier visual areas (5, 

6, 8-13), and (iii) even though OTS-bodies and MTG-bodies prefer the same stimulus category, 

their temporal response characteristics vastly differ.  

 

An Encoding Model of Temporal Processing in High-Level Visual Cortex 

Motivated by the recent success of encoding models that predict fMRI responses in earlier 

visual areas by modeling neural temporal nonlinearities (5, 6, 18), we applied a similar approach 

to predict responses in high-level visual areas. Different than the GLM, the encoding approach 

first models the neural response in millisecond resolution and then convolves the estimated 

neural response with an HRF to predict fMRI responses (Fig. 3).  

Our encoding model consists of two temporal channels (5, 18) – a sustained channel and 

a transient channel – each of which can be modeled using a neural temporal impulse response 

function (IRF) (2, 3, 5, 18, 36) followed by a nonlinearity. The sustained channel is modeled with 

a monophasic IRF (Fig. 3B, blue channel IRF), which predicts a sustained neural response for the 

duration of the stimulus. To capture the gradual decay (adaptation, A) of response observed in 

ventral regions for sustained images (Fig. 2B, blue), we apply a nonlinearity to the sustained 

channel in form of an exponential decay function (Materials and Methods). The transient channel 

is characterized by a biphasic IRF (Fig. 3B, red channel IRF) that identifies changes to the visual 

input. That is, it acts like a derivative function, predicting no further increase in the neural 

response once a stimulus has been presented for longer than the duration of the IRF (5, 18). This 

channel too has a nonlinearity, as we hypothesize an increase in neural response at both the 

appearance (onset) and disappearance (offset) of a stimulus. To account for the pronounced 

transient responses in high-level visual regions (Fig. S1), we apply a flexible compressive 

nonlinearity on the transient channel using a pair of sigmoid (S) functions, one for the onset and 

another for the offset (Materials and Methods). Thus, we refer to this two channel temporal 

encoding model as the A+S model. The predicted fMRI response is generated by convolving the 

neural response predictors for each channel with the HRF and summing the responses of the two 

temporal channels (Fig. 3C). Since the HRF acts as a low-pass filter, predicted fMRI responses can 
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be downsampled with minimal distortion to match the slower sampling rate of fMRI 

measurements.  

 

 
 
Figure 3. Optimized two-temporal channel A+S model with adaptation and sigmoid nonlinearities. (A) Transitions between 
stimulus and baseline screens are coded as a step function representing when a stimulus was on vs. off with millisecond 
temporal resolution. (B) Separate neural responses for the sustained (blue) and transient (red) channels are modeled by 
convolving the stimulus vector with an IRF for each channel. An exponential decay function is applied to the sustained channel 
to model response decrements related to neural adaptation, and a compressive sigmoid nonlinearity is applied to the transient 
channel to vary the temporal characteristics of “on” and “off” responses (Materials and Methods). (C) Predictors of sustained 
and transient fMRI responses are generated by convolving each channel’s neural response predictors with the HRF and down-
sampling to match the sampling rate of measured fMRI data. The total fMRI response is the sum of the weighted sustained 
and transient fMRI predictors for each channel. To optimize model parameters and estimate the contributions (b weights) of 
the sustained (bS) and transient (bT) channels, we fit the model to different splits of the data including runs from all three 
experiments. 

 

We estimated optimized A+S model parameters separately for each participant and 

region using nonlinear programming and a cross-validation approach. In our procedure, we use 

half the data from all three experiments to estimate model parameters. Specifically, we estimate 

a time constant for the neural IRFs (τ), a time constant controlling adaptation of sustained 

responses (α), and three parameters controlling compression of transient responses (kon, koff, and 

λ). After optimizing these parameters, we use a GLM to estimate the magnitude of response (b 

weight) for each channel and stimulus category in our experiments, resulting in three b weights 

for the sustained channel (one bS for each category) and three b weights for the transient channel 
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(one bT for each category). These parameters and weights are then used to predict responses in 

left-out data and evaluate the model’s goodness-of-fit (cross-validated variance explained, x-R2).  

 

 

Figure 4. Two-temporal channel model with 

nonlinearities on both sustained and transient 

channels predicts responses in ventral temporal 

cortex. (A-C) Responses and model predictions for 
body images in OTS-bodies. White curve: mean 
response across 10 participants. Shaded gray: 
standard deviation across participants. Blue: 
predicted response from the sustained channel. 
Red: predicted response from the transient 
channel: Black: sum of responses from both 
channels. Inset: mean contribution (b weight) for 
each channel ±1 SEM across participants. (A) 
Experiment 1 data, 1 continuous image per trial. 
(B) Experiment 2 data, 30 flashed images per trial. 
(C) Experiment 3 data, 30 longer images per trial. 
(D-F) Model comparison. Bars show the 
performance of various models for each 
experiment presented in (A-C). Models are fit 
using runs from all three experiments, and cross-
validation performance (x-R2) is calculated in left-
out data from each experiment separately. (D) 
Experiment 1. (E) Experiment 2. (F) Experiment 3. 
Single-channel models: GLM, general linear model 
(8); CTS, a sustained channel with compressive 
temporal summation (6). Dual-channel models: 
L+Q, a linear sustained channel and a transient 
channel with quadratic nonlinearity (5); A+S: a 
sustained channel with adaptation and a transient 
channel with sigmoid nonlinearities. Asterisks 
denote models with significantly different 
performance compared to A+S (paired t-tests 
comparing x-R2 of each model vs. A+S in each 
experiment). 

 

Comparing the predictions of our optimized A+S model with measured fMRI responses in 

high-level visual cortex reveals two notable findings. First, our model generates signals that 

closely track the amplitude of fMRI responses in all three experiments in the left out data. 

Second, analysis of x-R2 shows that our optimized A+S model consistently outperforms other 

optimized temporal encoding models.  

We illustrate these results for one region, OTS-bodies (Figs. 4, S2); Results for other 

regions are in Figs. S3-S5. Notably, the A+S model closely tracks response amplitudes in all three 

experiments [Fig. 4 A-C, compare overall model prediction (black) with measured data from OTS-

bodies (gray)]. Consistent with our predictions, the sustained channel accounts for the bulk of 
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the response in experiment 1 (Fig. 4A, blue); The transient channel contributes most of the 

response in experiment 2 (Fig. 4B, red), and both channels contribute to responses in experiment 

3 (Fig. 4C).  

We compared the performance of our A+S model to other models of fMRI responses: the 

GLM (8), the balloon model (7), four single channel models (L, CTS (6), A, S; Fig. S3A), and three 

alternative two-channel models (L+Q (5, 18), C+Q, A+Q) across all three experiments (Materials 

and Methods; Figs. S3-S5). For simplicity, Fig. 4 D-F compares performance in OTS-bodies for our 

model vs. three others: the standard GLM (8), a single-channel model with compressive temporal 

summation (CTS) (6), and a two-channel model composed of a linear sustained channel and a 

transient channel with a quadratic nonlinearity (L+Q) (5, 18). The latter two models have been 

recently used to model temporal dynamics of early and intermediate visual areas. Notably, the 

A+S model predicts OTS-bodies responses in left out data significantly better than the GLM (8), 

which overestimates responses in experiment 1 and underestimates responses in experiment 2 

(GLM vs. A+S: all ts > 2.64, Ps < .05, paired t-tests on x-R2 separately for each experiments) (Fig. 

S2A). The A+S model also outperforms the recently proposed CTS model (6) that enhances early 

and late portions of the neural response to a stimulus (CTS vs. A+S: all ts > 2.60, Ps < .05). While 

the CTS model performs considerably better than the GLM in experiment 2, it overestimates 

responses in experiment 1 with a single continuous images and underestimates responses in 

experiment 3 with 30 longer images per trial (Fig. S2B). In experiments 2 and 3, we also observe 

a significant advantage of the A+S model compared to the two-temporal channel L+Q model (5, 

18), which underestimates the large responses to transient stimuli in experiment 2 (Fig. S2C) (L+Q 

vs. A+S: ts > 4.06, Ps < .05; the difference fell short of significance for experiment 1, t9 = 1.98, P = 

.08).  

Thus, an optimized two-temporal channel model with an adaptation nonlinearity in the 

sustained channel and compressive sigmoid nonlinearities in the transient channel predicts fMRI 

responses to visual stimuli ranging from milliseconds to seconds in high-level visual cortex with 

greater accuracy than alternative models.  
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How do Channel Contributions Differ Across Ventral and Lateral Category-Selective Regions? 

Examination of response time series (Fig. S1) and channel weights (Fig. 5) in body- and 

face-selective regions in VTC and LTC reveals prominent differences across ventral and lateral 

temporal regions.  

 

 
 
Figure 5. Differential contributions of transient and sustained temporal channels across ventral and lateral regions selective 

to face and body stimuli. Contributions (b weights) of transient (x axis) and sustained (y axis) channels for each stimulus 
category estimated by the two-temporal channel A+S model in (A) occipital body-selective region on the lateral occipital sulcus 
(LOS) and a face-selective region on the inferior occipital gyrus (IOGS), (B) ventral-temporal body-selective regions on the 
inferior temproal gyrus (ITG) and occipito-temporal sulcus (OTS)-bodies and face-selective regions on the posterior and mid 
fusiform gyrus, pFus- and mFus-faces, respectivevely, and (C) a lateral temporal body-selective region on the mid temporal 
gyrus (MTG) and a face-selective region on the posterior aspect of the superior temporal sulcus (pSTS-faces). Crosses span ±1 
SEM across participants in each axis, and b weights were solved by fitting the model using split halves of the data including 
runs from all three experiments. Data show average model weights across both splits of the data for each participant. Red: 
response to faces. Blue: response to bodies. Gray: response to words. Dashed line: identity line (bS = bT). Inset: bars indicate 
smean contrast effect size (CES) of b weights for the preferred vs. nonpreferred categories in each channel ±1 SEM across 
participants. 

 

First, comparing the response time courses of different category-selective regions shows 

that ventral temporal regions (e.g., OTS-bodies and mFus-faces) respond strongly to both the 

sustained stimuli in experiment 1 and the transient stimuli in experiment 2, whereas lateral 

temporal regions (MTG-bodies and pSTS-faces) respond strongly to the transient stimuli but 

minimally to the sustained stimuli (Fig. S1). The ratio of sustained and transient channel 

amplitudes, !"#"$!, also differs across regions in ventral and lateral aspects of temporal cortex 

[significant main effect of processing stream, F1, 107 = 14.27, P < .01, three-way ANOVA with 
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factors of processing stream (ventral/lateral), stimulus category (faces/bodies/words), and 

preferred category (bodies/faces)]. That is, while both sustained and transient channels 

contribute to responses in ventral temporal regions (Fig. 5B), the transient channel dominates 

responses in lateral temporal regions (Fig. 5C). In fact, zeroing the contribution of the sustained 

channel slightly improves model performance in lateral regions only (i.e. x-R2 of the S model is 

marginally better than the A+S model in MTG-bodies and pSTS-faces; Fig. S3B). Moreover, ventral 

temporal regions show a characteristic similar to both hV4 (Fig. S4A) and occipital category-

selective regions (Fig. 5A), whereas lateral temporal regions show a characteristic similar to 

motion-sensitive hMT+ (Fig. S4A).  

Second, in VTC (Fig. 5B), category selectivity – or higher responses to a preferred category 

vs. other categories – is evident in both sustained and transient channels [all ts > 2.26, Ps < .05, 

one-tailed t-tests comparing the contrast effect size (CES) of b weights for the preferred vs. 

nonpreferred categories separately for each channel; Fig. 5B, insets]. For example, responses to 

faces in mFus are significantly higher than the average responses to words and bodies in both 

channels (ts > 5.25, Ps < .001, paired t-test for each channel; Fig. 5A, right), and responses to 

bodies in OTS are higher than average responses to other categories in both channels (ts > 2.59, 

Ps < .05, paired t-test for each channel; Fig. 5A, left). In contrast, in LTC (MTG-bodies and pSTS-

faces; Fig. 5C), there is a significant difference in the CES across sustained and transient channels 

[significant main effect of channel, F1, 8 = 14.88, P < .01, two-way ANOVA with factors of channel 

(sustained/transient) and preferred category (bodies/faces)]. That is, higher responses to the 

preferred category are observed only in the transient channel (ts > 1.99, Ps < .05; the effect was 

not significant in the sustained channel, ts < 1.37, Ps > .10; Fig. 5B, insets). Thus, these results 

reveal differential contributions of transient and sustained channels across ventral and lateral 

category-selective regions. Finally, in the sustained channel, category-selectivity was higher in 

face-selective regions as compared to the body-selective regions. 

 

How do Timing Parameters Vary Across Ventral and Lateral Face and Body Regions? 

We next examined the optimized timing and compression parameters for each channel 

across regions to test if there are functional differences across regions. The parameters in our 
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A+S model were optimized separately for each region within each participant. Thus, for a given 

ROI, we optimized one time constant for the channel IRFs, one time constant for the adaptation 

decay function, as well as three sigmoid parameters (Materials and Methods).   

 

 
 
Figure 6. Optimized two-temporal channel model parameters differ across visual cortex. (A) Optimized sustained channel 
parameters. Time to peak of sustained IRFS (x axis) and exponential time constant of the adaptation function (y axis) for each 
set of regions estimated by the two-temporal channel A+S model. Crosses span ±1 SEM across participants in each axis, and 
parameters were optimized using split halves of the data containing runs from all experiments. Data show model parameters 
averaged across both splits of the data for each participant. (B) Optimized transient channel parameters. Time to peak of 
transient IRFT (x axis) and onset/offset balance (y axis) for each set of regions estimated by the two-temporal channel A+S 
model (with a zeroed sustained channel in lateral regions). The onset/offset balance metric captures differences in the shapes 
of the sigmoid nonlienarities used to compress transient “on” and “off” responses, where values larger than 0.5 refect 
elongation of offset responses compared to onset responses. Crosses span ±1 SEM across participants in each axis, and 
parameters were optimized using split halves of the data from all experiments. Plots show average model parameters across 
all splits of the data for each participant. Sample IRFs and nonlinearities shown to the right of (A-B) are generated by averaging 
optimized model parameters across participants. 

 

For the sustained channel, we assessed how the time to peak of the neural IRF (IRFS) and 

the adaptation decay constant (a) vary across occipital and ventral temporal regions, omitting 

lateral temporal regions that did not have significant sustained responses. We discovered a 

hierarchical progression of longer time to peak and stronger adaptation in the sustained channel 

ascending from early to later stages of the ventral hierarchy (Fig. 6A). That is, the time to peak of 

the sustained IRF tended to be shorter in V1 than hV4 and shorter in hV4 than in ventral regions 

OTS-bodies and mFus-faces (Fig. 6A, x axis). A similar progression was observed from occipital to 
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ventral temporal face- and body-selective regions, whereby the  time to peak of IRFS for IOG-

faces was shorter than mFus-faces and the time to peak of IRFS for LOS-bodies was shorter than 

OTS-bodies. At the same time, the adaptation decay constant decreased from V1 to ventral 

temporal regions, indicating more adaptation in mFus-faces and OTS-bodies than in V1 (Fig. 6A, 

y axis). Across face-selective regions we also observed a decreasing adaptation constant from 

IOG-faces/pFus-faces to mFus-faces, but our estimate of the adaptation constant was similar 

across occipital and ventral temporal body-selective regions. Thus, analyzing timing parameters 

in the sustained channel revealed hierarchical processing across the ventral stream, which was 

more salient in the estimate of the peak timing of the sustained IRFS across regions. 

In the transient channel, we examined how the time to peak of the IRFT varies across 

regions and if there are asymmetries in the compression of “on” compared to “off” neural 

responses controlled by the sigmoid shape parameters kon and koff, respectively. Since lower k 

values generally elongate transient responses, the relative contribution of the offset component 

can be indexed by a balance metric, %&'
%&'(%&))

, where a ratio of 0.5 indicates equal contributions 

from the onset and the offest of a stimulus to BOLD signals (kon=koff). A ratio < 0.5 indicates a 

larger contribution of onset than offset responses, and a ratio > 0.5 indicates a larger contribution 

of offset than onset responses.  

First, like the sustained channel, the transient channel also shows an increase in the time 

to peak of IRFT going from V1 to face- and body-selective regions in VTC and LTC (Fig. 6B, x axis). 

Second, VTC face-and body-selective regions tended to show longer time to peak of thier 

transient IRFT as compared to LTC face-and body-selective regions. Third, interestingly, transients 

in lateral regions, pSTS-faces and MTG-bodies, show balanced contributions of onset and offset 

responses (balance metric = 0.50±0.09; Fig. 6B, y axis and insets). In contrast, transients in ventral 

regions, pFus/mFus-faces and ITG/OTS-bodies, and occipital face-selective IOG and body-

selective LOS) are dominated by offset responses (balance metric = 0.77±0.09; Fig. 6B and insets). 

The surprisingly large offset contribution in VTC indicates that the bulk of the response for the 

brief stimuli in experiment 2 can be attributed to neural responses that occur after the stimuli 

are no longer visible, rather than during the initial response to these stimuli.  
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 Thus, comparison of optimized A+S model parameters reveals functional differences 

between early and later stages of the visual hierarchy, as well as distinct nonlinearities across 

ventral and lateral regions with the same category preference. 

 

DISCUSSION  

 Using a temporal encoding approach to explain responses in high-level visual regions, we 

discovered that an optimized two-temporal channel model consisting of a sustained channel with 

an adaptation nonlinearity and a transient channel with compressive sigmoid nonlinearities 

successfully predicts fMRI responses in human high-level visual cortex for stimuli presented for 

durations ranging from tens of milliseconds to tens of seconds. Critically, the innovative temporal 

encoding framework we introduce combines in a single computational model several 

components of temporal processing including time windows of temporal integration (12, 16, 19-

21), channel contributions (5, 18, 22-25), and nonlinearities in temporal summation (5, 6, 9-12, 

18). Using this approach, we (i) uncover the temporal sensitivity of neural responses in human 

high-level visual cortex, (ii) find differential temporal characteristics across lateral and ventral 

category-selective regions, and (iii) propose a new mechanism – temporal processing – that 

functionally distinguishes visual processing streams in the human brain.  

 

Differences in Temporal Processing Across Visual Streams 

 Our results suggest two key differences between temporal processing in the ventral and 

lateral visual processing streams which project to ventral and lateral temporal cortex,  

respectively (37). First, there are differences in channel contributions. Lateral temporal cortex is 

dominated by responses to visual transients, while ventral temporal cortex responds to both 

sustained and transient visual information. Transient processing in LTC is consistent with the view 

that face and body-selective regions in the STS and MTG, respectively, are involved in processing 

dynamic visual information (26-33). However, different than prior theories that have implicated 

these regions in processing biological motion (27-29, 38), our data suggest that there is a more 

fundamental difference between high-level regions in lateral and ventral temporal cortex that is 

driven by differential channel contributions. Second, there are also differences in the dynamics 
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of transient processing across visual streams. LTC regions show equal increases in neural 

responses due to the onset and offset of a visual stimulus, suggesting they carry information 

about moment-to-moment changes in the visual input. However, VTC regions exhibit surprisingly 

asymmetric contributions from the onset and offset of the stimulus. That is, the accumulation of 

fMRI responses due to the termination of a stimulus is more pronounced than responses 

associated with its onset. This difference suggests the intriguing possibility that transient 

responses in LTC code progressive changes to the visual input, while transient offset responses 

in VTC may reflect memory traces that are maintained in high-level regions after a stimulus is no 

longer visible. This prediction is consistent with results from ECoG studies showing that high 

frequency broadband responses (>60 Hz) in VTC continue for 100-200 ms after the stimulus is off 

(39-42) and carry stimulus-specific information that may be modulated by attention (41, 42).  

 Observing a strong transient response in lateral regions, MTG-bodies and pSTS-faces, is 

interesting in the context of classic theories that propose differential contributions of 

magnocellular (M) and parvocellular (P) inputs to parallel visual streams in the primate visual 

system (22-24). In macaques, the M pathway is thought to code transient visual information and 

projects from V1 to MT, while the P pathway is thought to code sustained information and 

projects from V1 to V4 and IT. While it is unknown how M and P pathways project to higher-level 

visual regions in the human brain, our results reveal that the transient channel dominates 

responses not just in hMT+ (5). This suggest that intriguing possibility that M projections not only 

dominate hMT+ as predicted by classic theories (22-24), but also in surrounding face- and body-

selective regions in LTC. 

Different from the predictions of classic theories of a predominant P input to the primate 

ventral stream (22-24), we find significant contributions from both transient and sustained 

channels in VTC as well as evidence for category selectivity in VTC in both channels. This finding  

is consistent with later studies in macaques that reported that both M and P inputs propagate to 

ventral regions like V4 (5, 25). Surprisingly, our data in Fig. 5 suggests that transient responses in 

VTC appear to be larger than sustained responses. We note that while interpreting the relative 

amplitude of responses within a channel is straightforward (e.g. comparing b weights for the 

different categories within the transient channel), interpreting the relative weight of sustained 
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vs. temporal channels is complex, as it depends on the specific implementation of the model and 

the experimental design. Nonetheless, we are confident that there are both sustained and 

transient responses in VTC for two reasons. First, examination of raw responses during our 

experiments (Fig. S1), which are model free, shows that VTC regions respond strongly both to 

sustained single images (experiment 1) and trains of briefly flashed images (experiment 2). 

Second, responses in experiment 3, which had combinations of sustained and transient 

stimulation, exceed those of either experiment 1 or 2, suggesting additive contributions of the 

two channels.  

Critically, finding substantial transient responses in VTC suggests a rethinking of the role 

of transient processing in the ventral stream. Specifically, it argues against the prevailing 

theoretical view that the ventral stream just processes static visual information. We hypothesize 

that transient responses in the ventral steam may serve two purposes. First, responses during 

onset transients may reflect rapid extraction of the gist of the visual input and may indicate the 

detection of a novel stimulus. Second, responses associated with offset transient, which were 

substantial in VTC may ignite a memory trace of the stimulus after it is no longer visible.  

 

What Are the Implications for Modeling fMRI Responses Beyond Visual Cortex? 

Our data has critical implications for computational models of the brain. We developed a 

parsimonious yet powerful encoding model that can be applied to estimate nonlinear neural 

responses and temporal integration windows across cortex with millisecond resolution. While 

our two-temporal channel model provides a significant improvement in predicting fMRI signals 

compared to other models, we acknowledge that it does not explain the entire variance of the 

data. Future research may build upon the present results and improve model predictions by 

adding channels and nonlinearities. For example, examining adaptation effects on the transient 

channel as well as combining the temporal encoding approach with a spatial encoding approach 

(43-45) may enable accurate prediction of brain responses to dynamic real-world scenes.  

Given the pervasive use of the standard general linear model in fMRI research, our results 

have broad implications for fMRI studies of any part of the brain. We find that varying the timing 

of stimuli in the millisecond range has a substantial impact on the magnitude of fMRI responses. 
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However, by estimating neural responses in millisecond resolution, we can accurately predict 

fMRI responses in second resolution for both brief and long visual stimuli. Thus, the temporal 

encoding approach we pioneered marks a transformative advancement in using fMRI to elucidate 

temporal processing in the brain because it links fMRI responses to the timescale of neural 

computations. As parallel streams occur not just in the visual system but throughout the brain, 

our data raise the intriguing hypothesis that temporal processing may also segregate other brain 

systems such as auditory or somatosensory cortex. Thus, our innovative approach offers a 

quantitative framework to identify functional and computational differences across cortex (46, 

47) in many domains such as audition (48) and working memory (49). Importantly, the encoding 

approach can also be applied to study impairments in high-level abilities like reading (50) and 

mathematical processing (51) that require integrating visual information over space and time.  

In sum, our results provide the first comprehensive computational model of temporal 

processing in high-level visual cortex. Our findings propose a fundamental new mechanism – 

temporal processing – that distinguishes visual processing streams whereby lateral category-

selective process moment-to-moment visual transitions but ventral category-selective regions 

respond to both sustained and transient components. Visual transients in ventral category-

selective regions may reflect rapid detection of changes to the visual content at stimulus onset 

and a memory trace of a recent stimulus at stimulus offset, which together suggest a new role of 

transient processing in the visual system beyond processing of dynamic stimuli. Finally, the 

encoding approach we introduce underscores the importance of modeling brain responses with 

millisecond precision to better understand the underlying neural computations.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2018. ; https://doi.org/10.1101/358473doi: bioRxiv preprint 

https://doi.org/10.1101/358473


 21 

MATERIALS AND METHODS  

Participants 

Twelve participants (6 males, 6 females) with normal or corrected-to-normal vision 

participated in the main experiments (experiments 1‒3). Each individual provided written 

informed consent and participated in two fMRI sessions: one session for experiments 1 and 2 and 

another session for experiment 3 and a functional localizer experiment (15). Seven participants 

from the main experiments (3 males, 4 females) also underwent population receptive field (pRF) 

mapping (43) to define retinotopic cortical regions and another experiment to define human 

motion-sensitive area (hMT+) (52). The Stanford Internal Review Board on Human Subjects 

Research approved all protocols.  

 

Temporal Channels Experiments 

Visual stimuli 

Stimuli consisted of well-controlled grayscale images of faces, bodies, and pseudowords 

(Fig. 1A, right) used in our previous publications (15). Stimuli were presented using an Eiki LC-

WUL100L projector (resolution: 1920 x 1200; refresh rate: 60 Hz) that was controlled by an Apple 

MacBook Pro using MATLAB (http://www.mathworks.com/) and functions from Psychophysics 

Toolbox (53) (http://psychtoolbox.org). Participants viewed images through an auxiliary mirror 

mounted on the RF coil with stimuli spanning ~20° of visual angle in each dimension.  

Experimental design 

To develop a temporal encoding model for high-level visual cortex, we adapted a fMRI 

paradigm previously used to model contributions of sustained and transient temporal channels 

in early visual cortex (5). The three main experiments in this study all used the same stimuli, trial 

durations, and task but varied the temporal presentation of the images. Critically, a 12-s baseline 

period (blank gray screen) always came before and after each trial. In all three experiments, 

participants were instructed to fixate on a small, central dot and respond by button press when 

it changed color (occurring randomly once every 2–14 s, 8 s on average).  

Experiment 1 ‒ one continuous image per trial: Stimuli were shown in trials of varying 

durations (3, 5, 10, or 20 s per trial) in which a single image was shown for the entire trial. Across 
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trial durations the number of stimuli and transients (at the onset and offset of each stimulus) are 

matched but the duration of stimulation varies (Fig. 1 A-B, blue). This experiment was designed 

enable measurement of fMRI-adaptation for prolonged images (14).  

Experiment 2 ‒ 30 flashed images per trial: used the same trial durations as experiment 

1, but in each trial we presented 30 different images from the same category. Each image was 

shown for 33 ms and followed by a blank interstimulus interval (ISI). Across trial durations the 

number of stimuli, number of transients, and total duration of visual stimulation are matched, 

but the ISI between consecutive images varied. Each ISI was 67 ms in the 3-s trials, 133 ms in the 

5-s trials, 300 ms in the 10-s trials, and 633 ms in the 20-s trials (Fig. 1 A-B, red).  

Experiment 3 ‒ 30 longer images per trial: used the same design as experiment 2, except 

that in each trial we presented 30 images from the same category for longer durations with a 

constant ISI of 33 ms between images. Image durations varied across trials and were each shown 

for 67 ms in the 3-s trials, 133 ms in the 5-s trials, 300 ms in the 10-s trials, and 633 ms in the 20-

s trials (Fig. 1 A-B, green).  

Data acquisition 

Functional data were acquired using a simultaneous multi-slice EPI sequence with a 

multiplexing factor of 3 to obtain near whole-brain coverage with a TR of 1 s. Participants viewed 

four 270-s runs of each experiment. Each run of each experiment contained one instance of every 

permutation of stimulus category (face/body/word) and trial duration (3, 5, 10, or 20 s) 

presented in random order.  

Category localizer experiment 

To functionally define cortical regions that respond preferentially to specific stimulus 

categories, we collected three 300-s runs of a standard fMRI category localizer experiment used 

in our previous publications (15). Participants were instructed to fixate on a central dot and 

respond by button press when an image repeated randomly within a block. Code for the 

experiment is available at https://github.com/VPNL/fLoc.  

pRF mapping and hMT+ localizer 

To delineate retinotopic boundaries, we acquired four 200-s runs of pRF mapping (43) in 

a subset of participants from the main experiments. In this experiment, a bar swept across a 
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circular aperture (40° × 40° of visual angle) in eight directions as participants performed a fixation 

task. To functionally define hMT+ in the same subset of participants, we collected one 300-s run 

of a fMRI motion localizer experiment as detailed in our prior publications (5, 52).  

Magnetic resonance imaging (MRI) 

MRI data were collected using a 3T GE Signa MR750 scanner at the Center for Cognitive 

and Neurobiological Imaging (CNI) at Stanford University.  

fMRI: We used a Nova phase-array 32-channel head coil for the main experiments and 

functional localizer to obtain near whole-brain coverage (48 slices; resolution: 2.4 × 2.4 × 2.4 mm; 

one-shot T2*-sensitive gradient echo acquisition sequence: FOV = 192 mm, TE = 30 ms, TR = 

1000 ms, and flip angle = 76°). We also collected T1-weighted inplane images to align each 

participant's functional data to their high-resolution whole brain anatomy. 

For pRF mapping and the hMT+ localizer, we used a 16-channel visual array coil (28 slices; 

resolution: 2.4 × 2.4 × 2.4 mm; one-shot T2*-sensitive gradient echo acquisition sequence: FOV 

= 192 mm, TE = 30 ms, TR = 2000 ms, and flip angle = 77°) and collected T1-weighted inplane 

images in the same prescription. 

Anatomical MRI: We acquired a whole-brain, anatomical volume in each participant using 

a Nova 32-channel head coil (resolution: 1 × 1 × 1 mm; T1-weighted BRAVO pulse sequence: FOV 

= 240 mm, TI = 450 ms, and flip angle = 12°).  

 

Data Analysis  

Data were analyzed with MATLAB using code from vistasoft (http://github.com/vistalab) 

and FreeSurfer (http://freesurfer.net). Code used for predicting fMRI responses using a temporal 

channels approach is available at https://github.com/VPNL/TemporalChannels.  

Region of interest (ROI) definition  

Category-selective regions were defined in each participant’s native anatomical space at 

a common threshold (t > 3, voxel level, uncorrected) using functional and anatomical criteria 

detailed in prior publications (15) (Fig. 1C). Face-selective ROIs (faces > others) were defined 

bilaterally in the inferior occipital gyrus (IOG-faces, N = 10), posterior STS (pSTS-faces, N = 9), 

posterior fusiform gyrus (pFus-faces, N = 11), and mid fusiform gyrus (mFus-faces; N = 11). Body-
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selective ROIs (bodies > others) were found bilaterally in the lateral occipital sulcus (LOS-bodies, 

N = 10), inferior temporal gyrus (ITG-bodies, N = 10), middle temporal gyrus (MTG-bodies, N = 

11), and occipitotemporal sulcus (OTS, N = 10).  

Visual areas V1 and hV4 were defined in each hemisphere in a subset of participant (N = 

7) using data from the pRF mapping experiment. To match the visual field coverage of the stimuli 

in the main experiments, we restricted ROIs to only included voxels with pRF centers within the 

central 10°. We also defined bilateral hMT+ in the same subset of participants using data from 

the motion localizer experiment as in previous publications (5, 52).  

Optimized two-temporal channel A+S model 

To predict responses across all three experiments with a single model, we adapted an 

encoding approach introduced by prior studies (5, 18) that models fMRI responses as the 

weighted sum of activity across separate sustained and transient temporal channels.  

In the procedure illustrated in Fig. 3, we first predict neural activity in each channel by 

convolving the stimulus time course in millisecond resolution (Fig. 3A) separately with the neural 

IRF for the sustained channel (Fig. 3B, blue channel IRF) and the transient channel (Fig. 3B, red 

channel IRF). The sustained channel is characterized by a monophasic IRFS that generates a 

response for the entire duration of a stimulus followed by an adaptation nonlinearity — 

convolved neural responses are multiplied by an exponential decay function beginning at the 

onset of each stimulus and extending until the onset of the following stimulus. In contrast, the 

transient channel is characterized by a biphasic IRFT that generates a brief response at the onset 

and offset of an image (2, 3, 36). Here, convolved responses are passed through sigmoid 

nonlinearities that allow different levels of compression to be applied to the “on” and “off” 

responses. Then, the estimated neural responses for each channel are convolved with a 

hemodynamic response function (HRF) to generate a prediction of the fMRI response (Fig. 3C). 

As such, there are neural nonlinearities in each channel of this model, but a linear relationship is 

assumed between the neural activity and BOLD responses. Finally, we use a GLM to solve for the 

contributions (b weights) of the sustained and transient channels, which reflect how much the 

predicted response from each channel is scaled before the responses of both channels are 

summed. Thus, the BOLD response to a stimulus can be expressed as  
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bS [(stimulus � IRFS) · e−t/α � HRF] + bT [(stimulus � IRFT)σ � HRF], 

where bS and bT are the fitted response amplitudes for the sustained and transient channels, 

respectively; IRFS and IRFT are the impulse response functions for the sustained and transient 

channels, respectively; α determines the exponential decay at time t after stimulus onset; σ is a 

pointwise sigmoid nonlinearity, and HRF is the canonical hemodynamic response function.  

Modeling nonlinearities in the neural response 

We model the IRFs for each channel (Fig. 3B) using formulas detailed in our prior 

publications (5). Here, we optimize the IRF time constant τ for each region, and the other 

parameters [taken from Watson (36)] are held constant: k=1.33, n1=9, and n2=10.  

Adaptation: To capture fMRI-adaptation (14) effects in the sustained channel, we use an 

exponential decay function, e−t/α, where t represents time after stimulus onset, and α indicates 

when the function declines to a proportion of 1/e (~37%) of the initial response.  

Sigmoid nonlinearities: To allow different levels of compression to be applied to “on” and 

“off” responses in the transient channel, we optimize separate sigmoid nonlinearities for the 

onset and offset responses using cumulative Weibull distribution functions,  

*+,(.) = 1 − 34(5 67 )89:  

*+;;(−.) = 1 − 34(5 67 )89<<, 

where λ is a sigmoid scale parameter used in both onset and offset nonlinearities; kon is a sigmoid 

shape parameter that controls the curvature of the onset compression function, and koff is a 

shape parameter controlling curvature of the offset compression function. Smaller k values 

produce more compressive nonlinearities that elongate transient “on” and “off” responses 

compared to larger k values.  

Fitting and optimizing the two-temporal channel model 

Since the HRF acts like a temporal low-pass filter, this allows resampling fMRI response 

predictors to the lower temporal resolution of the measured fMRI data (TR = 1 s) with minimal 

distortion. These resampled predictors are then compared with measured fMRI responses to 

estimate the contributions (b weights) of each channel for each category. To normalize the 

amplitude of predicted fMRI responses for the sustained and transient channels, we match the 

maximal height of predictors in the design matrix across the two channels. Finally, we used a 
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GLM to estimate b weights of the sustained and transient channels for each stimulus category by 

comparing the predicted responses with the mean response time series of each ROI in each 

participant. To optimize the A+S model time constants (τ and α) and sigmoid parameters (λ, kon, 

koff) for each region, we used the constrained nonlinear optimization algorithm fmincon in 

MATLAB (Optimization procedures).  

Validating the optimized two-temporal channel model 

We assessed the predictive power of the optimized two-temporal A+S channel model by 

testing how well it predicts responses from separate runs of data from all three experiments. We 

first generated predicted neural response time courses by coding the visual stimulation in the 

left-out runs and convolving it separately with the IRFs of the sustained and transient channels 

(optimized using a separate split of the data). We then applied the adaptation and sigmoid 

nonlinearities, which were also optimized with independent data (Fig. 6). These transformed 

neural predictors were next convolved with the HRF and down-sampled to 1 s temporal 

resolution to match our fMRI acquisition. Finally, we multiplied each channel’s fMRI predictors 

with their respective b weights (estimated for each category in an independent split of the data) 

before summing the channel responses to predict fMRI responses. We then quantified how well 

the predicted responses matched the measured response across all data in the validation split.  

Model performance was operationalized as cross-validated R2 (x-R2), which indexes the 

proportion of variance explained by b weights and model parameters that were estimated from 

independent data. While similar to a typical R2 statistic, x-R2 can be negative when the residual 

variance of a poor model prediction exceeds the measured variance in the response. 

Quantification of x-R2 within each experiment is presented in Fig. 4 D-F for OTS-bodies. 

Performance averaged across all three experiments is shown in Figs. S3-S5 for all regions.  

Testing alternative model architectures 

To compare with the performance of our optimized two-temporal channel A+S model 

with alternatives, we tested five single-channel and three dual-channel models (Figs. 2, 4, S3-S5). 

General linear model (GLM): To first benchmark our model against a common GLM 

approach (8), we tested a linear model that predicts fMRI responses with a single convolution of 

the stimulus with the canonical HRF. 
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 Balloon model (B model): To examine if responses in high-level visual cortex can be 

explained by a nonlinear hemodynamic model, we implemented the balloon model proposed by 

Buxton an colleagues (7) using standard parameters detailed in prior publications (5).  

Linear sustained channel (L model): Similar to the GLM approach (8) but with two stages 

of convolution, we tested a single-channel model with a linear sustained channel,  

b [(stimulus � IRFS) � HRF],  

where b is a fitted response amplitude; IRFS is the impulse response function for the sustained 

channel, and HRF is the canonical HRF.  

Sustained channel with compressive temporal summation (CTS, Figs. 4, S2-S5): We also 

implemented a model proposed by Zhou et al. (6) composed of sustained channel with a 

compressive static power law,  

b [(stimulus � IRFS)ε � HRF],  

where ε is an optimized compression parameter ranging from 0–1.  

Sustained channel with adaptation (A model): Identical to the sustained channel shown 

in Fig. 3 (blue), we tested a model composed of a single sustained channel with adaptation,  

b [(stimulus � IRFS) · e−t/α � HRF],  

where α determines the exponential decay at t seconds after the onset of a stimulus.  

Transient channel with sigmoid nonlinearity (S model): Identical to the transient channel 

shown in Fig. 3 (red), we also tested a single-channel model composed of a transient channel 

with the same sigmoid nonlinearities described above,  

b [(stimulus � IRFT)σ � HRF], 

where IRFT is the impulse response function for the transient channel and σ is a pointwise 

nonlinearity composed of separate sigmoid functions for onset and offset responses.  

Alternative dual-channel models (L+Q, C+Q, and A+Q models): To compare the optimized 

two-temporal channel model shown in Fig. 3 (A+S model) to alternative dual-channel models, we 

tested three variants of our model that all use a transient channel with a quadratic (Q) 

nonlinearity (squaring) but apply different nonlinearities in the sustained channel (Fig. S3A). 

Combining different combinations of the sustained and transient channels described above, we 

compared two-channel models composed of a transient channel and either a linear sustained 
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channel (L+Q model), a sustained channel with CTS (C+Q model), or a sustained channel with 

adaptation (A+Q model).  

Optimization procedures 

For all models with a neural IRF, we optimized a single time constant, τ, using formulas 

described in our prior publications (5). For models with adaption in the sustained channel (A and 

A+S), we also optimized an exponential time constant (α). For models with compressive temporal 

summation (CTS and C+Q models), we instead optimized an exponential compression parameter 

(ε). For models with a sigmoid nonlinearity in the transient channel (S and A+S models), we 

optimized three sigmoid parameters (λ, kon, koff). To optimize model parameters, we used the 

nonlinear optimization algorithm fmincon in MATLAB with the following constraints: τ = 4‒20 ms, 

α = 10‒40 s, ε = 0.01‒1, λ = 0.01‒0.5, kon = 0.1‒6, and koff = 0.1‒6 . The initial values passed to the 

optimizer for each parameter were τ = 4.93 ms, α = 20 s, ε = 0.1, λ = 0.1,  kon = 3, and koff = 3. The 

cross-validation performance of each model averaged across all three experiments is shown in 

Fig. S3B for category-selective regions in VTC and LTC and in Figs. S4-S5 for other regions.  

Statistical analyses 

 To test for differences in model performance across regions in VTC and LTC, we used a 

two-way repeated measures analysis of variance (ANOVA) with factors of model and region 

(comparing models and regions shown in Fig. S3B). We then used paired two-tailed t-tests to 

compare the x-R2 of our model with others. Fig. 4 D-F contrasts the performance of our model 

(A+S) in OTS-bodies against three other models (GLM, CTS, L+Q) for each experiment individually. 

Figs. S3-S5 contrast the performance of our model averaged across all three experiments vs. 

every other model for each region. To assess the level of noise in measurements from different 

brain regions, we also calculated a noise ceiling for each ROI using the inter-trial variability of 

responses for each condition as described in our prior publications (5). The noise ceiling estimate 

for OTS-bodies in each experiment is plotted in Fig. 4 D-F, and the average noise ceiling across all 

three experiments is plotted in Figs. S3-S5 for each region.  

After establishing the validity of our model, we used paired two-tailed t-tests to compare 

b weights estimated by the A+S model for each region’s preferred category vs. average 

contributions for nonpreferred categories, separately for the sustained and transient channels. 
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To test whether selectivity in the two channels differs across regions preferring bodies and faces 

in either VTC or LTC, we also used two-way ANOVAs with factors of channel (sustained/transient) 

and preferred category (bodies/faces) on the difference in channel weights for preferred vs. 

nonpreferred categories (contrast effect size, CES; Fig. 5). To examine whether the proportion of 

response attributed to sustained vs. transient channels differs across processing streams, 

stimulus categories, or regions preferring different categories, we then used a three-way ANOVA 

on channel contribution ratios, !"#"$!, for each category with factors of stream (ventral/lateral), 

stimulus (faces/bodies/words), and preferred category (bodies/faces).  
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SUPPORTING INFORMATION 

 

 
 
Figure S1. Responses to time-varying stimuli in occipital, ventral, and lateral regions of interest. Measured responses in 
occipital (V1, LOS-bodies, IOG-faces), ventral (hV4, OTS-bodies, mFus-faces), and lateral (hMT+, MTG-bodies, pSTS-faces) 
regions of interest in experiment 1 (blue), experiment 2 (red), and experiment 3 (green) averaged across all three stimulus 
categories. Lines: mean response time series across participants; shaded areas: standard error of the mean (SEM) across 
participants; Horizontal black bars: trial duration. 
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Figure S2. Comparison of temporal encoding models in OTS-bodies. (A-C) Responses and model predictions for body images 
in OTS-bodies for each experiment (left) with estimated b weights for each model (right). White curve: mean response across 
10 participants. Shaded gray: standard deviation across participants. Black curve: overall model prediction. Horizontal black 
bar: trial duration. (A) Predictions of a general linear model (GLM) (8). (B) Predictions of a model with compressive temporal 
summation (CTS) (6). (C) Predictions of the two-temporal channel L+Q model with linear sustained channel and quadratic 
transient channel. Blue curve: predicted response from the sustained channel. Red curve: predicted response from the 
transient channel: Black curve: sum of responses from both channels.  
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Figure S3. Comparison of temporal encoding models across visual cortex. (A) Alternative models of sustained (blue) and 
transient (red) channels. Schematic depicts neural response predictions generated by different implementations of each 
channel for both a brief (67 ms) and long (3 s) stimulus. Sustained channel models: L, a linear sustained channel; CTS, a 
sustained channel with compressive temporal summation (6); A, a sustained channel with adaptation (8). Transient channel 
models: Q, a transient channel with a quadratic (squaring) nonlinearity; S, a transient channel with a sigmoid nonlinearity. (B) 
Comparison of model performance (cross-validated R2) in each region averaged across all three experiments. Hemodynamic 
models: L, same as in (a); B, balloon model (7). Single-channel neural models: CTS, A, and S, same as in (a). Two-channel neural 
models: L+Q, a linear sustained channel and a transient channel with a quadratic nonlinearity (5); C+Q, a sustained channel 
with compressive temporal summation and a transient channel with a quadratic nonlinearity; A+Q, a sustained channel with 
adaptation and a transient channel with a quadratic nonlinearity; A+S, a sustained channel with adaptation and a transient 
channel with a sigmoid nonlinearity. Asterisks denote models with significantly different performance vs. the A+S model.  
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Figure S4. Contributions of transient and sustained temporal channels across early visual areas. (A) Contributions (b weights) 
of transient (x axis) and sustained (y axis) channels for each stimulus category estimated by the two-temporal channel A+S 
model in V1, hV4, and hMT+. Crosses span ±1 SEM across participants in each axis, and b were solved by fitting the model 
using data concatenated across all experiments. Data show average model weights across all splits of the data for each 
participant. Red: response to faces. Blue: response to bodies. Gray: response to words. Dashed gray: identity line (bS = bT). (B) 
Comparison of model performance (cross-validated R2) in each region averaged across all three experiments. Hemodynamic 
models: L and B. Single-channel neural models: CTS, A, and S. Two-channel neural models: L+Q (5), C+Q, A+Q, and A+S. 
Asterisks denote models with significantly different performance vs. the A+S model.  
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Figure S5. Comparison of temporal encoding models across occipital and posterior ventral temporal visual cortex. 
Comparison of model performance (cross-validated R2) in each region averaged across all three experiments. Hemodynamic 
models: L and B. Single-channel neural models: CTS, A, and S. Two-channel neural models: L+Q (5), C+Q, A+Q, and A+S. 
Asterisks denote models with significantly different performance vs. the A+S model.  
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