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Metabolism and evolution are closely connected: if a mutation incurs extra energetic costs

for an organism, there is a baseline selective disadvantage that may or may not be compen-

sated for by other adaptive effects. A long-standing, but to date unproven, hypothesis is

that this disadvantage is equal to the fractional cost relative to the total resting metabolic

expenditure. This hypothesis has found a recent resurgence as a powerful tool for quantita-

tively understanding the strength of selection among different classes of organisms. Our work

explores the validity of the hypothesis from first principles through a generalized metabolic

growth model, versions of which have been successful in describing organismal growth from

single cells to higher animals. We build a mathematical framework to calculate how per-

turbations in maintenance and synthesis costs translate into contributions to the selection

coefficient, a measure of relative fitness. This allows us to show that the hypothesis is an

approximation to the actual baseline selection coefficient. Moreover we can directly derive

the correct prefactor in its functional form, as well as analytical bounds on the accuracy of

the hypothesis for any given realization of the model. We illustrate our general framework

using a special case of the growth model, which we show provides a quantitative descrip-

tion of overall metabolic synthesis and maintenance expenditures in data collected from a

wide array of unicellular organisms (both prokaryotes and eukaryotes). In all these cases we

demonstrate that the hypothesis is an excellent approximation, allowing estimates of base-

line selection coefficients to within 15% of their actual values. Even in a broader biological

parameter range, covering growth data from multicellular organisms, the hypothesis contin-

ues to work well, always within an order of magnitude of the correct result. Our work thus

justifies its use as a versatile tool, setting the stage for its wider deployment.

Discovering optimality principles in biological function has been a major goal of biophysics [1–6],

but the competition between genetic drift and natural selection means that evolution is not purely

an optimization process [7–9]. A necessary complement to elucidating optimality is clarifying under

what circumstances selection is actually strong enough relative to drift in order to drive systems

toward local optima in the fitness landscape. In this work we focus on one key component of this
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problem: quantifying the selective pressure on the extra metabolic costs associated with a genetic

variant. We validate a long hypothesized relation [10–12] between this pressure and the fractional

change in the total resting metabolic expenditure of the organism.

The effectiveness of selection versus drift hinges on two non-dimensional parameters [13]: i)

the selection coefficient s, a measure of the fitness of the mutant versus the wild-type. Mutants

will have on average 1 + s offspring relative to the wild-type per wild-type generation time; ii) the

effective population Ne of the organism, the size of an idealized, randomly mating population that

exhibits the same decrease in genetic diversity per generation due to drift as the actual population

(with size N). For a deleterious mutant (s < 0) where |s| � N−1e , natural selection is dominant,

with the probability of the mutant fixing in the population exponentially suppressed. In contrast

if |s| � N−1e , drift is dominant, with the fixation probability being approximately the same as for

a neutral mutation [7]. Thus the magnitude of N−1e determines the “drift barrier” [14], the critical

minimum scale of the selection coefficient for natural selection to play a non-negligible role.

The long-term effective population size Ne of an organism is typically smaller than the instan-

taneous actual N , and can be estimated empirically across a broad spectrum of life: it varies from

as high as 109 − 1010 in many bacteria, to 106 − 108 in unicellular eukaryotes, down to ∼ 106

in invertebrates and ∼ 104 in vertebrates [12, 15]. The corresponding six orders of magnitude

variation in the drift barrier N−1e has immense ramifications for how we understand selection in

prokaryotes versus eukaryotic organisms, particularly in the context of genome complexity [16–18].

For example, consider a mutant with an extra genetic sequence relative to the wild-type. We can

separate s into two contributions [12], s = sc + sa, where sc is the baseline selection coefficient as-

sociated with the metabolic costs of having this sequence, i.e. the costs of replicating it during cell

division, synthesizing any associated mRNA / proteins, as well as the maintenance costs associated

with turnover of those components. The difference sa = s− sc is whatever adaptive advantage or

disadvantage accrues due to the consequences of the sequence beyond its baseline metabolic costs.

For a prokaryote with a low drift barrier N−1e , even the relatively low costs associated with replica-

tion and transcription are often under selective pressure [11, 12], unless sc < 0 is compensated for

an sa > 0 of comparable or larger magnitude [19]. For the much greater costs of translation, the

impact on growth rates of unnecessary protein production is large enough to be directly seen in

experiments on bacteria [1, 20]. In contrast, for a eukaryote with sufficiently high N−1e , the same

sc might be effectively invisible to selection, even if sa = 0. Thus even initially useless genetic

material can be readily fixed in a population, making eukaryotes susceptible to non-coding “bloat”

in the genome. But this also provides a rich palette of genetic materials from which the complex
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variety of eukaryotic regulatory mechanisms can subsequently evolve [12, 21].

Part of the explanatory power of this idea is the fact that the sc of a particular genetic variant

should in principle be predictable from underlying physical principles. In fact, a very plausible

hypothesis is that sc ≈ −δCT /CT , where CT is the total resting metabolic expenditure of an

organism per generation time, and δCT is the extra expenditure of the mutant versus the wild-

type. This relation can be traced at least as far back as the famous “selfish DNA” paper of Orgel

and Crick [10], where it was mentioned in passing. But its true usefulness was only shown more

recently, in the notable works of Wagner [11] on yeast and Lynch & Marinov [12] on a variety

of prokaryotes and unicellular eukaryotes. By doing a detailed biochemical accounting of energy

expenditures, they used the relation to derive values of sc that provided intuitive explanations of the

different selective pressures faced by different classes of organisms. The relation provides a Rosetta

stone, translating biological thermodynamics into evolutionary terms. And its full potential is still

being explored, most recently in describing the energetics of viral infection [22].

Our study poses a basic question: is this relation between sc and metabolic expenditures true?

For despite its plausibility and long pedigree, to our knowledge it has never been justified in

complete generality from first principles. We do so through a general bioenergetic growth model,

versions of which have been applied across the spectrum of life [23–25], from unicellular organisms

to complex vertebrates. Even though the growth details, including the relative contributions of

maintenance and synthesis costs, vary widely between different classes of organisms, we show that

the relation is universal to an excellent approximation across the entire biological parameter range.

Growth model: Of an organism’s net energy intake per unit time, some part of it is spent

in locomotion and activities, some part of it stored (in certain organisms), and the remainder

is consumed in the resting metabolism [24]. Let Π(m(t)) [unit: W] be the average power input

into the resting metabolism, which can be an arbitrary function of the organism’s current mass

m(t) [unit: g] at time t. Common choices for the functional form of Π(m(t)) will be discussed

below. This power is partitioned into maintenance of existing biological mass (i.e. the turnover

energy costs associated with the constant replacement of cellular components lost to degradation),

and growth of new mass (i.e. synthesis of additional components during cellular replication) [26].

Energy conservation implies

Π(m(t)) = B(m(t))m(t) + E(m(t))
dm

dt
, (1)

Here B(m(t)) [unit: W/g] is the maintenance cost per unit mass, and E(m(t)) [unit: J/g] is the

synthesis cost per unit mass. We allow both these quantities to be arbitrary functions of m(t).
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Though we will derive our main result for the fully general model of Eq. (1), we will also explore

a special case: Π(m(t)) = Π0m
α(t), B(m(t)) = Bm, E(m(t)) = Em, with scaling exponent α and

constants Π0, Bm, and Em [25]. Allometric scaling of Π(m(t)) with α = 3/4 across many different

species was first noted in the work of Max Kleiber in the 1930s [27], and with the assumption

of time-independent B(m(t)) and E(m(t)) leads to a successful description of the growth curves

of many higher animals [23, 24]. However, recently there has been evidence that α = 3/4 may

not be universal [28]. Higher animals still exhibit α < 1 (with debate whether 3/4 or 2/3 is more

appropriate [29]), but unicellular organisms have a broader range α . 2. Thus we will use the model

of Ref. [25] with an arbitrary species-dependent exponent α. Though time-independent B(m(t))

and E(m(t)) are reasonable as a first approximation, particularly for unicellular organisms, it is

easy to imagine scenarios where for example the maintenance cost B(m(t)) might vary with m(t)

as part of the organism’s developmental plan: as the organism approaches maturity, more energy

might be allocated to reproductive functions [23] or heat production in endothermic animals [30],

effectively increasing the cost of maintenance. Thus we initially consider the model in complete

generality.

Baseline selection coefficient for metabolic costs: To derive an expression for sc for the growth

model of Eq. (1), we first focus on the time tr to reproductive maturity, the typical time for the

organism to grow from a mass m(0) = m0 at birth to some mature mass mr = εm0. This time is

related to the population growth rate r through r = ln(R0)/tr, where R0 is the basic reproductive

ratio, the average number of offspring per individual surviving to reproductive maturity [25, 31].

For example in the case of binary fission of a unicellular organism, ε = 2, and if one neglects cell

deaths, R0 = 2 as well. The value of ε can range much higher for more complex organisms, where

mr is typically the same order of magnitude as the asymptotic adult mass achieved in the long-time

limit [23, 32]. Since m(t) is a monotonically increasing function of t for any physically realistic

growth model, we can invert Eq. (1) to write the infinitesimal time interval dt associated with an

infinitesimal increase of mass dm as dt = dmE(m)/G(m) where G(m) ≡ Π(m) − B(m)m is the

amount of power channeled to growth, and we have switched variables from t to m. Note that

G(m) must be positive over the m range to ensure that dm/dt > 0. Integrating dt gives us an

expression for tr,

tr =

∫ εm0

m0

dm
E(m)

G(m)
. (2)

Now consider a genetic variation in the organism that creates additional metabolic costs, but in

keeping with our baseline assumption, does not alter biological function in any other respect. The
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products of the genetic variation (i.e. extra mRNA transcripts or translated proteins) may alter the

mass of the mutant, which we denote by m̃(t). However the baseline assumption means that these

changes do not affect the ability of the organism to assimilate energy for its resting metabolism, so

that the left-hand side of Eq. (1) remains Π(m(t)), where m(t) is now the unperturbed mass of the

organism (the mass of all the pre-variation biological materials). The power input Π(m(t)) depends

on m(t) rather than m̃(t) since only m(t) contributes to the processes that allow the organism to

process nutrients. It is also convenient to express our dynamics in terms of m(t) rather than

m̃(t), since the condition defining reproductive time tr remains unchanged, m(tr) = εm0, or in

other words when the unperturbed mass reaches ε times the initial unperturbed mass m0. Thus

Eq. (1) for the mutant takes the form Π(m(t)) = B̃(m(t)) + Ẽ(m(t))dm(t)/dt, where B̃(m(t)) =

B(m(t)) + δB and Ẽ(m(t)) = E(m(t)) + δE are the mutant maintenance and synthesis costs. We

assume the perturbations δB and δE are independent of m(t), though the theory can be generalized

to models where the extra metabolic costs vary throughout the organism’s development. In the

Supplementary Information (SI), we show a sample calculation of δB and δE for mutations in

E .coli and fission yeast involving short extra genetic sequences transcribed into non-coding RNA.

This provides a concrete illustration of the framework we now develop.

Changes in the metabolic terms will result in a perturbation to the reproduction time, t̃r =

tr+δtr, and consequently the growth rate r̃ = r+δr. The corresponding baseline selection coefficient

sc can be exactly related to s̃c ≡ −δtr/tr, the fractional change in tr, through sc = R
s̃c/(1−s̃c)
0 − 1

(see SI). This relation can be approximated as sc ≈ ln(R0)s̃c when |s̃c| � 1, the regime of interest

when making comparisons to drift barriers N−1e � 1. In this regime s̃c ≈ δr/r, the fractional

change in growth rate. s̃c can be written in a way that directly highlights the contributions of

δE and δB to s̃c. This formulation involves the mathematical trick of introducing a function

p(m) ≡ t−1r E(m)/G(m). Eq. (2) then implies that
∫ εm0

m0
dmp(m) = 1, so we can treat p(m) as

a normalized “probability” over the mass range m0 to εm0. Note that since p(m) = t−1r dt/dm,

the average of any function F (m(t)) over the reproductive time scale tr can be expressed as as

〈F 〉 ≡
∫ εm0

m0
dmF (m)p(m). Expanding Eq. (2) for tr to first order in the perturbations δE and δB,

the coefficient s̃c = −δtr/tr = −σEδE/〈E〉 − σBδB/〈B〉, with positive dimensionless prefactors

σE ≡ 〈E〉〈E−1〉, σB ≡ 〈B〉〈Θ−1〉. (3)

Here Θ(m) ≡ G(m)/m. The magnitude of σB versus σE describes how much fractional increases

in maintenance costs matter for selection relative to fractional increases in synthesis costs.

Relating the baseline selection coefficient to the fractional change in total resting metabolic
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costs: The final step in our theoretical framework is to connect the above considerations to the

total resting metabolic expenditure CT of the organism per generation time tr, given by CT =

ζ
∫ tr
0 dtΠ(m(t)) = ζtr〈Π〉. In order to facilitate comparison with the experimental data of Ref. [12],

compiled in terms of phosphate bonds hydrolyzed [P], we add the prefactor ζ which converts from

units of J to P. Assuming an ATP hydrolysis energy of 50 kJ/mol under typical cellular conditions,

we set ζ = 1.2 × 1019 P/J. The genetic variation discussed above leads to a modified total cost

C̃T = CT + δCT , and the fractional change δCT /CT can be expressed in a form analogous to s̃c,

namely δCT /CT = σ′EδE/〈E〉+ σ′BδB/〈B〉, with

σ′E ≡ 〈E〉〈Π〉−1〈ΠE−1〉, σ′B ≡ 〈B〉〈Π〉−1〈ΠΘ−1〉. (4)

The connection between sc and δCT /CT can be constructed by comparing Eq. (3) with Eq. (4).

We see that s̃c = −δCT /CT for all possible perturbations δE and δB only when σE = σ′E and

σB = σ′B. Thus the accuracy of the relation hinges on the degree to which these coefficients agree

with one another. The relative differences can be written as:∣∣∣∣1− σ′E
σE

∣∣∣∣ =

∣∣∣∣1− 〈ΠE−1〉〈Π〉〈E−1〉

∣∣∣∣ ≤ κ(Π)κ(E−1),∣∣∣∣1− σ′B
σB

∣∣∣∣ =

∣∣∣∣1− 〈ΠΘ−1〉
〈Π〉〈Θ−1〉

∣∣∣∣ ≤ κ(Π)κ(Θ−1).

(5)

where κ(F ) ≡
√
〈F 2〉 − 〈F 〉2/〈F 〉 and we have used the Cauchy-Schwarz inequality. These bounds

imply two cases when the relation is exact: i) κ(Π) = 0, which means Π(m) is a constant in-

dependent of m; ii) κ(Π) > 0 and κ(E−1) = κ(Θ−1) = 0, which means E(m) and Θ(m) are

independent of m. Outside these cases, the relation s̃c ≈ −δCT /CT is an approximation. To see

how well it holds, it is instructive to investigate the allometric growth model described earlier,

where Π(m(t)) = Π0m
α(t), E(m(t)) = Em and B(m(t)) = Bm.

Testing the relation in an allometric growth model. Though the values of the model parameters

will vary between species, we know that the exponent α . 2 [25, 28], and there is a rough scale for

Em and Bm that can be established through comparison to metabolic data compiled in Ref. [12]

covering a variety of prokaryotes and unicellular eukaryotes. This data consisted of two quantities,

CG and CM , which reflect the growth and maintenance contributions to CT . Using Eq. (1) to

decompose Π(m(t)), we can write CT = CG+ trCM , where CG = ζ
∫ εm0

m0
dmE(m) = ζ(ε−1)m0Em

is the expenditure for growing the organism, and CM = ζ〈Bm〉 = ζBm〈m〉 is the mean metabolic

expenditure for maintenance per unit time. As shown in the SI, the simplest version of the al-

lometric growth model predicts linear scaling of both CG and CM with cell volume. Best fits of

the model to the data, shown in Fig. 1, yield global interspecies averages: Em = 1, 300 J/g and
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FIG. 1. The growth CG (blue) and maintenance CM (red) contributions to an organism’s total resting

metabolic cost CT = CG + trCM per generation time tr. The symbols (circles = prokaryotes, triangles

= unicellular eukaryotes) represent data tabulated in Ref. [12], as a function of cell volume. CG and CM

are measured in units of 109 P (phosphate bonds hydrolyzed), and 109 P/hr respectively. As shown in SI

Eq. (S6), the allometric growth model predicts linear scaling of CG and CM with cell volume. The solid

lines represent best fits to Eq. (S6) with parameters Em = 1, 300 J/g and Bm = 7× 10−3 W/g.

Bm = 7 × 10−3 W/g. As discussed in the SI, these values are remarkably consistent with earlier,

independent estimates, for unicellular and higher organisms [24, 25, 33, 34].

Since E(m(t)) = Em is a constant in the allometric growth model, σE = 1 from Eq. (3).

Additionally, because κ(E−1) = 0 we know that σE = σ′E holds exactly. So the only aspect of the

approximation that needs to be tested is the similarity between σB and σ′B. Fig. 2A shows σB

versus σ′B for the range α = 0− 3, which includes the whole spectrum of biological scaling [28] up

to α = 2, plus some larger α for illustration. The Em and Bm parameters have been set to the

unicellular best-fit values quoted above, and ε = 2. For a given α, the coefficient Π0 has been set

to yield a certain division time tr, ranging from tr = 1 hr (purple pair of curves at the bottom)

to tr = 40 hr (red pair of curves at the top). These roughly encompass both the fast and slow

extremes of typical unicellular reproductive times. In all cases σ′B is in excellent agreement with

σB. For the range α ≤ 2 the discrepancy is less than 15%, and it is in fact zero at the special points

α = 0 (where κ(Π) = 0) and α = 1 (where κ(Θ−1) = 0). Clearly the approximation begins to break

down at α � 1, but it remains sound in the biologically relevant regimes. Note that σB values

for tr = 1 hr are ∼ 0.03, reflecting the minimal contribution of maintenance relative to synthesis

costs in determining the selection coefficient for fast-dividing organisms. Indeed, an often used

approximation in this case is to ignore maintenance costs altogether, in which case s̃c = −δCT /CT
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FIG. 2. A: σB (solid curves) from Eq. (3) and σ′B (dashed curves) from Eq. (4) versus α, for the allometric

growth model with Em = 1, 300 J/g, Bm = 7× 10−3 W/g, and ε = 2. At any given α, the parameter Π0 for

each pair of curves (different colors) is chosen to correspond to particular reproductive times tr, indicated

in the labels. B: Contour diagram showing the logarithm of the maximum possible discrepancy log10 |1 −

σ′B/σB | for any allometric growth model parameters, as a function of α and ε. To illustrate biological ranges

α and ε, the symbols correspond to data for various species drawn from the growth trajectories analyzed in

Ref. [25] (light blue) and Ref. [23] (dark blue). Circles are unicellular organisms, and triangles multicellular

organisms (a detailed list is provided in the SI).

exactly, since only σE = σE′ = 1 matters. The result for s̃c in this limit is consistent with microbial

metabolic flux theory [35], where the maintenance costs are typically neglected. As tr increases,

so does σB. At the other extreme, when tr = 40 hr, σB ∼ 1.1 − 1.3 > σE , and the influence of

maintenance becomes comparable to synthesis.

To make a more comprehensive analysis of the validity of the s̃c ≈ −δCT /CT relation, we do a

computational search for the worst case scenarios: for each value of α and ε, we can numerically

determine the set of other growth model parameters that gives the largest discrepancy |1− σ′B/σB|.

Fig. 2B shows a contour diagram of the results on a logarithmic scale, log10 |1− σ′B/σB|, as a

function of α and ε. Estimated values for α and ε from the growth trajectories of various species

are plotted as symbols to show the typical biological regimes. While the maximum discrepancies

are smaller for the parameter ranges of unicellular organisms (circles) compared to multicellular

ones (triangles), in all cases the discrepancy is less than 50%. To observe a serious error, where

σ′B is no longer the same order of magnitude as σB, one must go to the large α, large ε limit (top

right of the diagram) which no longer corresponds to biologically relevant growth trajectories.
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We thus reach the conclusion that the baseline selection coefficient for metabolic costs can be

reliably approximated as sc ≈ − ln(R0)δCT /CT . As in the original hypothesis [10–12], −δCT /CT

is the dominant contribution to the scale of sc, with corrections provided by the logarithmic fac-

tor ln(R0). Our derivation puts the relation for sc on a solid footing, setting the stage for its

wider deployment. It deserves a far greater scope of applications beyond the pioneering studies of

Refs. [11, 12, 22]. Knowledge of sc can also be used to deduce the adaptive contribution sa = s−sc

of a mutation, which has its own complex connection to metabolism [36]. The latter requires

measurement of the overall selection coefficient s, for example from competition/growth assays,

and the calculation of sc from the relation, assuming the underlying energy expenditures are well

characterized. The sc relation underscores the key role of thermodynamic costs in shaping the

interplay between natural selection and genetic drift. Indeed, it gives impetus to a major goal for

future research: a comprehensive account of those costs for every aspect of biological function, and

how they vary between species, what one might call the “thermodynome”. Relative to its more

mature omics brethren—the genome, proteome, transcriptome, and so on—the thermodynome is

still in its infancy, but fully understanding the course of evolutionary history will be impossible

without it.
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1. Derivation of the relation between sc and s̃c

In the main text we posited an approximate relation sc ≈ ln(R0)s̃c between the baseline selection

coefficient sc and the fractional change in growth rate s̃c due to a genetic variation. Here we derive

an exact relation between the two quantities, generalizing the approach used in Ref. [1] for the

specific case of binary fission. We then show how the approximation used in the main text arises

in the limit |s̃c| � 1.

Consider a group of wild-type organisms with population Nw(t) as a function of time, and a

group of mutant organisms with population Nm(t). Under our baseline assumption (neglecting

adaptive contributions), the selection coefficient associated with the mutation is sc, and both types

of organisms have the same average number of surviving offspring per generation R0. For example

R0 = 2 for binary fission neglecting cell deaths. In general, R0 = prf , where pr is the fraction of

the population to survive until the age of reproduction, and f is the average fecundity [2, 3].

We assume both populations are in a regime of exponential (Malthusian) growth, so that

Nw(t) = Nw(0) exp(rt) and Nm(t) = Nw(0) exp((r+ δr)t) with respective population growth rates

r and r + δr. If tr is the mean generation time of the wild-type, and tr + δtr that of the mutant,

the growth rates are given by r = ln(R0)/tr and r+ δr = ln(R0)/(tr + δtr). If the populations were

initially equal, Nm(0) = Nw(0), we can thus write the ratio of populations at any subsequent time

as

Nm(t)

Nw(t)
= etδr = R

t
(

1
tr+δtr

− 1
tr

)
0 . (S1)

On the other hand, after n wild-type generations (t = ntr) the ratio of the two populations is

related to the selection coefficient (as conventionally defined in population genetics) through

Nm(ntr)

Nw(ntr)
= (1 + sc)

n. (S2)
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Plugging t = ntr into Eq. (S1) and comparing to Eq. (S2), we see that

sc = R
− δtr
tr+δtr

0 − 1. (S3)

If we define s̃c ≡ −δtr/tr, then Eq. (S3) can be rewritten as

sc = R
s̃c

1−s̃c
0 − 1. (S4)

Note that in the case where |s̃c| � 1, or |δtr| � tr, we can also write s̃c ≈ δr/r, and so interpret

s̃c as the fractional change in growth rate. In this same limit we can expand Eq. (S4) for small s̃c,

sc = ln(R0)s̃c +
1

2
ln(R0) (2 + ln(R0)) s̃

2
c + · · · . (S5)

Keeping only the leading order term, linear in s̃c, yields the approximation sc ≈ ln(R0)s̃c.

2. Fitting of allometric growth model to experimental data

As discussed in the main text, we can decompose CT into two components, CT = CG + trCM ,

where CG = ζ
∫ εm0

m0
dmE(m) is the expenditure for growing the organism, and CM = ζ〈Bm〉 is

the mean metabolic expenditure for maintenance per unit time. For the allometric growth model,

these contributions to CT simplify to CG = ζ(ε − 1)m0Em and CM = ζBm〈m〉. Ref. [4] noted

that CG and CM collected from experimental data scaled nearly linearly with cell volume, with

allometric exponents of 0.97 ± 0.04 and 0.88 ± 0.07 respectively. In fact, the simplest version of

the allometric model predicts exactly linear scaling, using the following assumptions. Since the

data tabulated in Ref. [4] covers prokaryotes and unicellular eukaryotes, we take ε = 2. Since the

mass of the organism varies between m0 and 2m0 over time tr, we approximate 〈m〉 ≈ (3/2)m0.

Any errors in this approximation, or variance in ε, will not change the order of magnitude of the

estimated model parameters. We relate the experimentally observed cell volume V to the mean

cell mass 〈m〉 by assuming a typical cell is 2/3 water (density ρwat = 10−12 g/µm3) and 1/3 dry

biomass (density ρdry ≈ 1.3× 10−12 g/µm3) [5]. Hence 〈m〉 = (2ρwat + ρdry)V/3 ≡ ρcellV . We thus

find:

CG = (4/3)ζEmρcellV, CM = ζBmρcellV. (S6)

For each expression we have only one unknown parameter, Em and Bm respectively. Best fits to

the Ref. [4] data, shown in main text Fig. 1B, yield global interspecies averages of the parameters,

Em = 1, 300 J/g and Bm = 7× 10−3 W/g.

The fitted values are consistent with earlier approaches, once water content is accounted for (i.e.

to get Em per dry biomass, multiply the value by ≈ 3, so Edry
m = 3, 900 J/g). The synthesis cost
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Em has a very narrow range across many species, with Em = 1, 100 − 1, 800 J/g in bird and fish

embryos, and 4, 000 − 7, 500 J/g for mammal embryos and juvenile fish, birds, and mammals [6].

This energy scale seems to persist down to the prokaryotic level, with Edry
m = 3, 345 J/g estimated

for E. coli [3]. Edry
m also appears in a different guise as the inverse of the “energy efficiency” ε of

E. coli growth in the model of Ref. [7]; converting the optimal observed ε ≈ 15 dry g/(mol ATP)

yields Edry
m = ζ/ε = 3, 333 J/g, consistent with the other estimates cited above, as well as our

fitted value. The ratio Bm/Em was estimated for various species in Ref. [3], and found to vary

in the range 10−6 − 10−5 s−1 from prokaryotes to unicellular eukaryotes, entirely consistent with

our fitted value of Bm/Em = 5 × 10−6 s−1. The scale shifts for larger, multicellular species, but

not dramatically. For example for a subset of mammals with scaling α = 3/4, adult mass sizes

ma = 10 − 6.5 × 105 g, and typical values of B0 ≈ 0.022 W/g3/4, Em ≈ 7000 J/g [8], we get a

range of Bm/Em = 10−7 − 10−6 s−1. We thus have confidence that the growth model provides

a description of the metabolic expenditures (in terms of growth and maintenance contributions)

that is consistent both with the empirical data of Ref. [4] and parameter expectations based on a

variety of earlier approaches.

For the symbols in the contour diagram of main text figure Fig. 2B, we used parameters extracted

from growth trajectories analyzed in Ref. [3] (light blue) and Ref. [9] (dark blue). Circles (left to

right) are unicellular organisms (ε = 2): T. weissflogii, L. borealis, B. subtilis, E. coli. Triangles (top

to bottom) are multicellular organisms: guinea pig, C. pacificus, hen, Pseudocalanus sp., guppy,

cow. For the multicellular case the plotted values of ε correspond to asymptotic adult mass in units

of m0. This is an upper bound on ε, though the actual ε should typically be comparable [9, 10].

3. Sample calculation of the baseline selection coefficient: short, non-coding RNA in

E. coli and fission yeast

To illustrate a calculation of baseline selection coefficients in the framework developed in the

main text, let us consider a specific biological example: a mutant with a short (< 200 bp) sequence

in the genome that is transcribed into non-coding RNA, and which is not present in the wild-type.

We will focus on two organisms, the prokaryote E. coli and the unicellular eukaryote S. pombe

(fission yeast). To date we know that at least some subset of non-coding RNA transcripts have

functional roles in these organisms [11, 12]. The evolution of such regulatory sequences will be

shaped both by the selective advantage sa of having the sequence in the genome, and the baseline

disadvantage sc from the extra energetic costs of copying and transcription.

Before calculating sc, we first establish the validity of the growth model for these organisms.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358440doi: bioRxiv preprint 

https://doi.org/10.1101/358440
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

The model parameters fitted for the data from prokaryotes and unicellular eukaryotes in Fig. 1B

of the main text are Em = 1, 300 J/g and Bm = 7 × 10−3 W/g. The corresponding growth and

maintenance contributions to the total resting metabolic cost per generation, CG and CM , are

given by Eq. (S6). Using ζ = 1.2×1019 P/J (recall that P corresponds to ATP or ATP equivalents

hydrolyzed), ρcell = 1.1× 10−12 g/µm3, and typical cell volumes VE.coli = 1 µm3 [5], VS.pombe = 106

µm3 [13], we find: CE .coli
G = 2.30 × 1010 P, CE .coli

M = 3.34 × 108 P/hr, CS .pombe
G = 2.43 × 1012 P,

CS .pombe
M = 3.54×1010 P/hr. These agree well in magnitude with the literature estimates compiled

in the SI of Ref. [4] (all normalized to 20◦C): CE .coli
G = 1.57 × 1010 P, CE .coli

M = 2.13 × 108 P/hr,

CS .pombe
G = 2.35× 1012 P, CS .pombe

M = 8.7× 109 P/hr. Thus the globally fitted Em and Bm values

are physically reasonable for both organisms.

The extra sequence in the mutant leads to perturbations in both synthesis cost per unit mass,

δE, and maintenance cost per unit mass, δB. To calculate the first, we use the following estimates

based on the analysis in Ref. [4]: for a sequence of length L, the total DNA-related synthesis cost is

dξL, where the label ξ = E. coli or S. pombe. Here the prefactor dE .coli ≈ 101 P and dS .pombe ≈ 263

P. If the steady-state average number of corresponding mRNA trascripts in the cell is Nr, the

additional ribonucleotide synthesis costs are ≈ 46NrL in units of P. Hence we have, per unit mass,

δE ≈ ζ−1L

ρcellVξ
(dξ + 46Nr) , (S7)

with the ζ−1 prefactor converting from P to J, so that δE has units of J/g. The same analysis [4]

yields the maintenance cost per unit time for replacing transcripts after degradation, ≈ 2NrLγξ in

units of P/s, where γE .coli = 0.003 s−1 and γS .pombe = 0.001 s−1 are the RNA degradation rates

for the two organisms. Per unit mass, the maintenance perturbation δB is given by

δB ≈
2ζ−1LNrγξ
ρcellVξ

, (S8)

in units of W/g.

The final step is to calculate the prefactors σE and σB from Eq. (3) in the main text. For this

we need to choose a particular growth model exponent α, and we set α = 1, corresponding to

the assumption of exponential cell mass growth. In this case σE = 1 for both organisms, while

σE .coliB = 0.0140, σS .pombe
B = 0.121. The choice of α has a minimal influence on the prefactors:

σE = 1 exactly for any model with a constant function E(m) = Em. Moreover, any α value in the

biologically relevant range of 0 ≤ α ≤ 2 yields a σB value within 5% of the α = 1 result for each

organism.

Putting everything together, we now can calulate all the components of main text Eq. (3) for

s̃c, namely σE , σB, δE, δB, 〈E〉 = Em, and 〈B〉 = Bm. Had we chosen instead to use the δCT /CT
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FIG. S1. Contour diagrams of log10(|sc|Ne) as a function of sequence length L and mean RNA transcript

number Nr per cell for E. coli (left) and S. pombe (right). The dashed line in the diagram on the right

corresponds to |sc| = N−1
e .

approximation of main text Eq. (4), the only discrepancy would have been in the fact that σ′B 6= σB,

since σ′E = σE = 1. However the discrepancy is small, with |1− σ′B/σB| < 0.09 for both organisms

in the range 0 ≤ α ≤ 2.

Fig. S1 shows contour diagrams of log10(|sc|Ne) as a function of L and Nr for E. coli and S.

pombe. Here sc = ln(2)s̃c, assuming R0 = 2, and the effective population sizes are NE .coli
e =

2.5 × 107 [14], NS .pombe
e = 1.2 × 107 [15]. For E .coli , with its smaller metabolic expenditures per

generation relative to fission yeast, the cost of the extra sequence is always significant: |sc| > N−1e

for the entire range of L and Nr considered, even for the smallest length (L = 20 bp) and a single

transcript per cell on average, Nr = 1. Thus there will always be strong selective pressure to remove

the extra sequence, unless sc is compensated for by a comparable or greater adaptive advantage

sa. In contrast, for S. pombe there is a regime of L and Nr where |sc| < N−1e (the region below

the dashed line). Here the selective disadvantage of the extra sequence is weaker than genetic

drift, and such a genetic variant could fix in the population at roughly the same rate as a neutral

mutation even if it conferred no selective advantage, sa = 0. While this makes fission yeast more

tolerant of genomic “bloat” relative to E. coli, initially non-functional extra genetic material could

subsequently facilitate the development of novel regulatory mechanisms.
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