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In prokaryotic genomes, the number of genes that belong to distinct functional classes shows 1 

apparent universal scaling with the total number of genes [1-5] (Fig. 1). This scaling can be 2 

approximated with a power law, where the scaling power can be sublinear, near-linear or super-3 

linear. Scaling laws are robust under various statistical tests [4], across different databases and for 4 

different gene classifications [1-5]. Several models aimed at explaining the observed scaling laws have 5 

been proposed, primarily, based on the specifics of the respective biological functions [1, 5-8]. 6 

However, a coherent theory to explain the emergence of scaling within the framework of population 7 

genetics is lacking. We employ a simple mathematical model for prokaryotic genome evolution [9] 8 

which, together with the analysis of 34 clusters of closely related microbial genomes [10], allows us to 9 

identify the underlying forces that dictate genome content evolution. In addition to the scaling of the 10 

number of genes in different functional classes, we explore gene contents divergence to characterize 11 

the evolutionary processes acting upon genomes [11]. We find that evolution of the gene content is 12 

dominated by two factors that are specific to a functional class, namely, selection landscape and 13 

genome plasticity. Selection landscape quantifies the fitness cost that is associated with deletion of a 14 

gene in a given functional class or the advantage of successful incorporation of an additional gene. 15 

Genome plasticity, that can be considered a measure of evolvability, reflects both the availability of 16 

the genes of a given functional class in the external gene pool that is accessible to the evolving 17 

microbial population, and the ability of microbial genomes to accommodate these genes. The 18 

selection landscape determines the gene loss rate, and genome plasticity is the principal determinant 19 

of the gene gain rate. 20 

 21 

Power-laws are the simplest functions that give good fits to the data on gene scaling. However, 22 

given that genome sizes barely span two orders of magnitude (Fig. 1), these power functions should be 23 

treated as approximations rather than firmly established quantitative laws. These limitations 24 

notwithstanding, analysis of the scaling exponents using the power law approximation has shown that 25 

such exponents are (nearly) universal for each functional class across a broad range of microbes 26 

(notwithstanding some debate on the validity of the exact universality [4, 12]), suggesting that 27 

differences in scaling reflect important, not yet understood features of cellular organization and its 28 

evolution. In the seminal work on scaling, Van Nimwegen grouped the functional classes of genes along 29 

three integer exponents: 0,1,2,  arguing that deviations from the integers most likely reflected gene 30 

classification ambiguities [5]. The gene classes with the 0 exponent include information processing 31 

systems (translation, basal transcription and replication), those with the exponent of 1 are primarily 32 

metabolic genes, and those with the exponent 2 are regulatory genes. In biological terms, the essential 33 

information processing systems are universally conserved and remain nearly the same in all microbes 34 

regardless of genome size; metabolic pathways expand proportionally to genome growth; and the 35 

complexity of regulatory circuits increases quadratically with the total number of genes. The toolbox 36 

model has been proposed to explain the quadratic scaling whereby the number of regulators grows 37 

faster than the number of metabolic enzymes thanks to the frequent re-use of the latter in new 38 

pathways [6, 7]. From the evolutionary standpoint, it has been suggested that the universal exponents 39 

are determined by distinct gene gain and loss rates for different classes of genes and represent the 40 

“innovation potential” of these classes [13]. Clearly, regulatory genes have the highest innovation 41 

potential whereas information processing systems have next to none. Here we formulate an explicit 42 

model for the gene gain and loss and express the scaling in terms of the evolutionary forces that emerge 43 
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from our analysis, namely, the selection landscape and genome plasticity. The scaling that we obtain 44 

from this simple model does not follow a power law exactly but gives a comparable quality of fit within 45 

the range of available data. 46 

In the current study, we analyzed 20 functional classes of genes from the Clusters of 47 

Orthologous Groups (COGs) [14]. For the collection of microbial genomes analyzed here, the scaling 48 

exponents spun a range from 0.35 for translation genes (J COG category) to 1.69 for secondary 49 

biosynthesis genes (Q COG category) in our dataset (Table 1). It should be noted that the transcription 50 

category has an exponent of 1.63 because, in the COG classification, it includes both basal transcription 51 

proteins that, in the initial analysis, showed exponents close to 0, and transcription regulators, with the 52 

apparent quadratic dependence on the total number of genes. The analysis presented here imply that, 53 

in principle any scaling exponent is possible. Indeed, the observed values of gene category-specific 54 

exponents do not seem to perfectly fit the 0-1-2 paradigm but do show a broad range, with increasing 55 

exponents from the essential, universal information transmission genes to the more evolutionarily 56 

volatile genome components such as regulators and secondary metabolism enzymes. The robustness of 57 

the observed scaling exponents for different classes was tested by bootstrap analysis (Fig. S1; see 58 

Methods). Although, for some of the functional classes, the distribution of the bootstrap scaling 59 

exponents was wide (e.g. secretion and motility genes (N); Fig. S1), the classes could be confidently 60 

partitioned into those scaling sub-linearly, near-linearly or super-linearly. The wide distributions also 61 

result in some pairs of classes overlapping (Table S1; see Methods). However, as shown below, similar 62 

scaling exponent can emerge from very different combinations of selection landscapes and genome 63 

plasticity (e.g. secretion and motility genes (N) and the mobilome (X)). 64 

We sought to uncover the evolutionary roots of the differential scaling of the functional classes 65 

of genes within the framework of the general theory of genome evolution by gene gain and loss. 66 

Prokaryotic genome evolution involves extensive horizontal gene transfer (HGT) and gene loss that can 67 

be expected to shape, among other features, the differential scaling [3, 15-17]. The simplest model for 68 

genome size dynamics describes the genomic evolutionary trajectory as a succession of stochastic gain 69 

and loss events [9]. The dynamics of the total number of genes in the genome 𝑥 is therefore determined 70 

by the per genome gain and loss rates (𝑃+ and 𝑃−), respectively  71 

d𝑥 d𝑡⁄ = 𝑃+ − 𝑃−         [1] 72 

One of the key observable measures of microbial genome evolution is the pairwise intersection between 73 

genomes 𝐼, that is, the number of orthologous genes shared by a pair of genomes. Both the number of 74 

genes and the pairwise intersections between gene complements reflect genome content evolution and 75 

result from the same evolutionary processes. A complete theoretical description of genome evolution 76 

should therefore account for both these quantities. The stochastic gain and loss of genes entail a decay 77 

in pairwise genomes similarity through the course of evolution, even when the total number of genes 78 

remains approximately constant. As a first order approximation, pairwise genome intersections decay 79 

exponentially with the tree distance, with the decay constant 𝑘 that is proportional to per-gene loss rate 80 

𝑘 ∝ 𝑃− 𝑥⁄  (see Methods for formal derivation). For an infinite gene pool [18] 81 

𝐼(𝑑) = 𝑥 ∙ 𝑒−𝑘𝑑          [2] 82 

where 𝑑 is the distance between the genomes along the tree. Given an infinite external gene pool, the 83 

rate of pairwise genome similarity decay is determined solely by gene loss rate. This model fits 84 
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comparative genomic observations on the pairwise genome similarity decay with evolutionary distance 85 

in archaea, bacteria and bacteriophages [11] [19] [20]. We tested these observations on the ATGC set 86 

used for the present analysis and confirmed the close agreement of the model with the data (Fig. 2A, 87 

and Fig. S2).  88 

To account for the dynamics of distinct functional classes of genes, we define gain and loss rates 89 

for the respective subsets of genes. Like the complete genome, each functional class (𝑥1) is subject to 90 

stochastic gains and losses of genes that occur with rates 𝑃1
+ and 𝑃1

−, respectively 91 

d𝑥1 d𝑡⁄ = 𝑃1
+ − 𝑃1

−         [3] 92 

Below we express gain and loss rates explicitly and show how 𝑃1
+ and 𝑃1

− are related to the overall 93 

genome gain and loss rates 𝑃+ and 𝑃−. With respect to the genome content, all quantities can be 94 

defined for genomic subsets that include only genes from a specific functional class. We define class-95 

specific pairwise intersection (i.e. the number of genes of class 1 shared between the pair of genomes) 96 

𝐼1. Similar to its complete genome analog, the class-specific pairwise intersection decays exponentially 97 

with evolutionary distance. The decay constant 𝑘1 is proportional to the class-specific per-gene loss rate 98 

𝑘1 ∝ 𝑃1
− 𝑥1⁄ . Empirically, gene classes with sublinear exponents are characterized by slow decay of 99 

pairwise intergenome similarity whereas those with super-linear exponents show fast decay (Figs. 2A-C 100 

and supplementary Figs. S3-S22).  101 

Assuming finite effective population size with the weak genome dynamics limit (gain and loss 102 

rates are low enough such that gains and losses, hereafter “mutations”, occur and get fixed 103 

sequentially), gain and loss rates can be expressed as the product of the mutation rate and the 104 

probability for the mutation to get fixed in the population [9]. Mutation events are either an acquisition 105 

or a deletion of one gene, with the respective rates 𝛼 and 𝛽. Accordingly, gain and loss rates can be 106 

written as 107 

𝑃+ = 𝛼(𝑥) ∙ 𝐹(𝑆0)         [5] 108 

𝑃− = 𝛽(𝑥) ∙ 𝐹(−𝑆0)         [6] 109 

where F is the fixation probability and  𝑆0 is the genomic mean of the selection coefficient normalized by 110 

effective population size (see Methods). The 𝑆0 value can be regarded as the mean selective benefit (or 111 

cost) associated with the acquisition or loss of a random gene. Specifically, Eqs. 5 and 6 imply a 112 

symmetry in the selective effect with respect to gain and loss of a single gene: the benefit (or cost) is of 113 

equal magnitude for both events but with opposite signs [9, 21]. However, a closer examination of the 114 

gene acquisition process reveals a more complicated picture that involves two distinct time scales. Even 115 

genetic material that is beneficial on a large time scale, appears to be slightly deleterious initially, and 116 

fitness is recovered only after a transient time of several hundred generations [22]. In contrast, the 117 

coefficient 𝑆0 is inferred from extant genomes and thus reflects the average cost (or benefit) of gene 118 

deletion, and accordingly, the long-term average benefit (or cost) carried by a gene already incorporated 119 

in the genome. Within this formulation, the short time scale, that is, the transient phase of gene 120 

acquisition, is accounted for by the gain rate 𝛼. Specifically, 𝛼 represents the product of the raw 121 

acquisition rate and gene acceptability, that is, the probability that the acquired gene is not rejected by 122 

the population within the short time scale. 123 
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Gain and loss rates for genes that belong to a specific functional class can be expressed following a 124 

similar reasoning. The class-specific selection landscape that determines the fixation probability term 125 

can differ from the mean selection landscape of the complete genome. We first develop the formulation 126 

of the loss rate which, under the assumption that deletions occur at random loci across the genome, is 127 

given by the complete genome deletion rate 𝛽 multiplied by the fraction of the genome that is occupied 128 

by genes of a specific functional class. Together with the fixation probability for a deletion event that 129 

depends on the class-specific mean selection coefficient, 𝑆1, this gives   130 

𝑃1
− =

𝑥1

𝑥
∙ 𝛽(𝑥) ∙ 𝐹(−𝑆1)        [7] 131 

for the class-specific loss rate. The acquisition rate for class-specific genes is given by the product of the 132 

global acquisition rate 𝛼, fixation probability that depends on the class-specific mean selection 133 

coefficient, 𝑆1, and the class-specific genome plasticity 𝑝:  134 

𝑃1
+ = 𝑝1 ∙ 𝛼(𝑥) ∙ 𝐹(𝑆1)         [8] 135 

where the product 𝑝1 ∙ 𝛼 denotes the probability that an acquired gene belongs to the specific 136 

functional class. As in the complete genome case, this formulation of class-specific gain and loss rates 137 

implies a symmetry between gain and loss, with respect to the selective effect. Accordingly, 𝑆1 138 

quantifies the long-term benefit or cost. If the short-term behavior is similar across all genes, the 139 

probability of a successful uptake of a gene is taken into account in the category-specific gain rate of Eq. 140 

8 by 𝛼. In this case, 𝑝1 simply represent the class-specific genes availability, that is, the fraction of class-141 

specific genes in the external gene pool. However, as described in detail below, the analysis of the 142 

scaling laws together with the pairwise intersection of the gene sets shows that 𝑝1 is genome size-143 

dependent and does not fit the assumption of uniform acceptability across all classes of genes. The 144 

coefficient 𝑝1 therefore reflects not only the availability of class-specific genes, but also the class-specific 145 

ability of the microbial cell to tolerate additional genes of the given functional class within the short 146 

time scale. Hence we denote 𝑝1 class-specific genome plasticity.  147 

Under the assumption that the genome size is approximately constant, the scaling laws can be 148 

derived from the relation between 𝑥 and 𝑥1 that is expressed through the selection landscapes and 149 

genome plasticity (see Methods for derivation) 150 

𝑥 = (1 𝑝1(𝑥1)⁄ ) ∙ 𝑥1 ∙ 𝑒−∆𝑆1(𝑥1)        [9] 151 

where ∆𝑆1 is the mean selective (dis)advantage of a gene in the given functional class with respect to a 152 

random gene 153 

∆𝑆1 = 𝑆1 − 𝑆0          [10] 154 

Eq. 9 describes the scaling of the number of genes in a functional class with the total genome size, and 155 

can be interpreted as follows. If class-specific genome plasticity 𝑝1is independent of the number of 156 

genes in the class, the scaling is determined by ∆𝑆1. For constant ∆𝑆1, the scaling is linear, and the slope 157 

is greater (smaller) than 𝑝1for genes that are on average more (less) beneficial than the genome-wide 158 

average, that is, ∆𝑆1 > 0 (∆𝑆1 < 0). Sublinear or super-linear scaling occurs for constant genome 159 

plasticity when ∆𝑆1 depends on the number of genes ∆𝑆1 = ∆𝑆1(𝑥1). Specifically, the scaling is sublinear 160 

(super-linear) when ∆𝑆1 decreases (increases) with 𝑥1.   161 
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The derivation above provides the theoretical framework for inferring the class-specific 162 

selection landscapes and genome plasticity. The selection landscape determines the loss rate, whereas 163 

the genome plasticity is the principal determinant of the gain rate. The number of genes in a genome 164 

represents the balance between the two rates but pairwise genome intersections are determined by the 165 

loss rate alone. Thus, the genome intersection is a crucial ingredient in the analysis and allows us to 166 

disentangle selection landscape and genome plasticity, and determine the dependence of each of these 167 

factors on the number of genes. Because the scaling laws are robust with respect to local influences and 168 

are (nearly) universal across all prokaryotes (see Fig. 1), the evolutionary forces underlying scaling are 169 

likely to be universal to this extent as well. In particular, we assume that the functional class-specific 170 

selection landscapes and genome plasticity are similar for all genomes. Recently, however, we have 171 

shown that genome size evolution is subject to local effects and is governed by taxon-specific factors 172 

[21], in addition to the universal factors. To circumvent this taxon-specificity, represented here by the 173 

genome-wide acquisition and deletion rates 𝛼 and 𝛽, we normalize the class-specific decay constant 𝑘1 174 

by the genomic mean decay constant 𝑘, for each ATGC separately. This normalization cancels out the 175 

ATGC-specific factors and allows us to infer the universal selection landscape and genome plasticity. We 176 

show that both factors depend on the genome size and thus contribute to the shaping of the genome 177 

content, and specifically, the scaling laws. Throughout the analysis we rely on our previous results [21] 178 

for the genome-wide selection landscape 𝑆0 (see Methods). 179 

In the following, we show that the observed scaling exponents, together with the class-specific 180 

selection landscape that emerge from pairwise intersection, are consistent only with genome plasticity 181 

that depends on the number of genes. We first infer the selection landscape from the pairwise 182 

intersections. The class-specific ∆𝑆1, is inferred from the ratio between the class-specific decay constant 183 

and the genomic mean (see Methods for derivation) 184 

𝑘1 𝑘⁄ = 𝐹(−(∆𝑆1 + 𝑆0)) 𝐹(−𝑆0)⁄        [11] 185 

Given that we consider the ratio 𝑘1 𝑘⁄ , the taxon-specific deletion rate 𝛽 cancels out, and the ratio 186 

depends only on global factors, allowing an unbiased comparison among the ATGCs. The interpretation 187 

of Eq.11 is that genes that are associated with larger selection coefficients are exchanged less frequently 188 

than those that are subject to a weaker selection. For example, amino acid metabolism genes (E) show a 189 

𝑘1 𝑘⁄  ratio that increases with the number of genes (Fig. 2D), suggesting that the fitness cost of deletion 190 

of genes in this class drops for larger genomes. This behavior is typical and common to most functional 191 

classes, with the notable exception of defense genes (V) and the mobilome (X; the entirety of integrated 192 

mobile genetic elements) (Fig. S23). Accordingly, ∆𝑆1 decreases with the class-specific number of genes 193 

𝑥1 (Fig. 2E and Fig. S24). However, as explained above, constant plasticity combined with ∆𝑆1 that 194 

decreases with genome size, result in a sublinear scaling (see Eq. 9). The only way to reconcile the 195 

decreasing selection coefficient and super-linear scaling is to introduce genome size-dependent genome 196 

plasticity  𝑝1 = 𝑝1(𝑥1). The next step in the analysis is therefore to infer the genome plasticity, which 197 

can be extracted from the gain probabilities ratio (see Methods for derivation) 198 

(𝑘1𝑥1) (𝑘𝑥)⁄ = 𝑝1(𝑥1) ∙ 𝐹(∆𝑆1 + 𝑆0) 𝐹(𝑆0)⁄       [12] 199 

Similarly to Eq. 11, the genome-wide acquisition rate 𝛼, which can be subject to local influences [21], 200 

cancels out, allowing us to infer the selection landscape and genome plasticity from Eqs. 11 and 12. For 201 
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simplicity, we use linear approximations for ∆𝑆1(𝑥1) and for 𝑝1(𝑥1), to fit the data (Figs. 2E and 2F, and 202 

Supplementary Figs. S23 - S26; see Methods for details).  203 

To better understand how the number of genes in each class is determined by the selection 204 

landscape and genome plasticity, it is useful to compare different classes in some detail. For example, 205 

for amino acid metabolism genes (E), the 𝑘1 𝑘⁄  ratio is below unity (Fig. 2D), and accordingly, ∆𝑆1 is 206 

positive even for larger genomes (Fig. 2E). For this gene class, plasticity increases with the genome size 207 

(Fig. 2F), leading to the observed moderate super-linear scaling, despite the decrease in ∆𝑆1 with 𝑥1 (see 208 

Eq. 9). In contrast, the abundance of transcription genes (K), primarily, regulators, grows with the 209 

genome size such that the 𝑘1 𝑘⁄  ratio becomes greater than unity (Fig. 2G) which correspond to ∆𝑆1 210 

turning negative (Fig. 2H). The higher abundance and the super-linear scaling of transcription genes (K) 211 

is therefore attributed to the genome plasticity of this class, which is twice as high as that for amino acid 212 

metabolism genes (E) (Figs. 2F and 2I). This interplay between the selection landscape and genome 213 

plasticity is common for all gene classes, and consequently, there is a strong negative correlation 214 

between the mean values of ∆𝑆1 and genome plasticity (Fig. 2J; Spearman correlation coefficient 𝜌 =215 

−0.79 (p-val < 10−3). 216 

Finally, we tested the model consistency by reconstructing the scaling laws using the fitted 217 

selection landscapes and genome plasticity. Specifically, for each gene class, the fitted selection 218 

landscape and genome plasticity were substituted into Eq. 9, (Fig. 3A). For most classes, the fit quality of 219 

our model was comparable to albeit slightly worse than that of the power law fit (Table S2). The 220 

immediate source of errors in model fitting is the linear approximations for ∆𝑆1 and for genome 221 

plasticity. Although not optimal, a linear approximation was applied to minimize the number of 222 

assumptions and parameters in the model, and can be regarded as a first order expansion of the actual 223 

functions. It should be noted that, unlike with the direct power law fit of 𝑥1 vs 𝑥 data, the parameters 224 

for the model-derived scaling were inferred from the combination of the number of genes and pairwise 225 

similarity decay rates in ATGCs (Eqs. 11 and 12), that is, measurable quantities that characterize genome 226 

evolution. For all functional classes, with the exception of the defense systems (V) and the mobilome 227 

(X), the relative selection coefficient is positive and decreases with the genome size (Fig. 2E and 228 

Supplementary Fig. S24). For all except 3 functional classes (L, replication and repair; D, cell division; and 229 

V, defense), genome plasticity increases with the number of genes (Fig. 2F and Fig. S26), that is, the 230 

larger the genome, the higher the probability that an additional gene can be incorporated into the 231 

corresponding functional networks. Both the plasticity slope and the mean plasticity strongly, positively 232 

correlate with the scaling exponent, with respective Spearman correlation coefficients 𝜌 = 0.81 233 

(p-val < 10−3) and 𝜌 = 0.74 (p-val < 10−3) (Fig. 3B).  234 

Functional classes with high plasticity, and accordingly, super-linear scaling exponents, are 235 

evolutionarily flexible and can be thought of as the microbial adaptation reserve. The biological 236 

properties of these classes appear compatible with this interpretation. Indeed, the 4 classes with the 237 

highest scaling exponents, namely, secondary metabolism (Q), transcription (K), signal transduction (T) 238 

and carbohydrate metabolism (G), are involved in reaction to rapidly changing environmental ques, 239 

including various biological conflicts (many of the Q category genes are involved in antibiotic production 240 

and resistance). These classes have high (G and K) or moderate (Q and T) plasticity and accordingly can 241 

accumulate in genomes to the point that the class-specific relative selection coefficient ∆𝑆1 becomes 242 

negative so that these genes incur a non-negligible fitness cost on the organism. The genome similarity 243 

decay constant ratio 𝑘1 𝑘⁄  for these functional categories is unity or greater in the majority of the 244 
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ATGCs, that is, these genes are also lost at rates similar or higher than the average gene, resulting in 245 

their overall dynamic evolution. Notably, the gene categories with only a general functional prediction 246 

(R) and without any prediction (S) also showed super-linear scaling (albeit less pronounced than the 247 

above 4 classes) and high plasticity, suggesting that at least some of these genes contribute to adaptive 248 

processes. In agreement with previous results [23], we found that defense systems and the mobilome 249 

(the entirety of integrated mobile elements) incur a fitness cost on prokaryotes, and the relative cost of 250 

the mobile elements is an order of magnitude greater than that of defense systems. Not surprisingly, the 251 

genome plasticity of the mobilome also stands out, being at least an order of magnitude greater than 252 

that of all other classes (Table 1). Conversely, for sublinear classes, plasticity is low, so that incorporation 253 

of additional genes is unlikely albeit becoming more accessible in larger genomes. The genes in these 254 

classes are responsible for house-keeping functions that contribute less to short-term adaptation than 255 

the super-linear gene classes.   256 

As a characteristic of the evolution of gene classes that can be directly determined from genome 257 

comparison, we analyzed the category-specific core genomes and pangenomes [24] (Fig. 3C). The 258 

normalized core genome and pangenome sizes correlate with the scaling exponent significantly and 259 

negatively for the core but positively for the pangenome, with the respective Spearman correlation 260 

coefficients 𝜌 = −0.55 (p-val = 0.007) and 𝜌 = 0.56 (p-val = 0.005). As expected, sublinear 261 

categories are associated with large relative core genomes and small relative pangenomes, compared to 262 

super-linear categories that make the principal contribution to the pangenome expansion. Thus, class-263 

specific genome plasticity appears to shape the dynamics and architecture of microbial pangenomes.  264 

To summarize, we provide here a general theoretical model explaining the universal scaling of 265 

the functional classes of genes in prokaryotes. The fits to the genomic data obtained with this model are 266 

comparable, even if slightly inferior to direct power law fits. This model does not include any 267 

assumptions on specific relationships between different functional classes as postulated in the previous 268 

models. Instead, we introduce an additional class-specific parameter that governs gene gain and loss 269 

processes, besides the selection coefficient, which we denote genome plasticity. Plasticity reflects the 270 

strength of purifying selection against horizontally acquired genes that has been previously described as 271 

the HGT barrier [25] as well as the availability of the genes of the given functional class which itself 272 

depends on their abundance in the external gene pool. Plasticity can be considered one of the forms of 273 

evolvability, a much debated concept [26-30] that, however, becomes the key factor shaping genome 274 

evolution in our model. 275 

 276 

Materials and Methods 277 

 278 

Genomic dataset 279 

Clusters of closely related species from the ATGC database [10] that contain 10 or more 280 

genomes each were used in the analyses. The database includes fully annotated genomes and a 281 

phylogenetic tree for each cluster. Within each cluster of genomes, genes are grouped into clusters of 282 

orthologs (ATGC-COGs). Out of all genome clusters that contain 10 genomes or more, we selected the 283 

36 genome clusters that match the following criteria: i) maximum pairwise tree distance is at least 0.1, 284 

and ii) the phylogenetic tree contains more than two clades, such that pairwise tree distances are 285 
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centered around more than two typical values. Two of the 36 genome clusters were identified as 286 

outliers and were excluded from the dataset. The 34 genome clusters analyzed in this study are listed in 287 

Table S3. The ATGC-COGs were assigned to functional categories as defined in the COG database [14]. 288 

Genome sizes and sizes of functional classes of genes are given by the number of ATGC-COGs that are 289 

present in each genome and belong to the respective classes. Multiple genes from a single genome that 290 

belong to the same ATGC-COG were counted once. Genes without orthologs in other genomes (ORFans) 291 

genes were excluded from the analyses. Genome content analysis was performed for 20 COG 292 

categories. Functional classes of genes that were analyzed are listed in Table 1.  293 

Genome size evolution model 294 

Substituting the gain and loss rates, 𝑃+ and 𝑃− of Eqs. 5 and 6, respectively, into the genome 295 

size dynamic of Eq. 1, we get the relation 296 

d𝑥

d𝑡
= 𝛼(𝑥) ∙ 𝐹(𝑆0) − 𝛽(𝑥) ∙ 𝐹(−𝑆0)       [13] 297 

where scaling the time by the effective population size 𝑁𝑒, allows to express gain and loss rates through  298 

𝑆0 = 𝑁𝑒𝑠0, where 𝑠0 is the genome=wide average of the selection coefficient. Finally, we used the fact 299 

that, if an acquisition event is associated with selection coefficient 𝑆0, a deletion event would be 300 

associated with selection coefficient −𝑆0 [9, 21]. The population size-scaled fixation probability 𝐹 can be 301 

written as [31] 302 

𝐹(𝑆0) =
𝑆0

1−𝑒−𝑆0
          [14] 303 

For a steady state, where 𝑃+ = 𝑃−, the selection and deletion bias are related by 304 

𝑒𝑆0 = 𝑟(𝑥)          [15] 305 

where the deletion bias 𝑟 is defined as 𝑟 = 𝛽 𝛼⁄ . The equation above reflects the selection-drift balance. 306 

Distinct functional classes of genes  307 

In analogy to the stochastic equation for complete genome size dynamics, the dynamics of the 308 

number of genes that belong to a distinct functional class, denoted by 𝑥1, can be obtained by 309 

substituting the category-specific gain and loss rates of Eqs. 7 and 8, respectively, into Eq. 3 310 

d𝑥1

d𝑡
= 𝑝1(𝑥1) ∙ 𝛼(𝑥) ∙ 𝐹(𝑆1) −

𝑥1

𝑥
∙ 𝛽(𝑥) ∙ 𝐹(−𝑆1)     311 

 [16] 312 

We assume a steady state and set d𝑥1 d𝑡⁄ = 0 in the equation above. Expressing the deletion bias 𝑟 =313 

𝛽 𝛼⁄  by the complete genome selection coefficient 𝑆0 using Eq. 15, we get the steady state relation of 𝑥 314 

and 𝑥1, given by Eq. 9. 315 

Pairwise genome intersections 𝐼 316 

To account for the genome content similarity, each genome is represented by a vector 𝑿 with 317 

elements that assume values of 1 or 0. Each entry represents an ATGC-COG, where 1 or 0 indicate 318 

presence or absence, respectively, of that ATGC-COG in the genome. Genome size 𝑥 is then given by the 319 

sum of all elements in 𝑿. The number of common genes 𝐼 is defined as 320 

𝐼(𝑡) = 〈𝑿 ∙ 𝒀〉          [17] 321 
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where 𝑿 and 𝒀 are two vectors that represent the two genomes, the angled brackets indicate averaging 322 

over all possible pairs of genomes, and the dot operation stands for a scalar product. The pairwise 323 

genomes intersection dynamic is given by 324 

d𝐼

d𝑡
= 2〈(d𝑿 d𝑡⁄ ) ∙ 𝒀〉         [18] 325 

where we used the fact that both averages are equal 〈(d𝑿 d𝑡⁄ ) ∙ 𝒀〉 = 〈𝑿 ∙ (d𝒀 d𝑡⁄ )〉. Assuming a finite 326 

gene pool of size 𝐿, we have 327 

〈(d𝑿 d𝑡⁄ ) ∙ 𝒀〉 = −𝑃− ∙
𝐿

𝐿−𝑥
∙ 𝐼(𝑡) 𝑥 +⁄ 𝑃− ∙

𝑥

𝐿−𝑥
      [19] 328 

where the last approximation relies on the steady state assumption 𝑃+ ≈ 𝑃−. Substituting the relation 329 

above into the equation for the pairwise genome similarity time derivative and solving the differential 330 

equation, we obtain the exponential decay of the pairwise genome intersection to an asymptote 𝑥2 𝐿⁄  331 

𝐼(𝑡) = (𝐼(0) − 𝑥2 𝐿⁄ ) ∙ 𝑒−𝑣𝑡 + 𝑥2 𝐿⁄        [20] 332 

with decay constant 333 

𝑣 =
2𝑃−

𝑥
∙

𝐿

𝐿−𝑥
          [21] 334 

Assuming a clock with respect to loss events, the time 𝑡 can be translated into tree pairwise distance as 335 

𝑑 = 2𝑡 𝑡0⁄ . Further assuming that the gene pool is much larger than the mean genome size 𝐿 ≫ 𝑥, the 336 

pairwise similarity decays exponentially with respect to tree distance 𝑑 as 337 

𝐼(𝑑) = 𝑥 ∙ 𝑒−𝑘𝑑          [22] 338 

with decay constant 339 

𝑘 =
𝑡0

𝑥
∙ 𝑃−          [23] 340 

Note that the ratio 𝑃− 𝑥⁄  gives the per-gene loss rate. It is possible to consider pairwise genome 341 

intersections with respect to a subset of genes. The derivation of Eqs. 17-23 can be repeated for genes 342 

that belong to a specific functional class. The functional class-specific genome intersection is therefore 343 

given by  344 

𝐼1(𝑑) = 𝑥1 ∙ 𝑒−𝑘1𝑑         [24] 345 

with decay constant  346 

𝑘1 =
𝑡0

𝑥1
∙ 𝑃1

−          [25] 347 

Note that for the ratio 𝑘1 𝑘⁄ , the time scaling constant 𝑡0 cancels out, and we have 348 

𝑘1 𝑘⁄ = (𝑥 𝑥1⁄ ) ∙ (𝑃1
− 𝑃−⁄ )        [26] 349 

Extraction of pairwise genome intersections decay constants from genomic data 350 

Pairwise genome intersections 𝐼 were calculated for all pairs of genomes in all genome clusters. 351 

Genome intersections were calculated for complete genomes as well as for different functional classes. 352 

Phylogenetic pairwise distances were extracted from the respective phylogenetic trees. The decay 353 
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constants 𝑘 and 𝑘1 were obtained by fitting the data to exponential decays (see below). Because ORFans 354 

genes were excluded from the dataset, the intercept was forced to the number of genes. Pairwise 355 

genome intersections are shown for all ATGCs for complete genomes and for all functional classes in 356 

Figs. S2-S22.  357 

Extraction of functional class-specific selection landscapes 358 

To filter out taxon-specific factors [21] to the maximum extent possible, for each cluster of 359 

genomes we consider the category-specific quantities compared to the complete genome. Substituting 360 

the complete genome and class-specific gene loss rates of Eq. 6 and Eq. 8, respectively, into Eq. 26, we 361 

get the relation 362 

𝑘1

𝑘
=

𝐹(−𝑆1)

𝐹(−𝑆0)
          [27] 363 

The class-specific selection landscape  𝑆1 is inferred from Eq. 27 as follows. The complete genome 364 

selection landscape 𝑆0 is known (see below), and the decay constants 𝑘 and 𝑘1 are inferred from the 365 

data, as explained in the previous subsection. Finally, the genome plasticity is inferred using the gain 366 

rates. Under the steady state assumption, gain and loss rates are equal, such that Eq. 26 can be 367 

approximated by 368 

𝑘1 𝑘⁄ = (𝑥 𝑥1⁄ ) ∙ (𝑃1
+ 𝑃+⁄ )        [28] 369 

Substituting the complete genome and category-specific gain rates of Eq. 5 and Eq. 7, respectively, we 370 

get the equation for the genome plasticity 371 

𝑘1𝑥1

𝑘𝑥
= 𝑝1(𝑥1) ∙

𝐹(𝑆1)

𝐹(𝑆0)
         [29] 372 

In a previous study, we found that the complete genome selection landscape  𝑆0 is related to the total 373 

number of genes by [21] 374 

𝑆0 = ln(0.7 ∙ 𝑥0.06)         [30] 375 

For simplicity, 𝑆1 is calculated relatively to 𝑆0, and the difference is taken to first order in 𝑥1 376 

𝑆1 = 𝑆0 − 𝑞(𝑥1 − 𝜉1)         [31] 377 

Similarly to ∆𝑆1, the plasticity is taken as a first order function in 𝑥1 378 

𝑝1(𝑥1) = 𝑎 + 𝑏 ∙ 𝑥1         [32] 379 

The resulting fits for the 𝑘1 𝑘⁄  ratio of Eq. 26, and the ratio of Eq. 28 are shown for all COG categories in 380 

Figs. S23 and S25, respectively. Fitted relative selection landscape ∆𝑆1 and genome plasticity are shown 381 

for all COG categories in Figs. S24 and S26, respectively. 382 

Data fitting and model parameters optimization 383 

The numbers of genes in each class are discrete counts that typically span about one order of 384 

magnitude. Accordingly, it is assumed that the errors follow negative binomial distribution, and fitting 385 

was performed by optimizing model parameters together with the negative binomial distribution 386 

dispersion parameter, such that the log-likelihood is maximal.  387 
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Inference of scaling power 388 

Power law scaling exponents are obtained by fitting the genomic data to the curve 𝑥1 = 𝜂 ∙ 𝑥𝛾. 389 

For each functional class, parameters 𝑎 and 𝛾 together with the negative binomial distribution 390 

dispersion parameter are optimized by maximizing the log likelihood for all genomes in the dataset. 391 

Genomes that do not contain genes that belong to the respective class were excluded from the analysis. 392 

The resulting fits are shown in Fig. 1, and the fit AIC values are listed in Table S2. 393 

Inference of pairwise intersection decay constants  394 

The pairwise intersections decay constants 𝑘 and 𝑘1 were inferred by fitting Eqs. 22 and 24 395 

separately for each ATGC to the genomic data. The intercept is set to the mean number of genes (𝑥 for 396 

complete genomes and 𝑥1 for class-specific genes), such that the decay constant and the negative 397 

binomial dispersion parameter are optimized by maximizing the log-likelihood. Genomes that do not 398 

contain genes that belong to the respective class were excluded from the analysis. Fits are shown in Figs 399 

S2-S22. 400 

Optimizing model parameters 401 

For each functional class, 4 model parameters, 𝑞, 𝜉1, 𝑎 and 𝑏 of Eqs. 31 and 32, are optimized 402 

using the mean numbers of genes and decay constants for each ATGC, 𝑥, 𝑥1, 𝑘 and 𝑘1. Specifically, all 4 403 

model parameters are optimized simultaneously using Eqs. 27 and 29, together with 𝑆0 of Eq. 30, by 404 

maximizing the goodness of fit 𝑅2 for both equations. Fits based on Eq. 27 are shown for all functional 405 

categories in Fig. S23, and those for Eq. 29 are shown in Fig. S25. 406 

Statistical analysis of scaling exponents 407 

For each functional class, power law is fitted to a collection of genes generated by bootstrapping 408 

the original dataset. Specifically, the sampled dataset is generated by sampling with replacement the 409 

ATGCs, and collecting all genomes in sampled ATGCs. Sampling is performed over ATGCs and not directly 410 

at the level of genomes in order to avoid sampling bias due to the different number of genomes in each 411 

ATGC. The distribution of the fitted scaling exponents is shown for each class for 1000 bootstrap 412 

samplings in Fig. S1. For each pair of classes, the distribution overlap 𝐶 is calculated. Specifically, for 413 

categories X and Y, with scaling exponents 𝛾𝑋 ≤ 𝛾𝑌 for the original dataset and bootstrap exponents 𝛾𝑖
𝑋 414 

and 𝛾𝑗
𝑌, the overlap is given by 415 

𝐶𝑋𝑌 = (∑ ∑ 𝑐𝑖𝑗
𝑋𝑌

1000

𝑗=1

1000

𝑖=1
) 10002⁄  416 

with  417 

𝑐𝑖𝑗
𝑋𝑌 = {1  for  𝛾𝑖

𝑋 > 𝛾𝑗
𝑌

0                   else
 418 

Given that, for the original dataset, the scaling exponent of class X is smaller than that of class Y, the 419 

overlap 𝐶𝑋𝑌 indicates the probability of a bootstrap exponent of class X to be greater than the bootstrap 420 

exponent of class Y. Accordingly, 𝐶𝑋𝑋 = 1 2⁄ . 421 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357400doi: bioRxiv preprint 

https://doi.org/10.1101/357400
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References 
1. De Lazzari, E., et al., Family-specific scaling laws in bacterial genomes. Nucleic 

Acids Res, 2017. 45(13): p. 7615-7622. 
2. Konstantinidis, K.T. and J.M. Tiedje, Trends between gene content and genome size 

in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A, 2004. 101(9): 
p. 3160-5. 

3. Koonin, E.V. and Y.I. Wolf, Genomics of bacteria and archaea: the emerging 
dynamic view of the prokaryotic world. Nucleic Acids Res, 2008. 36(21): p. 6688-
719. 

4. Molina, N. and E. van Nimwegen, Scaling laws in functional genome content across 
prokaryotic clades and lifestyles. Trends Genet, 2009. 25(6): p. 243-7. 

5. van Nimwegen, E., Scaling laws in the functional content of genomes. Trends 
Genet, 2003. 19(9): p. 479-84. 

6. Maslov, S., et al., Toolbox model of evolution of prokaryotic metabolic networks 
and their regulation. Proc Natl Acad Sci U S A, 2009. 106(24): p. 9743-8. 

7. Pang, T.Y. and S. Maslov, A toolbox model of evolution of metabolic pathways on 
networks of arbitrary topology. PLoS Comput Biol, 2011. 7(5): p. e1001137. 

8. Grilli, J., et al., Joint scaling laws in functional and evolutionary categories in 
prokaryotic genomes. Nucleic Acids Res, 2012. 40(2): p. 530-40. 

9. Sela, I., Y.I. Wolf, and E.V. Koonin, Theory of prokaryotic genome evolution. Proc 
Natl Acad Sci U S A, 2016. 113(41): p. 11399-11407. 

10. Kristensen, D.M., Y.I. Wolf, and E.V. Koonin, ATGC database and ATGC-COGs: an 
updated resource for micro- and macro-evolutionary studies of prokaryotic 
genomes and protein family annotation. Nucleic Acids Res, 2017. 45(D1): p. D210-
D218. 

11. Wolf, Y.I., et al., Two fundamentally different classes of microbial genes. Nat 
Microbiol, 2016. 2: p. 16208. 

12. Cordero, O.X. and P. Hogeweg, Regulome size in Prokaryotes: universality and 
lineage-specific variations. Trends Genet, 2009. 25(7): p. 285-6. 

13. Molina, N. and E. van Nimwegen, The evolution of domain-content in bacterial 
genomes. Biol Direct, 2008. 3: p. 51. 

14. Galperin, M.Y., et al., Expanded microbial genome coverage and improved protein 
family annotation in the COG database. Nucleic Acids Res, 2015. 43(Database 
issue): p. D261-9. 

15. Kolsto, A.B., Dynamic bacterial genome organization. Mol Microbiol, 1997. 24(2): 
p. 241-8. 

16. Koonin, E.V., Comparative genomics, minimal gene-sets and the last universal 
common ancestor. Nat Rev Microbiol, 2003. 1(2): p. 127-36. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357400doi: bioRxiv preprint 

https://doi.org/10.1101/357400
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Mushegian, A.R. and E.V. Koonin, A minimal gene set for cellular life derived by 
comparison of complete bacterial genomes. Proc Natl Acad Sci U S A, 1996. 93(19): 
p. 10268-73. 

18. Baumdicker, F., W.R. Hess, and P. Pfaffelhuber, The infinitely many genes model 
for the distributed genome of bacteria. Genome Biol Evol, 2012. 4(4): p. 443-56. 

19. Plata, G., C.S. Henry, and D. Vitkup, Long-term phenotypic evolution of bacteria. 
Nature, 2015. 517(7534): p. 369-72. 

20. Mavrich, T.N. and G.F. Hatfull, Bacteriophage evolution differs by host, lifestyle and 
genome. Nat Microbiol, 2017. 2: p. 17112. 

21. Sela, I., Y.I. Wolf, and E.V. Koonin, Estimation of universal and taxon-specific 
parameters of prokaryotic genome evolution. PLoS One, 2018. 13(4): p. e0195571. 

22. Bershtein, S., et al., Protein Homeostasis Imposes a Barrier on Functional 
Integration of Horizontally Transferred Genes in Bacteria. PLoS Genet, 2015. 
11(10): p. e1005612. 

23. Iranzo, J., et al., Disentangling the effects of selection and loss bias on gene 
dynamics. Proc Natl Acad Sci U S A, 2017. 114(28): p. E5616-E5624. 

24. McInerney, J.O., A. McNally, and M.J. O'Connell, Why prokaryotes have 
pangenomes. Nat Microbiol, 2017. 2: p. 17040. 

25. Sorek, R., et al., Genome-wide experimental determination of barriers to horizontal 
gene transfer. Science, 2007. 318(5855): p. 1449-52. 

26. Crombach, A. and P. Hogeweg, Evolution of evolvability in gene regulatory 
networks. PLoS Comput Biol, 2008. 4(7): p. e1000112. 

27. Lehman, J. and K.O. Stanley, Evolvability is inevitable: increasing evolvability 
without the pressure to adapt. PLoS One, 2013. 8(4): p. e62186. 

28. Masel, J. and M.V. Trotter, Robustness and evolvability. Trends Genet, 2010. 26(9): 
p. 406-14. 

29. Pigliucci, M., Is evolvability evolvable? Nat Rev Genet, 2008. 9(1): p. 75-82. 
30. Wagner, A., Robustness, evolvability, and neutrality. FEBS Lett, 2005. 579(8): p. 

1772-8. 
31. McCandlish, D.M., C.L. Epstein, and J.B. Plotkin, Formal properties of the 

probability of fixation: identities, inequalities and approximations. Theor Popul 
Biol, 2015. 99: p. 98-113. 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357400doi: bioRxiv preprint 

https://doi.org/10.1101/357400
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357400doi: bioRxiv preprint 

https://doi.org/10.1101/357400
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figures 

 

Figure 1. Scaling laws for all functional classes of the COGs. The number of genes in a given COG 

category is plotted against the total number of genes. Each point represents one genome from the 

analyzed set of 1490 genomes. The scaling is fitted to a power law which is indicated by a solid red line. 

The fitted scaling exponent is indicated in parentheses.   
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Figure 2. Decay of gene content similarity, selection landscapes and genome plasticity. (A) Pairwise 

genomes intersections 𝐼 plotted against tree distance 𝑑 for complete genomes of ATGC001. Each point 

represents a pair of genomes in the ATGC, and the exponential decay fit of Eq. 2 is shown by the red 

solid line. (B) Pairwise genomes intersections for translation genes (J) from genomes of ATGC001. Each 

point represents a pair of genomes in the ATGC, and the exponential decay fit of Eq. 21 is shown by the 

red solid line. (C) Pairwise genomes intersections for transcription genes (K) from genomes of ATGC001. 
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Each point represents a pair of genomes in the ATGC, and the exponential decay fit of Eq. 21 is shown by 

the red solid line). (D) Decay constant ratio 𝑘1 𝑘⁄  is plotted against the number of genes in the 

functional category 𝑥1 for amino acid metabolism genes (E). Each point corresponds to an ATGC from 

the dataset. The model fit based on Eq. 11 together with the complete and class-specific selection 

landscapes of Eqs. 29 and 30, respectively, is shown by the solid red line. (E) The class-specific selection 

coefficient  ∆𝑆1 of Eq. 10 for amino acid metabolism genes (E), resulting from the fit shown in panel D. 

(F) Genome plasticity fitted using the linear approximation of Eq. 31 for amino acid metabolism genes 

(E). (G) Decay constant ratio 𝑘1 𝑘⁄  is plotted against the number of genes in the functional category 𝑥1 

for transcription genes (K). Each point corresponds to an ATGC from the dataset. The model fit based on 

Eq. 11 together with the complete and class-specific selection landscapes of Eqs. 29 and 30, respectively, 

is shown by the solid red line. (H) The class-specific selection coefficient  ∆𝑆1 of Eq. 10 for transcription 

genes (E), resulting from the fit shown in panel G.  (I) Genome plasticity fitted using the linear 

approximation of Eq. 31 for transcription genes (K). (H) Mean ∆𝑆1 plotted against mean plasticity, for all 

functional classes. Mean values were calculated by averaging over all ATGCs.  
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Figure 3. Model-derived scaling exponents for different functional classes of genes, genome plasticity, 

core genomes and pangenomes. (A) The number of genes in a COG functional category is plotted 
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against the total number of genes. Blue points correspond to the mean values for each ATGC in the 

dataset. Individual genomes are indicated by gray points. The model fit of Eq. 9 is shown by the solid red 

line. (B) Average plasticity across all ATGCs and plasticity slope are plotted against the scaling exponent. 

Each point corresponds to a functional class of genes. The mobilome is associated with genome 

plasticity that is an order of magnitude greater than those of the other gene classes, and was excluded 

from the plot. (C) Class-specific pangenome 𝐺1 and core genome 𝐼1
(𝑁)

 are plotted against the scaling 

exponent for ATGC001. Each point corresponds to a functional class of genes. To allow comparison 

between classes, pangenomes and core genomes are normalized by the number of genes in each class. 

 

Table 1  
Scaling, selection and plasticity in different functional classes of microbial genes 

Class Functions 
scaling 

exponent 
∆𝑆1 slope  

average 
∆𝑆1 

average 
plasticity 

plasticity 
slope 

J translation 0.35 -1.10E-02 2.68 0.005 1.54E-05 

L replication and repair 0.51 -1.35E-03 0.98 0.013 -9.18E-05 

D cell division 0.64 -1.58E-05 1.83 0.002 -3.21E-05 

F 
nucleotide metabolism 

and transport 
0.69 

-1.75E-02 
2.15 0.003 3.65E-05 

O 

posttranslational 
modification, protein 

turnover, and 
chaperone functions 

0.83 

-5.42E-03 

1.38 0.010 4.88E-05 

M 
membrane and cell wall 

structure and 
biogenesis 

0.88 
-1.05E-03 

0.65 0.029 4.57E-05 

H coenzyme metabolism 0.88 -4.68E-03 1.51 0.011 4.62E-05 

V defense 0.94 -3.72E-07 -0.44 0.034 -6.68E-05 

C 
energy production and 

conversion 
1.00 

-4.52E-03 
1.19 0.017 8.92E-05 

I lipid metabolism 1.08 -4.86E-03 0.92 0.016 1.24E-04 

N secretion and motility 1.18 -7.13E-08 0.27 0.014 1.07E-04 

X 
Mobilome: prophages, 

transposons 
1.24 

-2.06E-04 
-4.76 1.021 1.12E-02 

P 
inorganic ion transport 

and metabolism 
1.24 

-3.76E-03 
0.75 0.026 1.15E-04 

E 
amino acid metabolism 

and transport 
1.24 

-1.90E-03 
1.12 0.028 8.15E-05 

R 
general functional 

prediction only 
1.26 

-1.05E-03 
0.37 0.051 1.15E-04 

S function unknown 1.27 -5.92E-07 0.55 0.025 3.35E-05 
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G 
carbohydrate 

metabolism and 
transport 

1.47 
-1.86E-03 

0.46 0.041 1.65E-04 

T signal transduction 1.49 -1.28E-03 0.57 0.030 1.25E-04 

K transcription 1.63 -1.67E-03 0.27 0.058 1.81E-04 

Q 
biosynthesis, transport, 

and catabolism of 
secondary metabolites 

1.69 
-5.77E-03 

0.06 0.021 2.54E-04 

 

 

Supplementary figures and table captions 
 

FIG. S1: Statistical support for scaling exponents calculated using bootstrap (see Methods). The 

distribution of fitted scaling exponents is shown for each class, for 1000 bootstrap samplings. The mean 

of the distributions is indicated by vertical dashed blue line, and the fitted scaling exponent for the 

original dataset is indicated by a vertical solid red line. 

FIG. S2: Pairwise genome intersections I for complete genomes is plotted against tree distance d. 

Exponential decay fit of Eq. 2 is shown by a solid red line. The ATGC numbers are indicated in figure 

titles. 

FIG. S3-S22: Pairwise intersections I1 for COG functional category J is plotted against tree distance d. 

Exponential decay fit of Eq. 21 is shown by a solid red line. The ATGC numbers are indicated in figure 

titles.  

FIG. S23: Pairwise intersections decay constants ratio k1/k for all functional categories, together with 

fitted selection landscape (see Eq. 11). COG functional category name is indicated in the plot title, 

together with the functional category scaling exponent, which is indicated in parentheses. 

FIG. S24: Fitted relative selection landscape ∆𝑆1 for all functional categories (see Eq. 10). COG functional 

category name is indicated in the plot title, together with the functional category scaling exponent, 

which is indicated in parentheses. 

FIG. S25: The ratio (k1x1) /(kx) for all functional categories, together with fitted selection landscape and 

genome plasticity (see Eq. 12). COG functional category name is indicated in the plot title, together with 

the functional category scaling exponent, which is indicated in parentheses. 

FIG. S26: Fitted genome plasticity 𝑝(𝑥1) for all functional categories. COG functional category name is 

indicated in the plot title, together with the functional category scaling exponent, which is indicated in 

parentheses. 

 

TABLE S1: Overlap of scaling exponent bootstrap distribution of Fig. S1 (see Methods).  
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TABLE S2: Comparison of the fit quality to the genomic data for power law scaling and model-derived 

scaling (Eq. 9) in terms of Akaike Information Criterion (AIC). 

TABLE S3: Genome clusters (ATGCs) in the analyzed dataset. 
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