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Abstract

Protein quantification by label-free shotgun proteomics experiments is plagued by a multitude
of error sources. Typical pipelines for identifying differentially expressed proteins use intermediate
filters in an attempt to control the error rate. However, they often ignore certain error sources and,
moreover, regard filtered lists as completely correct in subsequent steps. These two indiscretions can
easily lead to a loss of control of the false discovery rate (FDR). We propose a probabilistic graphical
model, Triqler, that propagates error information through all steps, employing distributions in
favor of point estimates, most notably for missing value imputation. The model outputs posterior
probabilities for fold changes between treatment groups, highlighting uncertainty rather than hiding
it. We analyzed 3 engineered datasets and achieved FDR control and high sensitivity, even for
truly absent proteins. In a bladder cancer clinical dataset we discovered 35 proteins at 5% FDR,
with the original study discovering none at this threshold. Compellingly, these proteins showed
enrichment for functional annotation terms. The model executes in minutes and is freely available
at https://pypi.org/project/triqler/.

Introduction

Shotgun proteomics has in recent years made rapid advances from being a tool for large-scale identifi-
cation to also include accurate quantification of proteins [22]. software packages have been developed
to facilitate the quantitative interpretation of MS data, for a review see e.g. [20]. Compared to soft-
ware for protein identification, the protein quantification pipelines contain many more facets, whereof
one actually is protein identification. Slowly but steadily the softwares for protein identification are
getting their error rates under better control, though much work is still left [26, 31]. However, error
rates in protein quantification have been mostly limited to setting intermediate false discovery rate
(FDR) thresholds for the identifications or other heuristic cutoffs, such as requiring at least a certain
number of peptides [8, 3] or a certain correlation between peptide quantifications [40, 39]. This gives
no direct control of the errors in the reported lists of differential proteins and also discards poten-
tially valuable information for proteins that just missed one of the thresholds. Consequently, many
protein-level differential expression methods lack sensitivity, and several researchers refrain from using
multiple hypothesis corrections of their summarized proteins [23]. We believe that we no longer have
to accept this, as the necessary tools are already available to us in the framework of Bayesian statistics.
In particular, we note that probabilistic graphical models (PGM) have the innate ability to combine
several sources of errors.

Bayesian statistics has already been used in several applications within proteomics. Most notably, it
is currently being used for PSM-level identification FDR estimates [7, 12], and protein inference [28].
More recently, Bayesian methods have been applied to labeled protein quantification [27, 21]. Each of
these methods has applied Bayesian statistics to parts of the quantification pipeline, but an integrated
model for protein quantification is still lacking.

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 28, 2018. ; https://doi.org/10.1101/357285doi: bioRxiv preprint 

https://doi.org/10.1101/357285
http://creativecommons.org/licenses/by/4.0/


To understand why an integrated model is of utmost importance is by formulating the hypothesis we
are actually interested in [32]: one strives to estimate the combined probability that a particular protein
is (i) correctly identified, (ii) correctly quantified and (iii) present in a different quantity between
treatment groups. The separate probabilities of (i), (ii) and (iii) are less interesting individually and
worse, one is easily lulled into a false sense of reliability by claims of control of the FDR in individual
steps. What we generally fail to acknowledge is that the intermediate lists are considered as fully
correct by subsequent steps. The most striking example is the widely used approach of applying
say a 5% protein-level identification FDR threshold, followed by a 5% differential-expression FDR
threshold. Say that the protein-level identification threshold results in a list of 1000 proteins and
the subsequent application of the differential-expression threshold results in a list of 20 differentially
expressed proteins. This might seem reasonable, but, in the worst case, all these 20 significant proteins
could be among the 50 false positives from the identification step. While this is unlikely, the example
illustrates that we have lost control of the FDR with respect to the hypothesis formulated above.

There are many other types of errors that can be made in a protein quantification pipeline that affect
one or more of (i), (ii) and (iii). Firstly, proteins are selected for further analysis based on identification
FDR. However, the identification FDR is an estimate of the evidence for the presence of proteins [32],
and not a measure of how quantifiable they are i.e. their peptides being detected across conditions
and being in the quantifiable range. Also, the identification FDR is often only controlled on PSM-
level, which is known to underestimate the actual errors once evidence is integrated on peptide- or
protein-level [10]. Secondly, missing values are rampant in data-dependent acquisition [37, 17]. Poor
imputation strategies can result in unreliable results [13, 36], whereas better imputation strategies
convolute the p value distribution from a differential expression test [13]. Thirdly, we generally rely on
the fact that by averaging the peptide quantities a reliable protein quantity estimate will be obtained.
However, a single misidentification, quantification error or poorly imputed value can dramatically
change the results [39]. Finally, t-tests or ANOVAs are typically employed to search for differentially
expressed proteins. In the best case, multiple hypothesis testing is applied to transform the often
wrongly interpreted p values into more easily interpretable FDRs. It is common practice to set an a
posteriori cut-off for the minimum fold change to filter out proteins with low effect size [33, 4], but
this filtering actually invalidates the calculated FDRs [18]. Each of the above errors alone can cause
a severe increase in false positives that remain unaccounted for and in many quantification pipelines
multiple of these error sources are actually ignored. Furthermore, the overall effect of ignoring these
error sources is an increase in variance leading to a drop in sensitivity of the subsequent t-tests, as
mentioned above.

Bayesian methods provide a natural framework for accounting for the uncertainty at each step and
propagating it to subsequent steps. For example, in the context of missing value imputation, one typi-
cally assigns a single value to replace the missing value. From this point on, this imputed value is just
as reliable as any quantity that originated from an actual observation, which is intuitively ridiculous.
In a Bayesian framework, we could instead assign a probability distribution over the possible values
of the missing value, and when inferring the protein’s quantity we would then marginalize over it,
that is, integrate over all the possible imputed values using their respective probabilities. This will
result in a posterior distribution, that is after (post) the observation, for the protein’s quantity. This
distribution will have incorporated the uncertainty due to the missing value, manifested by a larger
variance than proteins without missing values.

Another important and often criticized aspect of Bayesian statistics are prior probabilities. Contrary
to posterior distributions, prior probabilities reflect the probabilities before (prior) observations have
been made. Prior probabilities allow us to smoothen out observations that do not fit with our initial
beliefs. In the context of protein quantification, we will typically believe that most proteins are not
differentially expressed. Having a single peptide exhibiting aberrant values should not immediately
convince us of differential expression, as there could be a number of explanations for deviating values.
However, the more peptides of that protein that show the same behavior, the more we have to override
our prior belief and at some point, we will accept that the protein is differentially expressed. The
controversial part of prior probabilities is that it is subjective, as each person can have a different set
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Figure 1: A comparison between the accounting of the errors sources of a traditional and
an explicitly modeled LFQ pipeline. Each of the steps in the quantification pipeline introduces
errors, which can roughly be classified as association and quantification errors. Some steps also reduce
the error rate, for example by integrating evidence over multiple PSMs or peptides. In a typical
pipeline, errors are implicitly propagated through different steps, resulting in a loss of control of the
FDR. In contrast, the graphical model explicitly propagates uncertainty in each step and thereby
controls the FDR up unto the final step. Because the uncertainty is explicitly propagated in the
graphical model, we can postpone most of the filtering until the very last step. This facilitates the
use of more information in each of the individual steps, without compromising the reliability of the
quantifications.

of prior beliefs. We can alleviate this critique by applying the empirical Bayes method, where the
prior is estimated from the data.

We propose a Bayesian framework, baptized Triqler (TRansparent Identification-Quantification-Linked
Error Rates), formulated by a probabilistic graphical model (PGM) that combines several error models
for a simple quantification pipeline, resulting in a list of significant proteins that is readily interpretable
and well-calibrated.

Methods

Probabilistic graphical model

In a typical protein quantification pipeline (Figure 1) one starts by detecting so-called features in the
MS1 spectra, followed by the sequence database matching of the MS2 spectra and the selection of
reliable peptide-spectrum matches (PSMs) based on an FDR threshold. The MS1 features are then
grouped by peptide identification, some type of missing value imputation is applied and the peptide
quantities belonging to the same protein are then combined into this protein’s quantity. Oftentimes
a differential expression test is executed in the end, resulting in p values that subsequently should be
corrected for multiple hypothesis testing, frequently followed by a fold change cutoff.

In recent years, an important addition was made to the quantification pipeline in which one attempts
to assign peptide identifications to features without a reliable peptide identification using similarity
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in retention time and precursor mass [3, 38, 1]. This greatly reduces the missing value problem but
comes at the cost of having to align retention times and controlling for false discoveries. For the sake
of clarity, we omit this type of inference here, but extensions to the PGM to include this are relatively
simple and will be explored in future work.
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tgrn: is identification correct?
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µ∗, σ∗, αs, βs: hyperparameters

Figure 2: Probabilistic graphical model for the quantification of a single protein using
plate notation. The protein has N peptides, G treatment groups and Rg replicates per treatment
group. Gray nodes denote observed variables, whereas white nodes denote latent variables.

We can model this quantification pipeline using a probabilistic graphical model (PGM) (Figure 2),
where the variables have the following interpretation:

• zg is the mean protein quantity for treatment group g.

• sg is the variance of the protein quantities for treatment group g.

• ygr is the protein quantity of replicate r in treatment group g.

• in is the ionization efficiency, i.e. the ratio of the extracted ion current and the protein quantity,
of peptide n.

• qgrn is the peptide quantity.

• cgrn is the identification posterior error probability of the PSM of the respective feature.

• tgrn ∼ Ber(cgrn) is a binary variable indicating whether the feature came from a random peptide.

• mgrn ∼ Ber(sigm(qgrn)) is a binary variable indicating whether the feature is missing, with

sigm(x) = 1
2 + 1

2tanh
(
x−µm
σm

)
.

• fgrn is the logarithm of the observed extracted ion current (XIC) for the feature, which can also
be NaN, indicating a missing value.

We also have 5 pairs of hyperparameters:

• αs, βs are the shape and scale parameters for the gamma distribution for sg, which represents

the scale parameter of the hyperbolic secant distribution hypsec(x; zg, sg) = 1
πsg

sech
(
x−zg
sg

)
for

drawing ygr from the group distribution.
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• µy, σy are the parameters for the hyperbolic secant prior distribution for the relative protein
quantity ygr, relative to the quantities of the same protein in all other runs. This prior distribu-
tion acts as a smoothing function against suspicious peptide quantifications. Typically, we can
safely set µy = 0.

• µm, σm are the parameters for the sigmoidal function above that gives the probability of a feature
with XIC x to not be detected, using the intuition that low XIC values tend to elude detection
more often than high XIC values.

• µd, σd are the parameters for the hyperbolic secant distribution of observing a difference x =
fgrn − qgrn, which models the uncertainty in the quantitative value of a feature. Typically, we
can safely set µd = 0.

• µf , σf are the parameters for a normal distribution of observing an XIC value of x. It models
the XIC distribution before censoring of low XIC values has taken place.

A nice feature of PGMs is that they generally are robust to the selection of parameter distributions,
as the model is integrated over the parameters distribution. Nevertheless, the respective distributions
were chosen based on the shape of the empirical distributions. The hyperbolic secant distribution
is similar to a normal distribution but has a sharper peak at its mean and heavier tails. These
hyperparameters are set using the empirical Bayes method, that is, estimated from the observed data.

For the missing value imputation, we set a probability distribution over the imputed value using
a censoring model that assigns higher probabilities to low ion currents in the event of a missing
value [13]. Contrary to [13], we fit a censored normal distribution of the form censnorm(x) =(
1
2 + 1

2tanh
(
x−µm
σm

))
· N (x | µf , σf ) to the distribution of all XIC values and, furthermore, use the

probability distribution directly, instead of drawing a single point estimate from the distribution. Note
that this distribution accounts for the “missing not at random” values, as defined in [17]. Attempts
to explicitly model the “missing completely at random” values in the PGM resulted in a severe loss
of sensitivity. Instead, we use the integration of data over multiple peptides, together with the prior
on protein quantity to account for these.

Optionally, one could add prior distributions for the zg and in. However, in practice, it turns out that
a uniform improper prior that assigns equal probability to all possible values between (−∞,∞) works
best for zg, which does not impose a structure on the pattern of differential expression. For the in, we
opt for a scheme resembling an expectation-maximization step, where we update the in with a point
estimate using the geometrical average of the ratio of maximum a posteriori estimates of qgrn and ygr.
This greatly simplifies the integrals that need to be computed (Supplementary Section 1) and works
satisfactorily in practice. For a typical dataset, the execution time of Triqler is a matter of minutes,
which is negligible compared to the feature extraction and peptide identification steps.

As mentioned before, t-tests or ANOVAs come with certain issues. We avoid these problems by testing
directly for the hypothesis of interest: “What is the probability that protein P is correctly identified
and has a fold change of at least C?”. We do this by combining the protein posterior error probability
(PEP) of the identification step with the posterior probability for a fold change to be smaller than the
threshold C [15]. This posterior probability can easily be calculated from the zg posterior distributions,
the calculation of which is outlined in Supplementary Section 1. Finally, we can sort the proteins by
this combined PEP and calculate FDRs by simply taking the running average of the PEPs.

Data sets

We downloaded RAW files for 3 datasets with spiked-in proteins at known concentrations, the iPRG2015
study (MassIVE ID: MSV000079843, 12 RAW files) [2], the iPRG2016 study (http://iprg2016.org/,
9 RAW files) [30] and a sample of the UPS1 protein mixture spiked in at 3 different concentrations in
a yeast background (PRIDE project: PXD002370, 9 RAW files) [9]. We also downloaded RAW files
for a clinical dataset of bladder cancer [16] (PRIDE project: PXD002170, 8 RAW files), which we will
refer to as the Latosinska dataset.
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The iPRG2015 dataset consisted of 6 known proteins of foreign origin spiked into a background of
yeast at different concentrations (Table 1 in [2]). The iPRG2016 dataset featured two pools, pool A
and pool B of protein fragments known as PrESTs [35], where the first sample only contained the pool
A PrESTs, the second only the pool B PrESTs and the third an equimolar mixture of the two pools
combined in the A+B pool. The UPS-Yeast mixture consisted of 3 samples, where a UPS1 protein
mixture was spiked into a 1 µg yeast background at respectively 25, 10 and 5 fmol concentration.
Each of these datasets used triplicates for each sample. The Latosinska dataset consisted of 8 samples
of tumor tissues of non-muscle invasive (stage pTa, n = 4) and muscle-invasive bladder cancer cases
(stage pT2+, n = 4), without replicates.

Data analysis

All RAW files were converted to mzML format with ProteoWizard [14]. MS1 features were detected
with Dinosaur v1.1.3 [29] and assigned to MS2 spectra with an in-house python script. The iPRG2015
and iPRG2016 datasets were searched against their respective FASTA databases included in the study
materials. The UPS-yeast mixture was searched against a concatenated FASTA file with the UPS1
proteins (https://www.sigmaaldrich.com/, accessed: 2018 Jan 17) and the Swiss-Prot database for
yeast (http://www.uniprot.org/, accessed: 2016 Mar 15). The Latosinska set was searched against
the Swiss-Prot database for human (accessed: 2015 Nov 12). The spectra were searched against their
respective concatenated target-decoy database by Tide [5], through the interface of the Crux 2.1 [19]
package, followed by post-processing with Percolator v3.02 [31]. All parameters in Tide and Percolator
were left to their default values, except for allowing up to 2 oxidations for the iPRG2015, Latosinska
and UPS-Yeast datasets and using partial digestion for the iPRG2015 dataset.

The PSM-level identification SVM scores from Percolator were used as input to Triqler. The feature
intensities from Dinosaur were subjected to retention time dependent normalization, in a similar
fashion as in [38]. After filtering out peptides with more than a certain number of missing values
and only retaining the most reliable charge state per peptide, Percolator was once more applied to
the remaining PSMs to obtain protein-level PEPs. This PEP was then combined with the posterior
probability of obtaining at least a certain log2 fold change F . For the iPRG2015 dataset, we allowed
5 missing values per peptide and set F = 0.5. For the iPRG2016 dataset, we allowed 4 missing values
and used F = 0.8, which is just below the log2 fold change of 1.0 between the A+B pool relative to
the A or B pool. For the UPS-Yeast dataset, we allowed 3 missing values and used F = 0.8 for the
same reason as above, regarding the 5 and 10 fmol samples. For the Latosinska dataset, we allowed 4
missing values and used F = 1.0.

For the Latosinska dataset we also analyzed the data with MaxQuant v1.6.1.0 [3] followed by differ-
ential expression analysis with Perseus v1.6.1.3 [34]. All parameters in MaxLFQ/Perseus were left to
their default values, except that we allowed up to 2 oxidations and allowed the use of these modified
peptides for quantification. For the differential expression analysis, we filtered out decoy proteins and
proteins with more than the number of allowed missing values per dataset as stated above. We then
applied a log2 transform to the intensities, imputed missing values with the default parameters and
used Welch’s t-test with S0 = 1 (lower values of S0 resulted in even fewer significant proteins).

Results

We compared Triqler to a naive, but seemingly reasonable quantification pipeline, consisting of a 5%
PSM-level identification FDR threshold, missing values replaced by the mean of all non-missing values
of the same peptide, discarding proteins with fewer than 3 peptides, using the average of the 3 most
intense peptides as the protein’s quantity and applying a t-test, followed by a fold change cutoff. The
comparison was made on the four datasets described in the methods section, three controlled datasets,
the iPRG2015 and iPRG2016 sets, the UPS-YEAST set as well as one clinical dataset, the Latosinska
set.
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Posterior distributions

We plotted the posterior distributions of the log2 fold changes between each pair of treatment groups
obtained by Triqler and compared this to the Gaussian distribution obtained from the triplicate
measurements for the naive pipeline. Note that, for the naive pipeline, one typically takes only a point
estimate for the fold change, that is the mean of the distribution. It is, however, quite illustrative for
our comparison to draw the entire distribution.

For the iPRG2015 dataset, we plotted 4 of the 6 spiked-in proteins sorted by the number of peptide
identifications that were available (Figure 3). For BGAL ECOLI and ALBU BOVIN, which both had
many identified peptides, the posterior distributions are sharp. For BGAL ECOLI Triqler, the true
fold change was in the neighborhood of the posterior distribution. Triqler seemed to underestimate the
lowest concentration (sample group 1) but was at least correct about the direction of the fold change.
For ALBU BOVIN Triqler performed exceptionally well. The naive model had big troubles with the
lowest concentration and tended to overestimate it, due to its missing value imputation strategy. While
this conservative strategy might seem reasonable, it can lead to rather dubious results. For example,
for 1vs4 for BGAL ECOLI and 1vs2 and 2vs3 for ALBU BOVIN it obtains the wrong sign of the fold
change.

For OVAL CHICK and CAH2 BOVIN far fewer peptides were available for quantification. This led to
broader posterior distributions for Triqler, which conforms to our intuition. In almost all cases Triqler’s
posterior distribution is closer to the true fold change than the naive model. From the CAH2 BOVIN
results, we can also see that the naive model will have trouble to obtain significant results when only
a few peptides are available, as a t-test will have a hard time to separate the within-group variance
from the between-group variance.

For the iPRG2016 set, the fold change of present proteins was accurately predicted (Figure 4a).
We also observed a clear example of the failure of missing value imputations by the peptide’s mean
abundance in the face of truly absent proteins (Figure 4b). Regardless of the amount of identified
peptides, the naive method predicted values close to a fold change of 0 for these proteins. Note that
Triqler predicted larger fold changes the more confident the protein identification was and moreover
assigns much broader posterior distributions compared to when the protein is present in both samples.
Interestingly, even when only 1 peptide identification was available, Triqler could sometimes correctly
predict differential expression, although with a broad posterior distribution (Supplementary Figure
S1).

For the UPS-Yeast dataset, we again observed the broadening of the posterior distributions as the
confidence in the protein identification decreased (Figure 5). We also saw that even in the case that
many peptides are available, the naive model still gave rise to false negatives as can be seen for 10 vs
5 due to poor missing value imputation. Unlike for the iPRG2016 set, having only a single peptide
identification was not sufficient to declare a protein differentially expressed, though in some cases
there was some posterior probability covering the region of differential expression (Supplementary
Figure S2).

FDR control

Often, the ultimate result of a quantification pipeline is a list of differentially expressed proteins,
together with an estimate of the expected proportion of false positives in this list. Unfortunately,
the conventional calibration curves, which plot the observed against reported FDR, are not hugely
informative. This is due to the relatively low number of truly differentially expressed proteins which
gives rise to very low resolution in the low region of the FDR, where we typically set our thresholds
(Supplementary Figures S3 and S4).

A more illustrative measure in these cases is the number of true positives, spiked-in proteins with
the correct sign of the fold change, and false positives, spiked-in proteins with the incorrect sign and
background proteins (Table 1).
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Figure 3: Triqler achieves reasonable estimates of the true fold changes in the iPRG2015
dataset. Posterior distributions for the fold change difference between each of the groups in the
iPRG2015 dataset for 4 out of the 6 spiked-in proteins. (a) BGAL ECOLI, with 48 identified peptides,
(b) ALBU BOVIN, with 22 identified peptides, (c) OVAL CHICK, with 6 identified peptides, (d)
CAH2 BOVIN with 4 identified peptides. The width of the posterior distribution decreases the more
peptides are available.

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 28, 2018. ; https://doi.org/10.1101/357285doi: bioRxiv preprint 

https://doi.org/10.1101/357285
http://creativecommons.org/licenses/by/4.0/


-10 -5 0 5 10
log2(fold change)

-10 -5 0 5 10
log2(fold change)

A+B vs A

-10 -5 0 5 10
log2(fold change)

-10 -5 0 5 10
log2(fold change)

true ratio
Naive quant
Triqler
fold change cutoff

A+B vs B

(a) (b)

Figure 4: Triqler accurately estimates true fold changes (a) and predicts large fold changes
for truly absent proteins (b) in the iPRG2016 dataset. Predicted fold change differences for
the pool A spiked in proteins for (a) pools A+B vs A and (b) A+B vs B; one protein per row, sorted
by protein-level FDR with the most confident protein on top. The width of the colored bars indicate
the 95% confidence interval respectively credible interval [6] and the white bar inside them indicate
the 10% intervals, for the naive method (left panes, blue) and Triqler (right panes, green). Grey rows
for the naive method indicate proteins with fewer than 3 unique peptides. For A + B vs A, the true
log2 fold change is −1, which the confident proteins indeed center around. The “true ratio” for A+B
vs B only serves to indicate the sign of the expected fold change, as the protein is actually absent in
pool B. For these cases, Triqler predicts large fold changes, whereas the naive method consistently
fails to infer differential expression.
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Figure 5: Triqler correctly predicts true fold changes for the spiked in UPS proteins for the
UPS-Yeast dataset. Predicted fold changes for all 48 spiked in UPS proteins for (a) 25 vs 10 and
(b) 10 vs 5; one protein per row, sorted by protein-level FDR with the most confident protein on top.
The width of the colored bars indicate the 95% confidence interval respectively credible interval [6]
and the white bar inside them indicate the 10% intervals, for the naive method (left panes, blue) and
Triqler (right panes, green). Grey rows for the naive method indicate proteins that had fewer than 3
unique peptides. For confidently identified proteins, the posterior distributions cover the true ratios,
whereas less confidently identified proteins are pulled towards the center due to the prior distribution.
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iPRG2015

1vs2 1vs3 1vs4 2vs3 2vs4 3vs4
Max tp 5 4 5 5 6 5
Method tp fp tp fp tp fp tp fp tp fp tp fp

Triqler, q < 0.05 5 0 4 0 5 0 5 0 6 0 5 0

Naive, q < 0.05 0 0 1 0 2 1 0 0 1 0 1 0

Naive, p < 0.05 3 2 4 2 3 4 3 1 6 1 2 3

iPRG2016

A+B vs B A+B vs A B vs A
Max tp 382 382 382
Method tp fp tp fp tp fp

Triqler, q < 0.05 215 6 248 6 336 18

Naive, q < 0.05 52 6 76 10 4 0

Naive, p < 0.05 49 6 74 7 2 0

UPS-Yeast

25 vs 10 25 vs 5 10 vs 5
Max tp 48 48 48
Method tp fp tp fp tp fp

Triqler, q < 0.05 40 0 40 0 34 0

Naive, q < 0.05 27 0 21 1 11 1

Naive, p < 0.05 29 0 29 3 12 1

Table 1: Triqler achieves a higher sensitivity than the naive method and controls the FDR
on all datasets. Number of true and false positive significantly differentially expressed proteins at
a 5% reported FDR threshold. For the naive method, an extra row was added for a p value < 0.05
cutoff, due to the low sensitivity at the FDR threshold for the iPRG2015 dataset.
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We applied multiple hypothesis corrections on the p values coming from the naive method using
Qvality [12]. However, this approach led to very low sensitivity, and therefore we also included the
results for a p value cutoff of 0.05, a frequently misused metric. Note that the p value cutoff approach
actually intentionally gives up on FDR control, which could be one of the explanations behind the
disproportionate amount of false positives in the iPRG2015 results.

For all 3 datasets, Triqler estimated many more true positives than either variant of the naive method.
For the iPRG2015 dataset, we obtained no false positives and no false negatives. For the iPRG2016
dataset, Triqler shows a reasonable estimation of the true FDR, which varies between 2.7% and 5.1%.
The naive model produces slightly liberal FDR estimates around 10% true FDR, with much fewer
true positives. The extremely low sensitivity on B vs A for the naive model is due to most proteins
not making the fold change threshold filter. Furthermore, for both the iPRG2016 and UPS-Yeast set,
a general decrease in sensitivity could be observed due to the requirement of at least 3 peptides per
protein. In contrast, Triqler declared several spiked-in proteins significant with 2 identified peptides
and in some cases even with only a single identified peptide. Note that, for both the iPRG2016 and
UPS-Yeast set, there are many spiked-in proteins that did not make the 5% FDR cutoff, but still rank
above the background or entrapment proteins in terms of posterior error probability (Supplementary
Figures S3 and S4). This reflects the conservative nature of Triqler due to the prior distribution which
pulls estimates towards the center if not enough evidence is available.

Analysis of the Latosinska bladder cancer dataset

The Latosinska dataset contains a comparison of muscle-invasive against non-muscle invasive bladder
cancers. In the set we found 35 significant differentially expressed proteins at 5% FDR, whereas the
original study found no significant proteins at that FDR threshold, though they did find 77 proteins
at a p value threshold of 0.05 without using a fold change cutoff. The naive pipeline did not find any
significant proteins at the FDR cutoff either, and only found 10 proteins with a p value below 0.05
and a fold change cutoff of 1.0. To assess the soundness of these significant proteins, we analyzed
the concerning proteins with the functional annotation chart tool from DAVID 6.8 [11]. For Triqler,
we used the 35 significant proteins below 5% FDR, for the original study, we used the 77 significant
proteins below the p value cutoff of 0.05. Each of these lists was searched against the respective
background of identified proteins and the categories selected in DAVID by default. A 5% term-level
FDR threshold (p values corrected with the Benjamini-Hochberg correction) was applied to assess the
significance of terms.

The 77 proteins of the original study showed no enriched terms, with the most significant term coming
in at 30% term-level FDR. In contrast, the 35 significant proteins from Triqler resulted in 5 significant
terms (Supplementary Table S1). Using higher FDR thresholds for the calling of significant proteins
of 10% (58 proteins) and 20% protein-level FDR (115 proteins) resulted in 4 and 17 significant terms
respectively (Supplementary Table S2 and S3). Moreover, analysis with MaxQuant+Perseus resulted
in 4, 11 and 15 significant proteins at 5%, 10% or 20% protein-level FDR threshold respectively, with
all but one of these significant proteins also identified at the 5% protein-level FDR threshold by Triqler.
No significant terms could be found for the 5% and 10% protein-level FDR thresholds, and only 1
significant term at the 20% protein-level FDR threshold (Supplementary Table S4).

Discussion

We have presented Triqler, a Bayesian model for protein quantification and differential expression,
that takes into account and propagates information on different sources of errors all the way up to the
final list of differentially expressed proteins. It avoids common pitfalls of quantification pipelines and
introduces the concept of posterior probabilities as a replacement for the statistically unsound fold
change cutoff. Furthermore, contrary to many Bayesian models, the execution of our pipeline only
takes a matter of minutes.

Specifically, our model integrates out missing values instead of imputing point estimates. This ap-
proach facilitates the quantification of proteins that are absent, such as in the iPRG2016 dataset, or
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present in low concentrations, such as in the iPRG2015 dataset. At the same time, it avoids false
positives that typically arise due to poor missing value imputation methods, for example by imputa-
tion by the limit of detection. Furthermore, the use of empirical Bayes allows data to speak for itself
through the prior distributions, rather than setting hard thresholds based on heuristics. This, for ex-
ample, allows proteins with only a single identified peptide to be informative enough to be considered
for differential expression in some experiments, whereas they will be sent straight to the trash bin in
others. However, some care does have to be taken with fitting distributions to the data. Especially
for the censoring distribution, this could lead to overfitting, since the function has 4 free parameters.
We can currently not ascertain the correctness of these distributions, but the results so far have been
encouraging.

Another point of caution is the choice of the log2 fold change cutoff. If one sets this too low, the
posterior distributions could be of comparable or even larger width than the region of non-significance,
causing some reported probability of differential expression even when the distribution is practically
centered around zero as can be seen for the low confident proteins in the bottom rows of Figure 4.
Therefore, one should aim to set a threshold above 3 times the average standard deviation of the
posterior fold change distributions. Additionally, one could filter out proteins individually that have
too large of a standard deviation, though we have refrained from doing so here.

The presented comparison against a naive pipeline is by no means meant as a benchmark, but rather
as an illustration of how seemingly reasonable choices can lead to very poorly calibrated results with
low sensitivity. There are many algorithms and methods available that undoubtedly would result in
better performance than the naive method presented here. For example, there are more advanced
missing value imputation methods [13], protein summarization techniques [39, 40] and statistical
tests [18, 24]. Each of these algorithms solves parts of the problems of protein quantification, but,
aside from potential individual shortcomings, the need to combine them with other methods, down-
and upstream, will almost inevitably lead to a loss of control of the FDR.

The graphical model has the benefit of explicitly modeling sources of error, which makes it easier
to identify underlying assumptions and extend the model with new error sources. One particular
source of error that is currently left out is the possibility of a feature to be incorrectly matched to a
spectrum, which could, for example, be added by an extra node into tgrn, the binary variable that
indicates whether the feature came from a random peptide. One could also envisage extensions of the
model to incorporate, among others, shared peptides [8, 28], matches-between-runs [3, 38, 1] and data
independent acquisition data [25].

The posterior distributions have the ability to make the uncertainty in fold change explicit, rather than
having only a point estimate that might hide a very large uncertainty. They have the added benefit
that they conform to our intuition regarding probabilities in contrast to, for example, p values. These
distributions can be summarized into a single posterior probability of obtaining a certain fold change,
but they could also be fed into downstream applications, such as pathway analysis or development of
biomarker assays while retaining the information regarding their uncertainty. The functional annota-
tion analysis at 20% FDR threshold on the Latosinska dataset highlights this potential of propagating
information below arbitrary thresholds, which would normally be discarded.
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[10] Viktor Granholm, José Fernández Navarro, William Stafford Noble, and Lukas Käll. Determining
the calibration of confidence estimation procedures for unique peptides in shotgun proteomics.
Journal of proteomics, 80:123–131, 2013.

[11] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Systematic and integrative analysis
of large gene lists using david bioinformatics resources. Nature Protocols, 4(1):44, 2008.

[12] Lukas Käll, John D Storey, and William Stafford Noble. Qvality: non-parametric estimation of
q-values and posterior error probabilities. Bioinformatics, 25(7):964–966, 2009.

[13] Yuliya Karpievitch, Jeff Stanley, Thomas Taverner, Jianhua Huang, Joshua N Adkins, Charles
Ansong, Fred Heffron, Thomas O Metz, Wei-Jun Qian, Hyunjin Yoon, et al. A statistical frame-
work for protein quantitation in bottom-up ms-based proteomics. Bioinformatics, 25(16):2028–
2034, 2009.

[14] Darren Kessner, Matt Chambers, Robert Burke, David Agus, and Parag Mallick. Proteowizard:
open source software for rapid proteomics tools development. Bioinformatics, 24(21):2534–2536,
2008.

[15] John K Kruschke. Bayesian estimation supersedes the t test. Journal of Experimental Psychology:
General, 142(2):573, 2013.

[16] Agnieszka Latosinska, Konstantinos Vougas, Manousos Makridakis, Julie Klein, William Mullen,
Mahmoud Abbas, Konstantinos Stravodimos, Ioannis Katafigiotis, Axel S Merseburger, Jerome
Zoidakis, et al. Comparative analysis of label-free and 8-Plex iTRAQ approach for quantitative
tissue proteomic analysis. PloS one, 10(9):e0137048, 2015.

[17] Cosmin Lazar, Laurent Gatto, Myriam Ferro, Christophe Bruley, and Thomas Burger. Account-
ing for the multiple natures of missing values in label-free quantitative proteomics data sets to
compare imputation strategies. Journal of Proteome Research, 15(4):1116–1125, 2016.

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 28, 2018. ; https://doi.org/10.1101/357285doi: bioRxiv preprint 

https://doi.org/10.1101/357285
http://creativecommons.org/licenses/by/4.0/


[18] Davis J McCarthy and Gordon K Smyth. Testing significance relative to a fold-change threshold
is a treat. Bioinformatics, 25(6):765–771, 2009.

[19] Sean McIlwain, Kaipo Tamura, Attila Kertesz-Farkas, Charles E Grant, Benjamin Diament,
Barbara Frewen, J Jeffry Howbert, Michael R Hoopmann, Lukas Käll, Jimmy K Eng, et al. Crux:
rapid open source protein tandem mass spectrometry analysis. Journal of Proteome Research,
13(10):4488–4491, 2014.

[20] Lukas N Mueller, Mi-Youn Brusniak, DR Mani, and Ruedi Aebersold. An assessment of software
solutions for the analysis of mass spectrometry based quantitative proteomics data. Journal of
Proteome Research, 7(01):51–61, 2008.

[21] Jonathon J O’Brien, Jeremy D O’Connell, Joao A Paulo, Sanjukta Thakurta, Christopher M Rose,
Michael P Weekes, Edward L Huttlin, and Steven P Gygi. Compositional proteomics: Effects of
spatial constraints on protein quantification utilizing isobaric tags. Journal of Proteome Research,
17(1):590–599, 2017.

[22] Shao-En Ong and Matthias Mann. Mass spectrometry–based proteomics turns quantitative.
Nature chemical biology, 1(5):252–262, 2005.

[23] Dana Pascovici, David CL Handler, Jemma X Wu, and Paul A Haynes. Multiple testing correc-
tions in quantitative proteomics: A useful but blunt tool. Proteomics, 16(18):2448–2453, 2016.

[24] Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K
Smyth. limma powers differential expression analyses for rna-sequencing and microarray studies.
Nucleic acids research, 43(7):e47–e47, 2015.

[25] George Rosenberger, Isabell Bludau, Uwe Schmitt, Moritz Heusel, Christie L Hunter, Yansheng
Liu, Michael J MacCoss, Brendan X MacLean, Alexey I Nesvizhskii, Patrick GA Pedrioli, et al.
Statistical control of peptide and protein error rates in large-scale targeted data-independent
acquisition analyses. Nature methods, 14(9):921, 2017.

[26] Mikhail M Savitski, Mathias Wilhelm, Hannes Hahne, Bernhard Kuster, and Marcus Bantscheff.
A scalable approach for protein false discovery rate estimation in large proteomic data sets.
Molecular & Cellular Proteomics, pages mcp—-M114, 2015.

[27] Oliver Serang, A Ertugrul Cansizoglu, Lukas Käll, Hanno Steen, and Judith A Steen. Nonpara-
metric bayesian evaluation of differential protein quantification. Journal of Proteome Research,
12(10):4556–4565, 2013.

[28] Oliver Serang, Luminita Moruz, Michael R Hoopmann, and Lukas Käll. Recognizing uncertainty
increases robustness and reproducibility of mass spectrometry-based protein inferences. Journal
of Proteome Research, 11(12):5586–5591, 2012.

[29] Johan Teleman, Aakash Chawade, Marianne Sandin, Fredrik Levander, and Johan Malmström.
Dinosaur: A Refined Open-Source Peptide MS Feature Detector. Journal of Proteome Research,
15(7):2143–2151, 2016.

[30] Matthew The, Fredrik Edfors, Yasset Perez-Riverol, Samuel H Payne, Michael R Hoopmann,
Magnus Palmblad, Björn Forsström, Lukas Käll, et al. A protein standard that emulates homology
for the characterization of protein inference algorithms. bioRxiv, page 236471, 2017.

[31] Matthew The, Michael J MacCoss, William S Noble, and Lukas Käll. Fast and accurate protein
false discovery rates on large-scale proteomics data sets with percolator 3.0. Journal of the
American Society for Mass Spectrometry, 27(11):1719, 2016.

[32] Matthew The, Ayesha Tasnim, and Lukas Käll. How to talk about protein-level false discovery
rates in shotgun proteomics. Proteomics, 16(18):2461–2469, 2016.

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 28, 2018. ; https://doi.org/10.1101/357285doi: bioRxiv preprint 

https://doi.org/10.1101/357285
http://creativecommons.org/licenses/by/4.0/


[33] Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu. Significance analysis of microarrays
applied to the ionizing radiation response. Proceedings of the National Academy of Sciences,
98(9):5116–5121, 2001.

[34] Stefka Tyanova, Tikira Temu, Pavel Sinitcyn, Arthur Carlson, Marco Y Hein, Tamar Geiger,
Matthias Mann, and Jürgen Cox. The perseus computational platform for comprehensive analysis
of (prote) omics data. Nature methods, 13(9):731, 2016.

[35] Mathias Uhlén, Per Oksvold, Linn Fagerberg, Emma Lundberg, Kalle Jonasson, Mattias Fors-
berg, Martin Zwahlen, Caroline Kampf, Kenneth Wester, Sophia Hober, Henrik Wernerus, Lisa
Björling, and Fredrik Pontén. Towards a knowledge-based human protein atlas. Nature biotech-
nology, 28(12):1248–1250, 2010.

[36] Bobbie-Jo M Webb-Robertson, Lee Ann McCue, Katrina M Waters, Melissa M Matzke, Jon M
Jacobs, Thomas O Metz, Susan M Varnum, and Joel G Pounds. Combined statistical analyses
of peptide intensities and peptide occurrences improves identification of significant peptides from
ms-based proteomics data. Journal of Proteome Research, 9(11):5748–5756, 2010.

[37] Bobbie-Jo M Webb-Robertson, Holli K Wiberg, Melissa M Matzke, Joseph N Brown, Jing Wang,
Jason E McDermott, Richard D Smith, Karin D Rodland, Thomas O Metz, Joel G Pounds,
et al. Review, evaluation, and discussion of the challenges of missing value imputation for mass
spectrometry-based label-free global proteomics. Journal of Proteome Research, 14(5):1993–2001,
2015.

[38] Bo Zhang, Lukas Käll, and Roman A Zubarev. DeMix-Q: quantification-centered data processing
workflow. Molecular & Cellular Proteomics, 15(4):1467–1478, 2016.

[39] Bo Zhang, Mohammad Pirmoradian, Roman Zubarev, and Lukas Käll. Covariation of pep-
tide abundances accurately reflects protein concentration differences. Molecular & Cellular Pro-
teomics, 16(5):936–948, 2017.

[40] Yafeng Zhu, Lina Hultin-Rosenberg, Jenny Forshed, Rui MM Branca, Lukas M Orre, and Janne
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