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Abstract 14 

We applied simulation-based approaches to characterize how sequencing depth influences the 15 

properties of genomes identified in metagenomes assembled from short read sequences. An initial 16 

analysis evaluated the quantity, completion, and contamination of metagenome-assembled genomes 17 

(MAGs) as a function of sequencing depth on four preexisting sequence read datasets taken from four 18 

environments: a maize soil, an estuarine sediment, the surface ocean, and the human gut. These were 19 

subsampled to varying degrees in order to simulate the effect of sequencing depth on MAG binning. 20 

The property, MAG quantity fit the Gompertz curve, which has been used to describe microbial growth 21 

curves. A second analysis explored the relationship between sequencing depth and the proportion of 22 

available metagenomic DNA sequenced during a sequencing experiment as a function of community 23 

richness, evenness, and genome size. Typical sequencing depths in published experiments (1 to 10 Gb) 24 

reached the point of diminishing returns for MAG creation. Simulations from the second analysis 25 

demonstrated that both community richness and evenness influenced the amount of sequencing 26 

required to sequence a metagenome to a target fraction of exhaustion. The most abundant genomes 27 

required comparable quantities of bases sequenced regardless of community evenness, while more 28 

uneven communities required considerably more sequences to fully sequence rarer members. Future 29 

whole-genome shotgun sequencing studies can use an approach comparable to the one described here 30 

to estimate the quantity of sequences required to achieve scientific objectives.  31 

Importance 32 

Short read sequencing with Illumina sequencing technology provides an accurate, high-throughput 33 

method for characterizing the metabolic potential of microbial communities. Short read sequences are 34 

assembled into metagenome-assembled genomes which allow metabolic processes influencing health, 35 
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agriculture, and biogeochemical cycles to be assigned to microbial clades. At present, no reliable 36 

guidelines exist to select sequencing depth as a function of experimental goals in metagenome-37 

assembled genomes creation projects. The work presented here provides a framework for obtaining a 38 

constrained estimate on the number of short read sequences needed for sequencing microbial 39 

communities. Results suggested that both the microbe community richness and evenness influence the 40 

amount of sequencing in a predictable matter.  41 
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Introduction 42 

The assembly of high-accuracy short read sequences into metagenome-assembled genomes (MAGs) is 43 

a recent approach to characterize microbial metabolisms within complex communities (1). The recent 44 

creation of ~8,000 MAGs from largely uncultured organisms across the tree of life (2), the spatial 45 

characterization of microbial metabolisms and ecology across Earth’s oceans (3), and the 46 

characterization of the potential impact that fermentation-based microbial metabolisms have on 47 

biogeochemical cycling in subsurface sediment environments (4) provide a few examples of how 48 

MAGs helped constrain the relationships between microbial ecology, microbial metabolisms, and 49 

biogeochemistry. At present, there is little information to guide how much sequencing is appropriate 50 

for metagenomic shotgun sequencing experiments (5)⁠. For the year 2017, estimates compiled by 51 

Quince et al. (5) suggest that up till now, metagenomic shotgun sequencing experiments usually 52 

sequence between 1 Gb and 10 Gb DNA nucleotides. Nonetheless, more guidance is necessary for 53 

selecting an appropriate metagenomic shotgun sequencing depth for one’s experimental question which 54 

balances the maximization of information and minimization of cost.  55 

Illumina sequencing technology is currently the most popular platform to generate 56 

metagenomic shotgun sequences (5)⁠. Here we present two distinct analyses which constrain the 57 

relationship between the quantity of Illumina metagenomic shotgun sequences and the quantity and 58 

quality of retrieved MAGs. First, we performed in silico experiments simulating the effect of how 59 

sequencing depth on Illumina sequence read datasets impacted the retrieved MAG properties for these 60 

datasets. Second, we applied a theoretical model and numerical simulations to estimate the minimum 61 

sequencing depth needed to sequence a metagenome to a target fraction of exhaustion. The work 62 

presented here illustrates how community evenness and richness control the sequencing depth 63 

necessary to sequence a metagenome to a target fraction of exhaustion. These patterns can be used to 64 
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guide sequencing depth decisions for future sequencing efforts in which MAG creation is a primary 65 

goal. 66 

Results 67 

MAG ASSEMBLY AS A FUNCTION OF SEQUENCING DEPTH IN EXISTING METAGENOMIC DATASETS 68 

The number of “effective MAGs” (equivalents to100%-complete MAGs, as defined in the 69 

Methods section) as a function of high quality bases empirically fit the Gompertz equation (equation 1; 70 

Fig 1B; parameters in Table 1). For each environment, the data fit the Gompertz equation better than a 71 

linear least-squares fit based on Akaike Information Criterion (AIC) (6). This equation is formulated 72 

for applications with microbial growth curves, such that the parameters A, µ, and λ correspond to 73 

maximum cell density, growth rate, and lag time (Fig 1A). Here, A, µ, and λ correspond to the 74 

maximum number of effective MAGs assembled with the pipeline, the maximum rate which effective 75 

MAGs form as with more sequencing, and the “lag bases,” or the bases which must be sequenced prior 76 

to rapid retrieval in effective MAGs. For the estuary, maize, and human gut datasets, MAG yield began 77 

to asymptote at higher sequencing depths, which indicates that further sequencing would yield 78 

diminishing returns with our pipeline. The Tara Ocean dataset followed a similar pattern at <25 Gb. 79 

However, when the number of sequenced bases was >25Gb, the number of effective MAGs decreased 80 

and became insensitive to sequencing depth. Since we have expressed MAG creation in terms of 81 

effective MAGs, the actual number of MAGs created in each example was considerably higher.  82 

Mean MAG completeness also increased towards an asymptote with increasing sequencing 83 

depth (Fig 1C). Completeness was highest for the human gut dataset, with a maximum of 23.9%, and 84 

increased continuously as sequencing depth increased. The mean MAG completeness reached an 85 

asymptote of ~10-15% for the other three datasets with sequenced bases >10 Gb. Note that when >10 86 

Gb were sequenced, the number of effective MAGs created still increased as new sequences were 87 
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added. For all datasets, mean MAG contamination was <2% (Fig 1D) and did not depend strongly on 88 

sequencing depth.  89 

SIMULATION EXPERIMENTS 90 

Using equation 7, we calculated the number of k-length sequence reads required to sequence all 91 

unique DNA sequences of length, k (k-mers), in four hypothetical metagenomes. Three of the 92 

community structures are ecologically unrealistic but represented a community in which taxa are 93 

distributed perfectly evenly, highly unevenly, and at an intermediate level of evenness (Fig 2A-C). The 94 

fourth community structure, which is lognormally distributed, is ecologically realistic (Fig 2D; (7, 8)). 95 

The expectation value of the log number of sequences required to fully sequence metagenomes of those 96 

hypothetical communities was linear with respect to log-transformed size of the metagenome (i.e., 97 

number of unique k-mers in the population, approximate number of unique base pairs in a 98 

metagenome); this suggests a power-law relationship between metagenome size and expectation value 99 

of sequence reads required to sequence the metagenome to exhaustion (Fig 2E). For all community 100 

structures, the slope of the relationship between log-transformed sequenced reads and log-transformed 101 

unique number of sequenced reads was within 1% of 1.06. The structure of the population strongly 102 

influenced the number of reads required such that more even community structures required far fewer 103 

reads than less even structures.  104 

 As equation 7 only estimates the number of reads to sequence a metagenome to exhaustion, we 105 

used a numerical simulation to estimate the number of k-sized reads to sequence a metagenome to a 106 

target fraction of exhaustion. Numerical simulation results predicted the same number of sequences 107 

reads to sequence 100% of a given metagenome as the numerically integrated expected sequences from 108 

equation 7 (Fig 3); this supported the use of this simulation. The log-transformation of both total 109 

unique k-sized reads (|𝐾𝑀𝐺| and sequenced reads showed a linear response for all target fractions and 110 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356840doi: bioRxiv preprint 

https://doi.org/10.1101/356840
http://creativecommons.org/licenses/by-nd/4.0/


7 

 

all community structures. The amount of sequences required to achieve a given target of |𝐾𝑀𝐺| was 111 

variable for the different communities shown in Fig 2A. For instance, the lognormally-distributed 112 

community required the most amount of sequencing to sequence a metagenome to a target fraction of 113 

exhaustion but required similar amount of sequencing to sequence the metagenome to a target fraction 114 

of 50% as the other communities. 115 

 We applied the simulation to semi-quantitatively demonstrate the effect that community 116 

evenness has on the number of reads required to sequence a community to a target fraction of 117 

completion. These communities ranged from perfectly even (a=0, eq. 9) to more uneven (a = 0.02, Fig 118 

4A). Evenness was quantified using the Pielou evenness index, which expresses Shannon diversity 119 

relative to the diversity of a perfectly even community (9). Computational limits precluded simulating 120 

communities with Pielou evenness less than 0.977 given the richness and size of genomes within the 121 

communities. The number of sequence reads required to sequence genomes to a target fraction of 122 

completion depended strongly on both the evenness and the target fraction of completion (Fig 4B). 123 

Again, more even communities required more sequence reads than less even communities. The strength 124 

of this relationship also depended on the target fraction of completion. A community with Pielou 125 

evenness of 0.97 required 3 orders of magnitude more sequence reads to sequence a metagenome to a 126 

target fraction of exhaustion than a perfectly even community while the same community only required 127 

about 42% more reads to sequence 50% of the metagenome.  128 

The minimum number of sequence reads required to sequence a microbe genome given a 129 

combination of target fraction, genome size, and fraction of the metagenome community  was modeled 130 

with a generalized additive model. The smooth dimensions for target fraction, genome size, and 131 

fraction of the metagenome community was 7, 3, and 9, respectively, to achieve a normal distribution 132 

of residuals. To normalize for different sequence read length, sequence reads were converted to bases 133 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356840doi: bioRxiv preprint 

https://doi.org/10.1101/356840
http://creativecommons.org/licenses/by-nd/4.0/


8 

 

and ranged from 1×10
7
 to 1×10

13
.  More bases were required to sequence microorganisms when 1) the 134 

genome was relatively rarer in the community, 2) to achieve better coverage of the genome, and 3) 135 

when the genome increased in size. 136 

Discussion 137 

We sought to establish evidence-based guidelines for selecting a sequencing depth during 138 

shotgun metagenomic sequencing experiments with the goal of creating MAGs of a given quantity and 139 

quality. Random subsamples of existing short read datasets, which were each individually assembled 140 

and binned, simulated the effect of creating MAGs from datasets of different sizes and environments. 141 

The datasets analyzed here are argued to be representative of both the order of magnitude of 142 

sequencing depth (1 to 10 Gb) (5) and the types of target environments microbial ecologists often 143 

investigate (10). A variety of software is available for all steps of MAG creation pipelines, and the 144 

quantity/quality of MAGs will depend on software selection, software configuration, and sequenced 145 

environment (5). Furthermore, it is best-practice to manually curate algorithmically-created MAG bins 146 

(11). We do not argue that the pipeline used here is objectively optimal for generating “true” MAGs 147 

(i.e., represent true genomes). Thus, MAG quantity was not directly reported but expressed as effective 148 

MAGs. The metric, effective MAGs, represents the integrated completeness (12) divided by 100 for 149 

MAGs retrieved with a taxonomic rank of at least phylum. In effect, effective MAGs represents 150 

phylogenetic signal, as defined by the presence of marker genes in assembled contigs (necessary for 151 

constructing MAGs). Thus, increases in effective MAGs should scale proportionally with increases in 152 

the quantity of true MAGs. 153 

As sequencing depth increased, there was at first a “lag time” (more precisely a lag depth, or 154 

number of bases before effective MAGs began to increase) followed by a rapid increase in effective 155 

MAG quantity, and then diminishing returns at higher sequencing depths. Previous investigators 156 
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modeled the response of 16S RNA gene (13–15), Hill’s number diversity (16), taxon-resolved 157 

abundance (17), and gene abundance (17) as a function of sequencing depth using rarefaction curves, 158 

or collectors curves. The effective number of MAGs created did not match a traditional collector’s 159 

curve, which does not contain any initial lag. The Gompertz function, conversely, fit the data well, 160 

suggesting that MAG construction as a function of sequencing depth behaves similarly to microbial 161 

growth in a constrained medium, in concept if not in precise mechanism. The Gompertz function is 162 

defined in terms of three parameters, A, µ, and λ. These parameters correspond to the maximum 163 

effective MAGs at infinite sequencing depth (A), maximum rate that effective MAGs increased with 164 

increases in sequencing depth (µ), and a minimum threshold of sequencing necessary prior to rapid 165 

effective MAGs retrieval (λ) (Fig 1A). The Gompertz equation achieves the same asymptotic behavior 166 

of conventional rarefaction models while also modeling the apparent lag (λ) in effective MAGs 167 

observed during this work (Fig 1B).  168 

The four environments analyzed demonstrated different responses to increases in sequencing 169 

depth. Specifically, the predicted maximum effective MAGs varied from ~17 to ~97, the predicted 170 

maximum rate that effective MAGs increased varied from ~1.4 to ~5.8, and the minimum threshold of 171 

sequencing necessary prior to seeing effective MAGs varied from ~0.6 to ~6.7. The Tara Ocean 172 

dataset, where effective MAGs decreased at sequencing depth >20 Gbp, was an exception. We 173 

speculate that our choice of pipeline, and specifically the fact that we discarded contigs <3kb, caused 174 

poor performance at higher sequencing depth for the Tara Ocean dataset.  175 

As mean MAG completeness converged to an asymptote considerably less than 100% (Fig 1B), 176 

MAG yields (Table 1) were close to 100%. This suggests the maximum effective MAGs (A) likely 177 

represents sequence reads associated with abundant MAGs. Thus, we asked how much sequencing was 178 

necessary to sequence a community to exhaustion. The expected number of sequence reads required to 179 
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sequence an entire metagenome was estimated using equation 7 for four hypothetical communities (Fig 180 

2A-D). The total unique k-sized reads (i.e., richness) and community structure influenced how much 181 

sequencing is necessary to sequence an entire metagenome (Fig 2E). For a given community structure, 182 

increases in community richness lead to linear increases the sequencing depth necessary to exhaust the 183 

metagenome. All regressions had similar slopes, indicating that community structure did not exert a 184 

major influence on that relationship. Interestingly, the sequencing depth necessary to sequence an 185 

entire metagenome depended strongly on the structure of the target microbial community (Fig 2E). As 186 

sequencing depth was log-transformed in Fig 2E, the differences in model intercepts indicate orders of 187 

magnitude differences in the necessary sequencing depth. The primary implication of Fig 2 is that the 188 

sequencing depth increased in a predictable trend in response to richness, regardless of the community 189 

structure. 190 

One limitation to equation 7 is that it only provides an estimate of the sequencing depth 191 

required to sequence a metagenome to exhaustion. For practical applications, a continuous increase in 192 

sequencing depth eventually leads to diminishing returns in identifying unique sequence reads while 193 

also leading to a disproportional increase in monetary resources needed to find these unique sequence 194 

reads (18). Thus, it is desirable to constrain the fraction of unique sequence reads (e.g., 50%, 70%, 195 

90%, etc.) sequenced from a metagenome in relation to monetary investment necessary to achieve that 196 

fraction of a metagenome. Simulations show that as target metagenome completeness increases, the 197 

sequencing depth required increases dramatically (Fig 3). Simulation results were validated by 198 

comparing the sequencing depth necessary to sequence 100% of a metagenome with predictions from 199 

equation 7. While the numerical approach successfully reproduced and extended equation 7, 200 

communities with large values of richness (|𝐾𝑀𝐺| > 1 × 108 became computationally burdensome. 201 

Nonetheless, when the target fraction and community structures were held constant, the linear increase 202 
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in sequencing depth as a function of increased richness suggests linear regression may be sufficient to 203 

estimate sequencing depth for communities with large values of richness.  204 

One observation from the numerical simulations was the impact that community structure had 205 

on the required depth of sequencing (Fig 2E and 3). Even communities required less sequencing to 206 

achieve a fraction of |𝐾𝑀𝐺|. Conceptually this makes sense, as abundant taxa (i.e., large n values in 207 

equation 3) should be sequenced more deeply compared to rarer taxa. To further explore the influence 208 

that community evenness had on required sequencing depth, communities with similar and more 209 

realistic lognormal structures (7, 16) at different levels of evenness were compared to one another (Fig 210 

4A). Decreasing evenness (increasing a; equation 9) led to both increases in the sequencing depth 211 

required to sequence a given target fraction of |𝐾𝑀𝐺| (Fig 4B). For communities with more uneven 212 

species distributions, rarer community members required more sequencing. While only semi-213 

quantitative, this analysis demonstrates that community evenness can have a significant impact on the 214 

sequencing depth necessary to characterize an entire community.  215 

In practice, information about a target community structure may not be available for estimating 216 

sequencing depth. The spline model built here illustrates the minimum number of sequences necessary 217 

to sequence a given fraction of a target genome, assuming genome size and proportion that the genomic 218 

content represents in the community metagenome (GMG) (Fig 5). This proves useful for constraining 219 

the observed MAG properties from one’s bioinformatic pipeline (e.g., Fig 1B-D) in the context of what 220 

proportion of a given microbe’s metagenome (gMG; equation 4) has been sequenced to exhaustion. For 221 

example, taking the 5 Gb human gut dataset analyzed here (Table 2), if a microbe with a genome size 222 

of ~5 Mbp existed from this environment, then Fig 5C suggests that a 5 Mbp genome 223 

representing >10% of the whole metagenome (GMG; equation 5) will be sequenced to a minimum of 224 

50% to exhaustion. More so, one has constrained perspective of how a given genome may be 225 
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represented in the retrieved MAGs. Although the simple nature of sequencing a genome may not 226 

necessarily translate into the production of more MAGs, one can safely say that additional sequencing 227 

of that 5 Mbp genome which represents >10% of the community will not lead to the addition of more 228 

MAGs. More so, the bioinformatic pipeline would act as the limiting step (opposed to sequencing) in 229 

the production of MAGs. 230 

Materials and Methods 231 

SEQUENCE DATA SOURCES 232 

All sequence data were downloaded from NCBI's Sequence Read Archive (SRA) using the SRA 233 

Toolkit (fastq-dump –split-files) (19). Exact duplicate reads for both forward and reverse reads were 234 

removed using PRINSEQ (-derep 1; v0.20.4) (20). All sequencing datasets were limited to Illumina 235 

shotgun metagenomic paired-end reads. Four datasets were analyzed for this analysis. The first dataset 236 

was from oceanic surface water collected at 5m depth in the Caribbean Sea as a part of the Tara Oceans 237 

expedition (21). The second dataset was from sediment from a depth of 8-10 cm below the surface 238 

(sulfate-rich zone) and collected at the White Oak River Estuary, Station H, North Carolina, USA (4). 239 

The third dataset was collected from maize soil (22). The last dataset was collected from human fecal 240 

samples and represented a human gut microbiome (23). All datasets analyzed in this study are 241 

summarized in Table 1. 242 

MAG ASSEMBLY PIPELINE 243 

The pipeline developed here followed similar pipelines described by other authors (3, 24). All sequence 244 

datasets were analyzed as follows. Trimmomatic (v0.36) (25) removed adapters as well as trimmed 245 

low-quality bases from the ends of individual reads. Read leading and trailing quality scores were 246 

required to be >3. The sliding window was set to 4 base pairs and filtered base pair windows with a 247 
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mean score <15. Quality controlled reads were assembled into contigs using MEGAHIT (v1.1.2; --248 

presets meta-large) (26). Due to RAM limitations, assembled contigs <3000 bp in length were excluded 249 

from the analysis. Redundant contigs were removed using CD-HIT (v4.6.8; cd-hi-est -c 0.99 -n 10) 250 

(27). Similarity among the remaining contigs was further evaluated via intra-contig sequence 251 

alignments using Minimus2 (-D OVERLAP=100 MINID=95). The quality-controlled reads (i.e., after 252 

using Trimmomatic) were then mapped to the remaining contigs using Bowtie 2 (v2.3.3) (28) to 253 

generate a coverage score for individual contigs.  254 

Resultant contigs were iteratively clustered into MAGs using the unsupervised clustering 255 

algorithm Binsanity (v0.2.6) (24). Similar to Tully et al. (3), six initial clustering iterations were 256 

performed with the parameter, preference (-p), set to -10 (iteration 1), -5 (iteration 2), -3 (iteration 3-6). 257 

Between iterations, a refinement step (Binsanity-refine) was performed on the putative MAGs with 258 

constant preference (-p) of -25. The refined putative MAGs were evaluated for contamination and 259 

completeness using the software CheckM (v1.0.6) (12), which uses HMMER (v3.1) and Prodigal 260 

(v2.6.3) (29). Contigs associated with putative MAGs meeting one of the following criteria: 1) had a 261 

completeness > 90% and contamination < 10%, 2) had a completeness > 80% and contamination < 5%, 262 

or 3) had a completeness > 50% and contamination < 5% were treated as high-quality. All other MAGs 263 

were considered low-quality MAGs. MAGs defined as high-quality were not modified any further. 264 

Contigs associated with the high-quality MAGs were not used in the subsequent reclustering and 265 

refinement steps. The contigs associated with low-quality MAGs were pooled together and reclustered 266 

during the next iteration of Binsanity clustering. After the sixth iteration, the remaining MAGs which 267 

did not fall into one of the three categories underwent additional refinement using Binsanity-refine. 268 

During this step, MAGs were iteratively refined with preference set to -10 (iteration 1), -3 (iteration 2), 269 

and -1 (iteration 3). Between each refinement step, metrics of contamination and completeness were 270 
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evaluated using CheckM. Again, MAGs which met the criteria of one of the high-quality categories 271 

described above were not further modified. The respective contigs to the putative MAGs were not used 272 

in proceeding refinement steps. After the last iteration of refinement, all MAGs were reevaluated for 273 

completeness and contamination as well as assigned a final taxonomic rank using CheckM. 274 

Completeness and contamination values for MAGs with the resolved taxonomic rank of phylum were 275 

integrated together. The integrated completeness was then divided by 100 to produce effective number 276 

of MAGs. 277 

SUBSAMPLING SEQUENCE READ DATASETS 278 

The effect of decreased sequencing depth was simulated by subsampling the initial sequence read 279 

datasets described above. Downloaded sequence read datasets were randomly sampled at set fractions 280 

of 1%, 10%, 20%, 40%, 60%, 80%, 90%, 95%, and 100%. To account for variability in the reads 281 

sampled at a given fraction, each fraction was resampled, assembled, and binned in triplicate. All 282 

triplicates were analyzed using the MAG assembly pipeline described above.  283 

MODELING MAG RESPONSE TO SEQUENCING DEPTH 284 

Effective MAGs as a function of sequencing depth was modeled for environmental sequence datasets 285 

using the Gompertz equation, as reformulated by Zweitering et al. (30) for use with microbial growth 286 

curves:  287 

Effective MAGs = 𝐴 × 𝑒−𝑒
𝜇×𝑒

𝐴
(𝜆−𝑏)+1

                    (1 288 

where A, µ, and λ are fit coefficients and b is high-quality bases. To assess the validity of this function, 289 

AIC (6) was calculated for all Gompertz equation fits and compared to AIC values for linear 290 

regressions models for same dataset.  291 

DEFINING THE MICROBIAL METAGENOME AND SEQUENCING PROBABILITY 292 

Here we draw on set theory to provide a theoretical grounding for our in silico simulations described 293 
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below. The application of probability theory for predicting the expected number sequences to sequence 294 

a metagenome became founded by defining a metagenome as the set of available metagenomic DNA 295 

that can be sequenced in a sequencing experiment. Fig 6A-E provides a cartoon example illustrating the 296 

application of this set theory on a hypothetical microbial population, G. G is a community of genomes 297 

(g) with finite abundances (n). As the definition of microbial species is somewhat contentious (31), g is 298 

taken as the average genome for all individual genomes defined as a meeting some criteria defining a 299 

taxonomic rank. Thus, the richness (s) of G, or the total number of g, depends on the definition of g. In 300 

the example G (Fig 6A-E), s=6 and the total n=13. Thus, G can be represented as (Fig 6A):  301 

𝐺 = {𝑛1𝑔1, 𝑛2𝑔2 … 𝑛𝑠𝑔𝑠|𝑛 ∈ 𝑁}               (2 302 

where s is the total number of unique species within the community (richness). When characterizing G 303 

via shotgun metagenomics, the i
th

 genome, gi, can be sequenced at K unique sections given a 304 

characteristic read length, k, and average genome size, l, in number of base pairs (Fig 6B). Thus, the 305 

number of unique k-sized reads, K, associated with the i
th

 genome, gi, within G is equal to: 306 

𝐾𝑔𝑖
= 𝑙(𝑔𝑖) − 𝑘 + 1                        (3 307 

From equation 3, the metagenome, gMG, for gi is defined as the set of all unique possible k-sized reads 308 

(Fig 6C) or: 309 

𝑔𝑀𝐺,𝑖 = {𝑔𝑖,1,1+𝑘, 𝑔𝑖,2,2+𝑘 … , 𝑔𝑖,𝐾𝑔𝑖,𝐾𝑔𝑖+𝑘}                          (4  310 

where the subscripts for gi represent a given k-sized read spanning from an arbitrary starting base pair 311 

to the arbitrary starting base pair plus k. By substituting gMG,i into all g for equation 2 (Fig 6D), the 312 

metagenome for a microbial community, GMG, is derived to be:   313 

𝐺𝑀𝐺 = {𝑛1𝑔𝑀𝐺,1, 𝑛2𝑔𝑀𝐺,2 … 𝑛𝑠𝑔𝑀𝐺,𝑠|𝑛 ∈ 𝑁}                   (5 314 

while the population of unique k-sized reads in the metagenome, GMG (Fig 6E), is represented as: 315 

𝐾𝑀𝐺 = {𝑔𝑀𝐺,1, 𝑔𝑀𝐺,2 … 𝑔𝑀𝐺,𝑠}               (6 316 
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From equation 4, one can determine the cardinality, or the total number, of unique k-sized reads in 317 

associated with GMG (expressed as |𝐾𝑀𝐺|). When attempting to fully sequence GMG using shotgun 318 

metagenomics, we assume that sampling events (sequence reads) are independent and are sampled with 319 

replacement. In fact, Illumina sequencing technology sequences reads in parallel via the individual 320 

DNA fragments binding to individual clusters. Furthermore, the fragmented DNA cannot be sequenced 321 

twice as the sequencing process is destructive (32). Nonetheless, the mass of DNA extracted from a 322 

target environment will represent a negligible fraction of the total DNA which exists in that 323 

environment. As the relative abundance of the k-sized reads in KMG does not change when DNA is 324 

extracted from an environment, sampling events can be treated as independent and thus, DNA sampling 325 

reduces to sampling with replacement. If the proportion DNA mass extracted had a significant impact 326 

on the remaining mass of DNA in the environment, then one would be more suited to sequence all the 327 

DNA versus a smaller proportion of the DNA. The sequencer should have no impact on sampling 328 

assuming no sequencing errors due to misreading or spatial sampling issues (i.e., clonal density issues). 329 

Obviously, these issues do exist, but for the sake of a first order, general approximation, these biases 330 

can be ignored.  331 

 By making the above assumptions, the probability of sequencing all elements in GMG reduces to 332 

a coupon collectors problem (33). Using the general functional form for calculating expected samples 333 

for sampling all unique elements in a set (equation 13b in 8), one can predict the number of sequences 334 

necessary to sequence all elements in KMG, such that the expected number of sequences, 𝐸(𝐺𝑀𝐺), is: 335 

𝐸(𝐺𝑀𝐺) = ∫ (1 − ∏ (1 − 𝑒−𝑝𝑗𝑡)𝑗∈𝐾𝑀𝐺
)𝑑𝑡

∞

0
              (7 336 

where j is a given element within KMG, t is the number of sampling events, and pj is equal to the 337 

proportion of the j
th

 k-sized read within a given population of k-sized reads. pj can be expressed as 338 

follows: 339 
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𝑝𝑗 =
𝑛𝑖×𝑗∈𝐾𝑀𝐺

|𝐺𝑀𝐺|
                     (8 340 

where ni is the respective abundance for the species whose MAG contains the j
th

 k-sized read within 341 

KMG, and |𝐺𝑀𝐺| is the cardinality of GMG, or the total number of k-sized reads in the metagenome, GMG.  342 

MODELING EXPECTED SEQUENCES  343 

Equation 7 provides an estimate for the total number of sequences to sequence all KMG. The 344 

influence of increasing species richness (i.e., s in equation 2) on the expected number of sequences was 345 

tested for four hypothetical communities. The first community had an even structure such that all the 346 

metagenomic DNA segments were equally distributed across all KMG. In the second community, 90% 347 

of the metagenomic DNA segments were equally distributed in 50% of KMG, and the remaining 10% of 348 

the metagenomic DNA segments were distributed equally across the remaining 50% of KMG. This 349 

community represented a community with relatively moderate species evenness. In the third 350 

community, 90% of the metagenomic DNA segments were equally distributed across 10% of KMG, and 351 

the remaining 10% of the metagenomic DNA segments were distributed equally across the remaining 352 

90% of KMG. This community represented a community with relatively low species evenness. The last 353 

community had 10 equally-sized groups, or octaves (i.e., s was the same in all groups). The abundance 354 

of the metagenomic DNA segments in each group followed a lognormal distribution which has been 355 

observed in true microbial populations (e.g., (7, 16)). The functional form for modeling abundances 356 

was based on the functional form of a lognormal community (34):  357 

𝑆(𝑅) = 𝑆0𝑒−𝑎2𝑅2
                 (9 358 

where S0 was treated as the maximum relative of abundance (S0 = 1), a was the inverse width of the 359 

distribution, R was treated as the positive octave range spanning 0 to 9, and S(R) represented the 360 

abundance for a given octave. For the lognormal abundance distribution in Fig 2D, a was set to a value 361 

of 0.2. Each hypothetical community started with a unique number of k-sized reads |𝐾𝑀𝐺| = 1 × 102. 362 
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|𝐾𝑀𝐺| was incrementally increased at 10 equally-spaced, linear steps to a maximum of |𝐾𝑀𝐺| = 1 ×363 

106. As |𝐾𝑀𝐺| increased, all community structures remained constant. Graphical representation of rank 364 

abundance in Fig 2a was normalized by a given |𝐾𝑀𝐺| to reflect that populations retained the same 365 

structure even as population size varied. We defined a normalized rank abundance rn such that 366 

𝑟n =
𝑟

𝑠
                     (10 367 

where r and s are untransformed rank abundance and richness, respectively. Thus, the most abundant k-368 

mer in a in a metagenome population has a normalized rank abundance of 1/s and the least abundant 369 

has a normalized rank abundance of 1. For each community, at each step, the expected number of 370 

sequences was calculated using equation 7. The expected number of sequences as a function of |𝐾𝑀𝐺| 371 

were modeled with linear regressions. 372 

Equation 7 gives the expected number of sequences required to sequence any sized community 373 

to exhaustion. Numerical sequencing simulations were performed to determine the number of 374 

sequences necessary to sequence a subset of all unique DNA (KMG). These numerical sequencing 375 

simulations were applied to four hypothetical community structures described above. Numerical 376 

simulations were performed such that |𝐾𝑀𝐺| = 3 × 107, 4 × 107, 5 × 107, 7 × 107, 9 × 107, and  377 

1 × 108. During each of these simulations, the parameters read length (k) and average genome size (l) 378 

were set to 100 and  1 × 106, respectively, for all g. Random elements from KMG were selected with 379 

replacement to simulate a sequencing event. Numerical simulations were performed until the fraction 380 

of |𝐾𝑀𝐺| sequenced was 50%, 70%, 90%, 95%, 99%, or 100%. A weight distribution was applied to 381 

elements in a given KMG.  The weight distribution biased sequencing to reflect the relative abundances 382 

of the four hypothetical communities described above. The fraction of |𝐾𝑀𝐺| sequenced was evaluated 383 

every 1 × 107 sequences. Numerical simulations were performed in triplicate for all |𝐾𝑀𝐺| and all 384 

target fractions of |𝐾𝑀𝐺|. 385 
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We explored the influence of community evenness on required sequencing depth by performing 386 

numerical sequencing simulations on 6 different lognormally-distributed communities. The numerical 387 

sequencing simulations were similar to the simulations described above. The 6 lognormal communities 388 

were modeled such that each community had S0 =1, 10 equally-sized octaves, and |𝐾𝑀𝐺| = 1 × 107. 389 

The difference between the 6 lognormal distributions was due to variations in a where a=0, a=0.005, 390 

a=0.008, a=0.01, a=0.015, and a=0.02. Evenness was represented using Pielou evenness index (9), 391 

which is the ratio of the Shannon diversity index (35) for a given community to that of an even 392 

community of the same richness. Shannon diversity was calculated in the context of a metagenomes 393 

such that: 394 

𝐻𝑀𝐺 = ∑ −𝑝𝑗𝑙𝑜𝑔(𝑝𝑗)𝑗∈𝐾𝑀𝐺
               395 

(11 396 

where pj is the proportion that the j
th

 k-sized read represents among all unique DNA sequences in the 397 

metagenome. Thus, the Pielou evenness index (9) was calculated such that: 398 

𝐽 =
𝐻𝑀𝐺

′

𝐻𝑀𝐺,𝑚𝑎𝑥
                (12 399 

where J was the Pielou evenness index, 𝐻𝑀𝐺
′ was the metagenome Shannon diversity index, and 400 

𝐻𝑀𝐺,𝑚𝑎𝑥 represented the metagenome Shannon diversity index when all pj were equal (i.e., a=0).  401 

Lastly, numerical simulations were performed to determine the sequencing depth necessary to 402 

achieve a target fraction for an individual metagenome (gMG). Target fractions were increased from 0.5 403 

to 1 at 100 linearly-spaced intervals. The fraction of the metagenome community (GMG) that gMG 404 

represented varied from 1% to 100% in 30 lognormally-spaced intervals. The target genome sizes (l) 405 

varied such that l=0.5×10
6
, l=1×10

6
, l=2×10

6
, l=3×10

6
, l=5×10

6
, l=10×10

6
, l=15×10

6
, and l=20×10

6
. 406 

The sequencing depth for a given combination of target fraction, genome size, and fraction of the 407 

metagenome community was modeled using the gam function (mgcv R package; (36)). For modeling 408 
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purposes, target fraction was raised to the 12
th

 power and both genome size and sequences were log-409 

transformed. The number of smooth dimensions for fraction of community, genome size, and target 410 

fraction were heuristically varied till the resulting fit demonstrated residuals with a normal distribution. 411 

Note that the objective here was not build a predictive model but simply a first order approximation for 412 

simulations performed here. 413 
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Tables 541 

Table 1. Estimates of fit coefficients for the Gompertz equation (equation 1) for the effective MAGs as 542 

a function of sequencing depth in published datasets from ocean surface water, estuarine sediment, 543 

maize soil, and the human gut. p values for all coefficients were <<0.05. 544 

Environment A (±SE) µ (±SE) λ (±SE) MAG Yield* 

Ocean Surface 

Water 
97.67 (4.15) 5.84 (0.31) 1.16 (0.33) 0.88 

Estuary Sediment 26.25 (2.11) 1.63 (0.06) 3.70 (0.24) 0.86 

Maize Soil 43.65 (1.98) 1.43 (0.07) 6.13 (0.60) 0.70 

Human Gut 17.49 (1.02) 5.01 (0.46) 0.67 (0.14) 0.90 

*Calculated as the ratio of the maximum effective MAGs experimentally observed to maximum 545 

effective MAGs (A)  546 
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Table 2. Summary of sequence datasets analyzed with the MAG pipeline. 547 

Environment 
NCBI SRA 

Accession 

Sequencing 

Platform 

Total 

Reads* 

High Quality 

Bases* 

General 

Notes 
Citation 

Ocean 

Surface Water 
ERR599029 

Illumina 

HiSeq 2000 
337,228,196 33,396,930,215 

Caribbean 

Sea 

(5 mbsl) 

(21) 

Estuary 

Sediment 
SRR5248164 

Illumina 

HiSeq 2000 
113,025,112 15,887,161,501 

Sulfate Zone 

(8-10 cmbsf) 
(4) 

Maize Soil SRR351473 
Illumina 

HiSeq 2000 
472,686,494 38,246,948,858 Surface Soil (22) 

Human Gut SRR5127631 
Illumina 

HiSeq 2000 
50,951,710 4,846,948,241 -- (23) 

*Combination of forward and backwards pair-end reads.  548 
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Figures 549 

Fig 1. The influence that the parameters A, µ, and λ had on the Gompertz equation (A). The property of 550 

the Gompertz equation that each parameter influences is colored red. Mean MAG completeness (B), 551 

and mean MAG contamination as a function of simulated sequencing depth (Gb) for sequence datasets 552 

of the human gut, maize soil, estuarian sediment, and surface ocean microbiomes, using the pipeline 553 

described in the methods section. Translucent lines in (A) correspond to nonlinear least squares fits of 554 

the Gompertz equation to the respective environmental dataset.  555 
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Fig 2. Average expected sequences required to fully sequence four different community structures, one 556 

with relatively high community evenness (A), relatively moderate community evenness (B), relatively 557 

low community evenness (C), and one with a lognormal community structure (D), were predicted using 558 

linear regressions (E) and the log of |𝐾𝑀𝐺| from equation 6 as a predictor.   559 
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Fig 3. Sequences necessary to reach variable target sequencing depths (colors) for four different 560 

community structures, one with relatively high community evenness (A), relatively moderate 561 

community evenness (B), relatively low community evenness (C), and one with a lognormal 562 

community structure (D). Red translucent lines correspond with linear regression curves for the 563 

respective community in Fig 2E.  564 
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Fig 4. Numerical sequencing simulations applied to 6 hypothetical communities with different 565 

lognormal distributions that were defined by the parameter, a, from equation 9 (A). The number of 566 

sequences necessary to sequence a target fraction of |𝐾𝑀𝐺| (dashed contours) as a function of the 567 

Pielou evenness index, J, for a given lognormal community structure (B).  568 
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Fig 5. Numerical sequencing simulations show the number of bases (color bar) required to sequence a 569 

target fraction of a genome which represents a given fraction of a community metagenome. Genomes 570 

evaluated were 0.5×10
6
 (A), 2×10

6
 (B), 5×10

6 
(C), 10×10

6 
(D), and 20×10

6 
(E) base pairs long.   571 
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Fig 6. A cartoon illustrating an example microbial community (G), metagenomes for genomes (gMG,i) 572 

within G, and the overall metagenome for the given microbial community (GMG). In this example, there 573 

are 6 MAGs (s=6) and a total of 13 microbes. (A) Black circles represent individual microbes whose 574 

genomes are averaged together, g. The average genome, g, are indicated by different color inner-575 

circles. (B) Individual average genomes can be sequenced at K unique positions depending on the 576 

characteristic read length, k, of a sequencer. (C) All unique positions that can be sequenced for a given 577 

genome, g, defines the metagenome, gMG, for the i
th

 genome, gi. (D) Replacing all individual genomes 578 

in (A) with metagenomes, gMG, gives the metagenome of the microbial community, GMG. 579 

 580 

 581 
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