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Abstract  

Single-cell RNA-sequencing data generated by a variety of technologies, such as Drop-seq and 

SMART-seq, can reveal simultaneously the mRNA transcript levels of thousands of genes in 

thousands of cells. It is often important to identify informative genes or cell-type-discriminative 

markers to reduce dimensionality and achieve informative cell typing results. We present an ab initio 

method that performs unsupervised marker selection by identifying genes that have subpopulation-

discriminative expression levels and are co- or mutually-exclusively expressed with other genes. 

Consistent improvements in cell-type classification and biologically meaningful marker selection are 

achieved by applying SCMarker on various datasets in multiple tissue types, followed by a variety of 

clustering algorithms. The source code of SCMarker is publicly available at https://github.com/KChen-

lab/SCMarker. 

 

Author Summary 

Single cell RNA-sequencing technology simultaneously provides the mRNA transcript levels of 

thousands of genes in thousands of cells. A frequent requirement of single cell expression analysis is 

the identification of markers which may explain complex cellular states or tissue composition. We 

propose a new marker selection strategy (SCMarker) to accurately delineate cell types in single cell 

RNA-sequencing data by identifying genes that have bi/multi-modally distributed expression levels 

and are co- or mutually-exclusively expressed with some other genes. Our method can determine the 

cell-type-discriminative markers without referencing to any known transcriptomic profiles or cell 

ontologies, and consistently achieves accurate cell-type-discriminative marker identification in a 

variety of scRNA-seq datasets. 

Introduction 

Current single-cell RNA-sequencing (scRNA-seq) data generated by a variety of technologies such as 

Drop-seq and SMART-seq, can reveal simultaneously the mRNA transcript levels of thousands of 

genes in thousands of cells [1-3]. However, the increased dimensionality makes it challenging to 

delineate cell types, due to complex and often undefined associations between individual genes and 

cell-types [4,5]. It is well accepted that genes are not equally informative in delineating cell types [6,7]. 

Certain genes are only expressed in certain cell types, but not others [8]. Moreover, the expression 

levels of certain genes cannot be robustly measured (e.g., zero inflated), due to technological bias [9-

11]. Thus, it has become a common practice to retain only highly expressed or highly variable genes 

for cell populational analysis [12-15]. Several scRNA-seq data clustering packages (S1 Table) 

perform marker selection through dimensionality reduction techniques such as principal component 

analysis and tSNE [16], which are equivalent to identifying the set of highly variable genes.  

Unfortunately, the biological implications and the technical optimality of these gene selection 

strategies retain unclear, despite their wide use in cell-type clustering. 
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Here, we propose an ab initio method, named SCMarker, which applies information-theoretic 

principles to determine the optimal gene subsets for cell-type identification, without referencing to any 

known transcriptomic profiles or cell ontologies. The central idea of our method is to select genes that 

are individually discriminative across underlying cell types, based on a mixture distribution model, and 

are co- or mutually exclusively expressed with some other genes, due to cell-type specific functional 

constraints. Although the techniques of applying a mixture distribution model for a set of continuous 

data points have been widely used in clustering analysis of gene expressions, it is unclear whether 

this approach can benefit this problem context [17,18]. In particular, because single-cell gene 

expression measurements have vast dimensions (>20,000 genes), are highly noisy (e.g., zero-inflated, 

drop-off errors), and are generated by technologies of varied properties [19,20]. For example, 

SMART-seq is aimed at sequencing the entire RNA transcript, while Drop-seq only the 3’ end using 

unique molecular indices (UMI) to track individual transcript [2,21,22].  Part of our investigation here is 

to examine whether the previously applied data analytical techniques can be reapplied in the single-

cell data-type that have different properties and population structures. Our main goal is to identify not 

only cell-types, but also biologically meaningful cell-type markers from scRNA-seq data at accuracies 

higher than results derived using canonical gene selection strategies. 

Materials and Methods 

Discriminativeness of gene expressions for subpopulation clustering 

By definition, cell-type-discriminative markers (CTDMs) should have distinctive expression levels 

across cell subpopulations. Therefore, in a dataset with mixed cell subpopulations, the expression 

level of a CTDM should follow a bi- or multi-modal, instead of a unimodal distribution (Fig. 1A and B) 

[23-25]. Following this assumption, we quantify the degree of modality based on the probability 

density distribution (�) of each gene expression using a Gaussian kernel function, instead of a mixture 

model which requires knowing the number of mixture components:  
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where �� is the expression level of a gene in cell 
; � � 0 is a smoothing parameter called bandwidth, 

which is estimated by the average level of gene expression in cell population and can be leveraged to 

alleviate biases introduced by sequencing depths; and � is the number of cells. ����� is a scaled 

kernel function defined as 
�

�
��� �⁄ 	, where ���� is a standard Gaussian density function. For each 

gene, we count the number (
) of peaks in the estimated probability density function ����	. A peak is 

found at the density value �, if there exists a 2 times � long interval � centred at c such that ����	  �

 �����	 for all  in �. A gene expression level follows a multi-modal distribution, if it has multiple (
 � 2) 

local maximum probability density values. Only genes with multimodal probability density distributions 

are considered as markers.   
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Fig. 1. Illustration of SCMarker. Plotted as examples are (A) a bimodally distributed gene expression and (B) a unimodally 

distributed gene expression. From a binarized gene-cell expression matrix (C), a k-nearest co-occurrence neighbour (KNCON) 

graph and a k-nearest mutually exclusive neighbour (KNMEN) graph are constructed (D), based on which co- or mutually 

exclusively expressing gene pairs (CMEGPs) in the KNCON (node 1, 2 and 3, node 6 and 7, connected by red double arrows) 

and in the KNMEM (node 1, 2, 6 and 7, connected by green double arrows) can be identified. Marker genes (node 1, 2, 3, 6 

and 7) are subsequently selected based on the CMEGPs. 

Co- or mutually exclusively expressing gene pairs (CMEGPs) 

CTDMs are often co- or mutually exclusively expressed, due to modularized regulatory interactions 

specific to cell types [26]. Consequently, identifying these CMEGPs, will help identify CTDMs. 

Because scRNA-seq data are often sparse with limited sequencing depth [27], binarization of the 

counts would help mitigate technical artifacts and improve robustness over different sequencing 

platforms (e.g., whole transcript vs 3’ sequencing protocols). To identify CMEGPs, we only consider 

genes with multimodal distribution and discretize a gene-cell expression matrix with � genes and � 

cells into an � � � binary matrix �  �0, 1�	
� , with  ��� � 1 designating an expressed gene �  in cell 

�, if the expression level is above the average and ��� � 0 otherwise (Fig. 1C). For gene �, ��· �

����, ��� , … , ���� is a binary string. We can calculate a co-occurrence matrix (S) that measures the 

pair-wise co-occurrence between all the gene pairs,  

S �  � · �.                                                                            (2) 

S can also be represented as a directed graph (Fig 1D), in which a node denotes a gene and an edge 

from gene A to gene B represents that B co-occurs with gene A in at least � cells. Among the 

connected nodes, the � genes that co-occurred with A in � largest sets of cells are termed the �-

nearest co-occurrence neighbours (KNCONs).  
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In addition, we calculate a mutually exclusive matrix (�) that measures the pair-wise mutual 

exclusivity between all the gene pairs through equation (3),  

� � �1 � �	 · ��,                                                           (3) 

where � represents a directed �-nearest mutually exclusive neighbour (KNMEN) graph (Fig. 1D). 

Similar to KNCON, but in opposite ways, the KNMENs of a gene A are the � genes that occur 

mutually exclusively with A in � largest sets of cells. 

Under these definitions, an CMEGP is identified as two genes bi-directionally connected in the 

KNCEN or the KNMEN graph. We selected as markers the genes that belong to at least one CMEGP, 

because these genes are more likely associated with cell-type specific functions than those that do 

not have any CMEGP (likely due to random, non-function-related fluctuation). This concept has been 

previously examined in the RNA microarray data analysis, but has not been successfully applied in 

the context of single-cell RNA-seq data analysis, due to vastly different properties between the 

technologies [17,18]. 

Results  

Comparison with other marker selection strategies 

We applied SCMarker to the scRNA-seq data obtained from 1) 19 melanoma patients, which include 

4,645 cells; and 2) 18 head and neck cancer patients, which include 5,902 cells sequenced by the 

SMART-seq2 platform [28,29]. In the original studies, each cell in the sets was labelled as a 

malignant or non-malignant cell through copy number analysis. The expression levels of known 

marker genes were used to further classify the non-malignant cells, such as T cells, B/plasma cells, 

macrophages, dendritic cells, mast cells, endothelial cells, fibroblasts, and myocytes. We found that 

most known marker genes (96%) demonstrated bi/multi-modal distributions across cells (S1 Fig.). 

Overall, around 6% of genes with bi/multi-modal distributions are identified as marker genes, among 

which half are the known marker genes.  

For a fair comparison, we assessed SCMarker results with those obtained under two canonical 

strategies: selecting genes with A) the highest average expression levels and B) the highest variance 

across cells. In our experiments, the highest variable genes were determined using Seurat [12]. We 

used five clustering methods: k-means, Clara, hierarchical clustering, DBSCAN and Seurat to cluster 

single cells based on the selected markers [30,31]. Same numbers of clusters are specified for 

DBSCAN, k-means, Clara, and hierarchical clustering. The adjusted rand index (ARI), which 

measures the similarity of two sets of clustering results, was used to quantify the consistency between 

the clustering results and the known cell labels [32]. Compared to marker sets A and B, selected by 

the canonical strategies, the marker set selected by SCMarker (equal numbers of markers) resulted in 

a higher ARI with fairly evident margins (Fig. 2). The conclusion appeared to be robust over a range 

of � and � parameters and were unaffected by using different clustering methods (S2 Fig.). 
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Fig. 2 Comparison of 3 marker selection methods for cell-type identification. Accuracy of cell-type identification (in terms of 

adjusted rand index) are compared across 3 marker sets selected respectively by SCMarker, the highest expressed and the 

highest variable gene approaches, using two scRNA-seq datasets from (A) melanoma and (B) head-and-neck cancer samples 

by 5 clustering algorithms: k-means, Clara, hierarchical clustering (hc), DBSCAN, and Seurat. 

These experiments indicated that setting � between 100 and 300 resulted in the most accurate cell 

type identification results irrespectively to � (S3 Fig.). Hence, we select � � 300 and � � 30 as the 

default parameters for applying SCMarker. 

We obtained 902 markers from the melanoma data and more distinguishable cell types using 

SCMarker than using the canonical strategies (Fig. 3A to C). Better performance of SCMarker was 

also obtained in analysing the head and neck cancer data (S4 Fig.). Moreover, the genes selected by 

SCMarker had substantially higher degrees of overlap with the known cell-type markers reported in 

the original publications than the sets returned by other approaches (the same number of 902 top 

scoring genes were selected for fair comparison), including the “FindMarker” approach in Seurat (Fig. 

3D to G). Notably, SCMarker selected significantly more immune cell surface markers specific to T 

cytotoxic, T helper, B lymphocyte, and macrophage cells that are likely present in the tumour 

microenvironment, as indicated by gene set enrichment analysis (S5 Fig.) [33]. 
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Fig. 3. Results on the melanoma data. Plotted in tSNE space are 4,645 melanoma cells with markers selected respectively by 

(A) SCMarker, (B) the highest expressed and (C) the highest variable genes. Also plotted are the Venn diagrams between the 

known cell-type markers and the marker sets determined respectively by (D) SCMarker, (E) the highest expressed, (F) the 

highest variable genes and (G) Seurat FindMarker in the melanoma data. 

Application of SCMarker to 3’ UMI count data 

To avoid introducing biases due to potential overfitting and assess the utility of our approaches on 

other platforms, we further assessed the utility of SCMarker in analysing the 3’ UMI count scRNA-seq 

data generated by the droplet platforms.  

We first analysed a set of 5,602 cells from the cerebellar hemisphere of normal brain tissues 

generated by Drop-seq [34]. SCMarker selected 699 genes as CTDMs, which differentially expressed 

across cell subpopulations under the default parameters. Alternatively, the default mode of Seurat led 

to the selection of 6,111 highest variable genes (HVGs). For comparison, we selected 699 highest 

expressed genes (HEGs). Although SCMarker selected less markers than Seurat, the clustering 

result showed a clearer separation than that based on the Seurat HVGs and on the HEGs (Fig. 4A to 

C). In particular, SCMarker successfully delineated Purkinje neurons into purk1 (cluster4, Fig. 4A) 

and purk2 (cluster7, Fig. 4A) and recapitulated the differential levels of SORCS3 between two 

clusters (Fig. 4D), which are consistent with the results in the original paper.  In contrast, although the 

Purkinje neurons were clustered into four groups by Seurat (Fig. 4B), purk1 and purk2 were not well 

separated (Fig. 4B), and the expression levels of SORCS3 showed mosaic patterns across the 4 

groups (cluster4, 6, 11 and 12, Fig. 4E). As additional controls, we performed clustering using the top 

500 and 1000 Seurat HVGs.  That did not result in any improvement (S6 Fig.). 
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Fig 4. Results on the human brain data.  Plotted in tSNE space are 5,602 cells in the cerebellar hemisphere of human brain 

tissue based on markers selected respectively by (A) SCMarker,(B) the highest variable genes and (C) the highest expressed 

genes, colored by performing clustering using Seurat. Cell types were labelled consistently as they were in the original paper. 

Also plotted are the heatmaps of the top 10 gene expression levels in each cluster derived respectively from (D) SCMarker,(E) 

the highest variable genes and (F) the highest expressed genes. 

We then analysed the scRNA-seq data of 52,698 cells from 5 lung tumours generated by the 10X 

Chromium platform (10X Genomics) [35]. SCMarker identified 848 markers under the default 
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parameters, while Seurat identified 1,832 HVGs. We also selected 848 HEGs for comparison. 

SCMarker led to 22 clearly distinguishable clusters, while the Seurat HVGs led to 12 and the HEGs 

led to 18 (Fig. 5A to C). The 10 highest expressed markers per cluster derived by SCMarker showed 

a high degree of cluster-specificity in the heatmap (Fig. 5D). Among the selected markers were the 16 

known markers reported by the original study (Table 1). SCMarker also discovered multiple putative 

subtypes for some cell types, such as the T, B, fibroblast, and myeloid cells (Table 1, Fig. 5A). For 

example, cluster 7, 10, 13, 19, and 22 are the B cells expressing known surface marker CD79A (Fig. 

5A), yet cells in cluster 7, 13, 19, and 22 are evidently different from cells in cluster 10, due to 

differential IGHG1 and BANK1 expression levels (Fig. 5D). For comparison, we selected the 10 

highest expressed genes from the clusters determined by the Seurat HVGs and by the HEGs, 

respectively (Fig. 5E and F). They appeared non-specifically distributed across clusters (Fig. 5E and 

F). These genes also contained fewer known markers (Table 1). For example, cluster 3 determined 

by the Seurat HVGs contained markers (CLDN5, CAV1 and IFITM3) from 3 cell-types (endothelia, 

alveolar and B cell, respectively). Most clusters expressed IFITM3, except for clusters 1 and 6 (Fig. 

5E). Only T cell and fibroblast markers appeared to be cluster-specific. As additional controls, we also 

performed analysis using fewer (i.e., 500 and 1000) Seurat HVGs.  That resulted in worse results with 

fewer known markers and marker-specific clusters (S7 Fig.).  
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Fig. 5. Results on the lung cancer data generated by Dropseq. Plotted in tSNE space are 52,698 cells of 6 different lung cancer 

patients, clustered based on markers selected respectively by (A) SCMarker, (B) the highest variable genes and (C) the 

highest expressed genes. Colors correspond to clusters determined by DBSCAN. Heatmaps of the average expression levels 

of the 10 highest expressed genes per cluster identified respectively by SCMarker (D), the highest variable genes (E) and the 

highest expressed genes (F). Cell types in (A) to (C) are labelled based on the known cell-type specific markers, which are 

highlighted in red boxes in (D) to (F).   

 Table 1. Known cell-type specific markers identified respectively by SCMarker and the highest variable gene 

approach.  

Known 

markers 
Cell type 

Cluster ID 

(SCMarker) 

Cluster ID 

(highest variable) 

Cluster ID 

(highest expressed) 

CD3D T cell 1 1  

MKI67 T cell 18   

IGHG1 B cell 7, 13, 19, 22   
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MS4A2 Mast 2   

LYZ Myeloid 3, 5, 20, 21   

CLDN5 Endothelial 4 3  

COL1A1 Fibroblast 8   

COL4A1 Fibroblast 16   

CAPS Epithelial 17   

CAV1 Alveolar 15 3  

AGER Alveolar 15   

IFIMT3 Myeloid  3 6, 7 

COL6A2 Fibroblast  5  

MS4A1 B cell  6  

CD79A B cell  6  

SFTPC Alveolar  10  
Only the top 10 highest expressed markers per cluster are included in the comparison. 

Overall, SCMarker demonstrated higher sensitivity and specificity for cell type and cell-type specific 

marker identification than the alternative approaches. Moreover, markers selected by SCMarker were 

more significant among genes which were identified by Seurat to define clusters (S8 Fig.).  

Discussion 

In this manuscript, we reported a new bioinformatics tool, SCMarker, which performs ab initio cell-type 

discriminative marker selection from scRNA-seq data. SCMarker operates based on two new 

information-theoretic metrics: 1) bi/multi-modal distribution of subpopulation-discriminative gene 

expression in mixed cell populations and 2) co- or mutually-exclusively expressing gene pairs, which 

quantifies populational structural properties intrinsic to single-cell RNA-seq data. We found that 

SCMarker can consistently significantly boost cell-type identification accuracy in datasets from a 

variety of tissues such as cancer and brain, generated by both SMART-seq and Drop-seq platforms. 

Because SCMarker does not depend on any prior knowledge, we anticipate that it will prove most 

useful in discovery settings for analysing cell populations of a high degree of plasticity and 

heterogeneity [36]. SCMarker can potentially be expanded to analyse other types of single-cell data, 

including mass cytometry and single cell ATAC-seq (Assay for Transposase-Accessible Chromatin 

using sequencing) data [37,38]. It can be easily incorporated as a module into current scRNA-seq 

data analysis workflows to pre-process the cell-gene count/expression matrix before performing 

further downstream analysis.   
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S1 Fig. Distributions of expression levels of known marker genes (CD3G, CD8A, IL7R, MS4A1, CD19, 

CD79A, CD79B and PMEL) from melanoma data. 

S2 Fig. Comparison of 3 marker selection methods for cell-type identification. Tested were a range of 

parameters and 5 clustering algorithms: k-means, Clara, hierarchical clustering (hc), DBSCAN, and 

Seurat. Plotted in heatmaps are the ARI values calculated based on markers selected respectively by 

SCMarker, the highest expressed genes and the highest variable genes from (A) the melanoma and 

(B) the head and neck cancer data. X and Y axes in the SCMarker panel indicate the �  and ! 

parameters used by SCMarker and the corresponding (equal number of markers) results in the 

highest expressed or the highest variable gene panels. 

S3 Fig. Determining the optimal parameters. Plotted in the heatmaps are the number of selected 

markers for (A) the melanoma and (B) the head and neck cancer data over a range of � (X-axis) and 

! (Y-axis) parameters. Bars on the side and the top are the mean values in the corresponding rows 

and columns. Also plotted are clustering accuracy measured by the adjusted rand index (ARI), a 

metric that measures the similarity of two clustering results, for (C) the melanoma and (D) the head 

and neck cancer data over various � and ! parameters. 

S4 Fig. Validation of genes selected by SCMarker. Plotted in tSNE space are 5,902 cells from the 

head and neck cancer data, based on genes selected respectively by (A) SCMarker, (B) the highest 

expressed and (C) the highest variable genes. 

S5 Fig. Gene set enrichment analysis (GSEA) of markers selected by 3 methods: SCMaker, the 

highest expressed and the highest variable genes from the (a) melanoma; and (b) the head and neck 

cancer data, respectively. Only the top 15 terms are shown. The darkness of the colors corresponds 

to -log10 P values. 

S6 Fig. Results on the human brain tissue data. Plotted in tSNE space are 5,602 cells in the 

cerebellar hemisphere of human brain tissue based on the highest 500 (A) and 1000 (B) variable 

genes, colored by cell types from the original paper. 

S7 Fig. Results on the lung cancer data. Plotted in tSNE space are 52,698 cells of 6 different lung 

cancer patients, clustered based on the highest 500 (A) and 1000 (B) variable genes. Colors 

correspond to clusters determined by DBSCAN. Heatmaps of the average expression levels of the 10 

highest expressed genes per cluster identified respectively by the highest 500 (C) and 1000 (D) 

variable genes. Cell types in (A) and (B) are labelled based on the known cell-type specific markers, 

which are highlighted in red box in (C) and (D).   

S8 Fig. The distribution of significance of markers identified by Seurat and overlaps with SCMarker in 

melanoma, head and neck cancer (HNSCC), brain tissue and lung cancer.  
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