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Abstract 

Learning new skills by watching others is important for social and motor development throughout 

the lifespan. Prior research has suggested that observational learning shares common substrates with 

physical practice at both cognitive and brain levels. In addition, neuroimaging studies have used 

multivariate analysis techniques to understand neural representations in a variety of domains 

including vision, audition, memory and action, but few studies have investigated neural plasticity in 

representational space. As such, although movement sequences can be learned by observing other 

people’s actions, a largely unanswered question in neuroscience is how experience shapes the 

representational space of neural systems. Here we combined pre- and post-training fMRI sessions 

with six days of observational practice to examine whether the observation of action sequences 

elicits sequence-specific representations in frontoparietal brain regions and the extent to which these 

representations become more pronounced with observational practice. Our results showed that 

observed action sequences are modelled by distinct patterns of activity in frontoparietal cortex and 

that such representations largely generalise to very similar, but untrained, sequences. These findings 

advance our understanding of what is modelled during observational learning (sequence-specific 

information), as well as how it is modelled (reorganisation of frontoparietal cortex is similar manner 

to that of physical practice). Thus, on a more fine-grained neural level than demonstrated 

previously, we show the representational structure of how frontoparietal cortex maps visual 

information onto motor circuits to order to enhance motor performance.    
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Significance statement  

Learning by watching others is a cornerstone in the development of expertise and skilled behaviour. 

However, it remains unclear how visual signals are mapped onto motor circuits for such learning to 

occur. Here we show that observed action sequences are modelled by distinct patterns of activity in 

frontoparietal cortex and that such representations largely generalise to very similar, but untrained, 

sequences. These findings advance our understanding of what is modelled during observational 

learning (sequence-specific information), as well as how it is modelled (reorganisation of 

frontoparietal cortex is similar manner to that of physical practice). More generally, these findings 

demonstrate how motor circuit involvement in the perception of action sequences shows high 

fidelity to the physical performance of action sequences. 
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Introduction  

From learning to use chopsticks to dancing the lead role in Swan Lake, humans display a 

remarkable ability to learn complex new motor skills by watching others perform these actions. 

However, it remains unclear how visual signals are mapped onto motor circuits for such learning to 

occur. Indeed, our understanding of how action representations develop during motor learning 

through physical compared to observational practice remains in its infancy (Frey & Gerry, 2006; 

Hodges et al., 2007; Ostry & Gribble, 2016; McGregor et al., 2016; Vogt et al., 2007). Here we 

advance understanding of observational learning by using functional magnetic resonance imaging 

(fMRI) to test the idea that observational learning of action sequences leads to distinctive patterns 

of activity in sensorimotor cortices, in a manner similar to that reported following physical practice 

(Wiestler & Diedrichsen, 2013). 

Common brain regions have been shown to underpin motor learning following physical and 

observational experience (Cross et al., 2009; Kirsch & Cross, 2015; Ostry & Gribble, 2016). For 

example, if the motor system is engaged in another task (Mattar and Gribble, 2005) or if 

sensorimotor systems are disrupted through non-invasive stimulation (Brown et al., 2009; 

McGregor et al., 2016), observational learning is reduced. Further, neuroimaging studies have 

demonstrated that frontoparietal cortex shows similar changes in magnitude and connectivity when 

learning through physical and observational practice (Cross et al., 2009; Vogt et al., 2007; Higuchi 

et al., 2012; Sakreida et al., 2018; van der Helden et al., 2010). While these studies demonstrate that 

sensorimotor cortices are involved in learning motor skills by observation, it remains unclear how 

visual signals are mapped onto motor circuits for learning to occur.  

Compared to action observation and visual training, considerably more research has 

investigated neural representations underpinning action execution and physical training (Dayan & 

Cohen, 2011; Diedrichsen & Kornysheva, 2015; Hardwick et al., 2013; Kelly & Garavan, 2005; 

Penhune & Steele, 2012). fMRI studies have shown both increases and decreases in frontoparietal 
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cortex following motor learning, with increases argued to reflect recruitment of cortical tissue and 

decreases suggestive of more efficient neural function (Dayan & Cohen, 2011; Gardner, Aglinskas 

& Cross, 2017; Steele and Penhune, 2010). However, because conventional fMRI analyses average 

activity across voxels, they are insensitive to a richness of information that is represented by the 

pattern of activity across voxels (Kriegeskorte et al., 2008). Sidestepping the issue of averaging 

across voxels, Wiestler and Diedrichsen (2013) used a motor learning paradigm in combination 

with multi-voxel pattern analysis (MVPA) to identify how patterns of activity across voxels relate 

to mental content, independent of average activity (Norman et al., 2006; Kriegeskorte et al., 2008). 

Wiestler and Diedrichsen (2013) showed that execution of kinematically-matched keypress 

sequences was associated with sequence-specific patterns of activity in multiple frontoparietal brain 

areas. Moreover, physically practicing sequences led to reduced activity on average and more 

distinctive patterns of activity in frontoparietal brain areas, implying a more distinct neural 

representation of learned sequences that enables faster execution (Wiestler and Diedrichsen, 2013).  

To date, MVPA has been used to understand neural representations in a variety of domains 

including vision, audition, memory and action, but few studies have investigated neural plasticity in 

representational space (Kriegeskorte & Kievit, 2013). Therefore, although movement sequences can 

be learned by observing other people’s actions (Bird et al., 2005; Blandin et al., 1999; Boutin et al., 

2010; Hodges et al., 2007; Vogt et al., 2007), a largely unanswered question in neuroscience is how 

experience shapes the representational space of neural systems (Kriegeskorte & Kievit, 2013). To 

address this question, here we test the extent to which observation of action sequences elicits 

sequence-specific representations in frontoparietal brain regions and the extent to which these 

representations become more pronounced with observational practice. If observed sequences are 

mapped onto sensorimotor circuits in a similar manner to physical practice (Wiestler and 

Diedrichsen, 2013), we would expect sequence-specific patterns of activity to emerge within 

sensorimotor cortices following observational training.  
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Method 

Participants 

Eighteen right-handed (based on self-report) volunteers from the Bangor University student 

community participated in the study. Two participants were not included in the final sample: a pilot 

participant, who did not have the same testing parameters, and a participant who made excessive 

head movements during one of the scanning sessions (> 4 mm). The final sample comprised 16 

participants (8 males and 8 females), 20 to 40 years old (M = 24.31 years, SD = 5.06). All 

participants had normal or corrected-to-normal vision and no history of neurological disorders. 

Participants gave their written informed consent and were paid £45 for their participation. All 

procedures were approved by the Ethics Committee of the School of Psychology at Bangor 

University and UK Ministry of Defence Research Ethics Committee.  

Stimuli 

A keypress sequence learning paradigm was implemented, based on the task used by Wiestler and 

Diedrichsen (2013). A standard QWERTY black computer keyboard was used with the Q 3 4 5 and 

Y keys covered with red tape and all surrounding keys removed. In pre- and post-training sessions, 

participants were required to press the red keys with the five fingers of their left hand in a specified 

order. During the observational training and fMRI sessions, participants watched videos of the 

experimenter performing the keypress task. For the video recordings, a similar keyboard was used 

with the only difference that the sides of the five keys were covered in yellow to improve the 

visibility of the key being pressed. Stimuli presentation and response recordings were performed 

using MATLAB 8.3.0 (The MathWorks, MA, USA) and Psychophysics Toolbox 3.0.12 (Brainard, 

1997).  

Keypress sequences 

The same set of 12 five-element keypress sequences was used as previously by Wiestler and 

Diedrichsen (2013). Each sequence required the five fingers of the left hand to be pressed once in a 
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sequential order, with each of the 12 sequences featuring a different order with no more than three 

adjacent finger-presses in a row. All sequences were matched for difficulty, based on a pilot 

experiment (Wiestler and Diedrichsen, 2013). For each participant, from the set of 12 sequences, 

four sequences were randomly allocated to the Trained condition, and four other sequences were 

allocated to the Untrained condition. The remaining four sequences remained used.  

Videos 

For observational training and both scanning sessions, 13-second videos were created showing the 

experimenter’s left hand from a first-person perspective, slightly tilted to the right (Figure 1C; see 

Stimuli, https://osf.io/jz4nk/). Each video showed the experimenter executing one sequence five 

times, with naturally varying breaks between each sequence repetition, to ensure a more authentic 

presentation of the performance. For the same reason, for each sequence, five different video 

versions were recorded, to allow closer to natural performance variation of the same sequence. An 

additional video version for each sequence was created where one of the five sequence executions 

was incorrect. This resulted in 72 videos in total.  

Sequences were executed at an intermediate performance level, which was determined by 

behavioural pilot test results, where the average time to complete a correct sequence execution was 

2.29 seconds (N = 17, M = 2.29 s, SE = 0.14). Each original video, showing five repetitions of the 

same sequence, was slightly speeded up or slowed down (±10%) to make it exactly 13 seconds 

long. Consequently, the authenticity of movement performance was somewhat reduced, but the 

relative variability within the video remained intact. The average single sequence execution in the 

videos was 2.3 seconds. The videos were presented on a computer monitor in full colour on a black 

background. The frame rate was 29 frames per second with the resolution of 600 x 526 pixels, 

showing approximately natural hand size.  

Procedure 

Overview 
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Participants underwent six testing days over a seven-day period (Figure 1A). On the first day of 

testing, participants received task instructions and completed three single-sequence execution trials 

to ensure that each participant understood the task. The familiarisation procedure was followed by a 

pre-training session, which was immediately followed by the first scanning session. Participants 

returned to the lab for the next two consecutive days for observational training sessions, which were 

followed by a day off. After the rest day, participants returned to the lab for two more consecutive 

days of observational training sessions. The final day (Day 6) started with the second scanning 

session, immediately followed by a post-training session. Each session is described in more detail 

below.  

Pre- and post-training sessions 

In the pre- and post-training sessions, participants performed four Trained and four Untrained 

sequence execution trials in a random order with their left hand. Each trial consisted of five 

repetitions of the same sequence (Figure 1B). All trial-related information was presented centrally 

at the bottom of the screen against a grey background. A trial started with a black fixation cross (0.2 

s), followed by the sequence cue presented as five digits (2.7 s) that indicated from right to left 

which key to press: “1” – the right-most key pressed with the thumb; “5” – the left-most key 

pressed with the little finger. After the cue, the digits were replaced by the fixation cross and five 

black asterisks above it. This served as a “go” signal to execute the memorised sequence five times 

as quickly and accurately as possible. If the correct key was pressed, the corresponding asterisk on 

the screen turned green, if a wrong key was pressed, the asterisk turned red.  

After executing a single sequence, the central fixation cross changed colour to provide feedback 

on the performance (0.8 s): green – correct sequence execution; red – incorrect sequence execution; 

blue –  correct, but executed 20% slower than the median execution time in the previous trials; three 

green asterisks – correct and executed 20% faster than the median execution time in the previous 

trials. After this short feedback, all asterisks turned black signalling the start of the next execution 

trial. After five executions of the same sequence, the trial ended and the next sequence was cued.  
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Observational training sessions 

In the observational training sessions, participants watched videos of the four Trained sequence 

executions. Participants were instructed to watch the videos and to pay close attention to whether 

the sequences were performed correctly. Occasionally they would be asked whether the performer 

in the video made an error in any of the five repetitions – the error question. They would respond by 

pressing the ‘b’ key (marked red) on a keyboard for yes and the ‘m’ key (marked blue) for no. This 

task was included to ensure that participants paid close attention to the videos. Participants were 

also informed that they will need to perform the watched sequences again at the end of the 

experiment. 

All trial-related information was presented in the middle of the screen against a black 

background with a light grey font (Figure 1C). A trial started with a fixation cross (0.4 s), followed 

by the sequence cue presented as five digits (2.6 s), followed by the sequence video (13 s). After 

some of the trials, the error question was asked and participants had 2.6 seconds to respond.  

A training session was divided into four blocks, separated by a rest period. Within each block, 20 

videos were presented in a random order. Each of the four training sequence videos was shown four 

times (randomly choosing one of the five video versions for each sequence, described in the Videos 

section above). There was also one ‘error video’ for each sequence (where at least one of the five 

repetitions of the sequence execution was incorrect). The error question appeared randomly 5-7 

times per block. At the end of each block, participants received feedback on how accurately they 

spotted the incorrect sequence executions. The whole training session lasted approximately 25 

minutes and participants saw a correct execution of each sequence at least 80 times (4 blocks, 4 

distinct sequence videos per block, 5 repetitions of a single sequence per video, plus some correct 

repetitions in the ‘error video’). 

Scanning sessions 

During identical pre- (Day 1) and post-training (Day 6) fMRI sessions, participants observed the 

four Trained and four Untrained sequence videos in a random order. The observation trials were 
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structured in the same way as in the observational training sessions (Figure 1C). In each scanning 

session, participants completed 10 functional runs. Each functional run comprised 17 videos 

presented in a random order: eight sequence videos presented twice each, and one ‘error video’. 

Each video showed five repetitions of one sequence. Therefore, during each scanning session, 

participants saw a correct execution of each sequence at least 100 times (10 functional runs, 2 

videos per sequence per run, 5 repetitions of a single sequence per video, plus some correct 

repetitions in the ‘error video’). 

 In keeping with the observational training sessions, participants were instructed to watch 

whether all sequences were correctly executed and to answer the error question when asked. The 

error question was asked twice within a run – always after the ‘error video’ and randomly after one 

of the correct videos. Each run also had five rest phases, one at the beginning of the run and four 

randomly interspersed, but never twice in a row. The rest phase was 13 seconds long and showed a 

fixation cross in the middle of the screen. Each run lasted approximately 6 minutes (2.6 s per 

whole-brain acquisition, with 138 acquisitions per run). 

Stimuli were presented onto a screen located behind the MRI scanner and displayed to the 

participant via a mirror positioned above participants’ eyes. Responses to the error questions were 

recorded using a scanner-safe fibre optic four-button response pad (Current Designs, Philadelphia, 

PA) connected to the stimulus PC. 

Scan acquisition 

MRI data were acquired using a 3 Tesla Phillips Achieva MRI scanner (Philips Health Care, 

Eindhoven, Netherlands) fitted with a sensitivity-encoded (SENSE) 32-channel phased-array head 

coil.  

Functional scans 

Both scanning sessions consisted of 10 functional runs of the blood-oxygenation-level-dependent 

(BOLD) signal acquisitions (Ogawa et al., 1992), with two dummy scans and 136 whole-brain 

scans per run. Volumes were collected using a T2*-weighted single shot gradient echo planar 
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imaging sequence with the following parameters: TE = 30 ms, TR = 2.6 s, flip angle = 90°, 41 

ascending slices with 2.3 mm thickness, 0.15 mm gap, and 2 x 2 mm2 in-plane resolution (matrix 

size 96 x 96). The slice acquisition was focused on premotor and parietal brain regions, thus the 

group average brain area coverage did not include the cerebellum, or all of the occipital or inferior 

temporal lobes (Figure 1D). 

Anatomical scan  

The last scanning session (Day 6) ended with a high-resolution whole-brain 3D anatomical scan 

acquired as a T1-weighted image (MP-RAGE, TE = 3.5 ms, TR = 12 ms, voxel resolution = 1 mm3, 

slice thickness = 2 mm, flip angle=8°), which was used as an anatomical reference for each 

participant.  

Data analysis 

Overview of analysis strategy 

The general analysis strategy is motivated by our main research question, which is focussed on 

understanding how changes in the pattern of activity in frontoparietal cortex supports sequence-

specific representations following observational learning. More specifically, we measure the extent 

to which individual observed action sequences are represented by patterns of activity in 

frontoparietal cortex, as well as the extent that these sequence-specific representations are 

dissociable in a training-specific manner (i.e., trained > untrained). In addition, we focussed our 

pattern classification analyses on specific region of interest (ROIs) that, as measured by average 

activity across voxels, showed sensitivity to observational learning during the post-training scan 

session (e.g. Sakreida et al., 2018). By focussing our pattern analyses on regions that satisfy 

functional criteria associated with observational learning, we ensure that inferences drawn regarding 

representational-level and sequence-specific effects are in brain regions that are sensitive to 

observational learning. 

The analyses performed within these ROIs closely follows analyses reported in prior 

physical training studies that have employed a sequence learning task (Wiestler & Diedrichsen, 
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2013; Wiestler et al., 2014). In terms of behavioural effects following sequence learning, Wiestler 

and colleagues (2013; 2014) reported skill learning that generalised across all sequences (significant 

pre- to post-training performance improvement of both trained and untrained sequences) and 

training-specific sequence learning (greater post-training performance for trained than untrained 

sequences).  

In addition, in frontoparietal brain regions, measures of average activity and MVPA showed 

evidence for generalised skill learning and training-specific effects (Wiestler & Diedrichsen, 2013). 

Here, we performed similar analyses of behavioural and brain data to test the extent to which 

observational training effects generalise across trained and untrained sequences, and whether these 

effects dissociate between trained compared to untrained sequences. To do so, we first assessed 

sequence-specific learning for trained and untrained sequences separately. That is, we assessed the 

extent to which distinctive patterns of activity for observed action sequences (irrespective of 

training condition) are identifiable within task-defined regions of the frontoparietal cortex. This first 

analysis is an important extension to prior sequence-learning action observation studies that used 

univariate measures (e.g., Frey & Gerry, 2006; Sakreida et al., 2018), as univariate measures are 

unable to distinguish between the neural representation of individual sequences. Indeed, univariate 

measures can distinguish between a collection of trained and untrained sequences, but the 

coarseness of univariate measures does not allow individual sequences to be distinguished.  

Second, to test the extent to which sequence-specific patterns of activity in frontoparietal 

cortex dissociate between sequences in a training-specific manner, we assessed differences between 

representations of trained and untrained sequences during the post-training scan session. To correct 

for possible pre-training differences, we followed the approach by Wiestler and Diedrichsen (2013) 

and calculated a linear regression between the pre-training difference (predictor) and the post-

training difference (outcome). The intercept of the regression line was used as a measure of the 

post-training difference between Trained and Untrained conditions, correcting for possible pre-

training differences. The linear regression approach was used in all subsequent behavioural and 
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brain imaging analyses (univariate and MVPA) when comparing Trained and Untrained conditions 

after training.  

Finally, to complement these ROI-based pattern analyses, we also performed a whole-brain 

searchlight analysis. Because sequence-specific representations of observed action sequences have 

not been investigated before, the whole-brain searchlight analysis enables us to characterise our 

main research questions beyond our ROIs.  

Behavioural performance 

Participants’ physical performance was assessed pre- and post-training, measuring the average 

sequence initiation time, execution time and error rate of the four trained (to-be-trained) and the 

four untrained sequences. The sequence initiation time was measured as the duration between the 

“go” signal and the first keypress. The sequence execution time was measured as the duration 

between the first and fifth keypresses. The error rate was measured as the percentage of incorrect 

sequence executions. Incorrectly executed trials were excluded from further analysis. Attention to 

the task during the observational training and scanning sessions was assessed as a percentage of 

accurate responses to questions on error trials. 

Imaging data 

Imaging data were analysed using SPM12 (Wellcome Trust Centre for Neuroimaging, London), and 

custom-written MATLAB scripts. To correct for head motion, all images from a single scanning 

session (10 x 136 volumes) were spatially realigned to the mean functional image and slice-time 

corrected. The anatomical T1-wighted image was co-registered to the session-mean functional 

image and segmented to obtain parameters for spatial normalisation. The time series of each voxel 

were high-pass filtered with a cut-off frequency of 1/52 Hz, to remove low frequency trends, and 

modelled for temporal autocorrelation across scans with an AR(1) process. 

For the voxel-wise univariate analysis, normalisation parameters from the segmentation step 

were used to normalise pre-processed functional images to the Montreal Neurological Institute 

(MNI) template brain with a resolution of 2 mm3. Normalised images were then spatially smoothed 
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with a 3D Gaussian kernel of 8 mm full-width-half-maximum (FWHM). MVPA was performed 

without normalisation and smoothing, to preserve high spatial resolution.  

All statistical maps were thresholded at a single voxel level with a significance value of p < 

0.001 and a minimum cluster size of 10 voxels. To control for false positive results, only brain 

regions reaching cluster familywise error (FWE) corrected significance at p < 0.05 are reported. For 

anatomical and cytoarchitectonic localisation, we used SPM Anatomy toolbox v2.0 (Eickhoff et al., 

2005). 

 

Univariate analysis 

The univariate analyses were designed to achieve two main objectives: (1) identify brain regions 

engaged in action observation, and (2) identify brain regions sensitive to observational practice. 

Normalised and smoothed data were analysed using a General Linear Model (GLM). A random-

effects model was implemented at two levels. At the first level, single participant data were 

modelled by a single design matrix for all runs within each session. The design matrix contained 6 

regressors of the following events: Trained videos, Untrained videos, an ‘error’ video, error 

questions/responses, Trained cues, and Untrained cues. Trained and Untrained video regressors 

(further named, Trained and Untrained) represented the 13-second video duration (showing five 

repetitions of a single sequence execution). All regressors were modelled as boxcar functions, 

convolved with a hemodynamic response function (HRF). The rest periods formed an implicit 

baseline. 

To identify brain regions engaged in action observation, only data from the pre-training 

scanning session were used. Both action observation conditions of the pre-training session were 

taken together and contrasted with the implicit baseline (pre-Trained ⋃ pre-Untrained > implicit 

baseline). The first level whole-brain contrast maps where then entered into a second-level one-

sample t-test analysis to obtain group average results of brain areas engaged when watching 

keypress sequences in general, pre-training. 
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To identify brain regions sensitive to observational practice, the linear regression approach 

was used, as described above in the ‘Overview of the analysis strategy’ section. Specifically, the 

pre-training difference between the estimated beta weights of the Trained and Untrained conditions 

within each of the 10 pre-training functional runs was used as a predictor variable. The post-training 

difference between the Trained and Untrained conditions within each of the 10 post-training 

functional runs was used as an outcome variable. The intercept of the regression line was used as a 

measure of the post-training difference between the Trained and Untrained conditions, correcting 

for possible pre-training differences. The linear regression was performed at the first level, in a 

voxel-wise manner across the whole brain and produced the intercept maps for each subject. These 

first level whole-brain maps where then entered into a second-level one-sample t-test analysis to 

obtain group average results of brain areas sensitive to observational practice. 

 

Region of interest definition 

Based on univariate data, peak voxels from significant clusters showing the post-training difference 

between Trained and Untrained conditions (independent of the direction) were used to create 

regions of interest (ROIs) for MVPA. We note that our analysis approach is not circular 

(Kriegeskorte et al., 2009), because the univariate analysis of post-training differences is 

statistically independent to all subsequent analyses.  

More specifically, the ROIs were defined for each participant as follows (Figure 2). First, 15 

mm radius spheres centred on the group level voxels with the highest t-value of the post-training 

difference were created in MNI space (these ROIs are available at 

http://neurovault.org/collections/1892/). Second, at an individual participant level, voxels with the 

highest post-training difference value within the 15 mm radius spheres were selected as the 

individual’s peak voxels. This approach was taken to account for anatomical and functional 

variability in the areas responsive to the task across participants. Third, 10 mm radius spheres 

centred on the individuals’ identified peak voxels were created for beta weight extraction to 
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visualise the response. Fourth, the 10 mm radius spheres were mapped from the MNI space onto 

individual subject anatomies for MVPA analysis. 

 

Multi-voxel pattern analysis – region of interest approach  

MVPA was implemented to achieve two main objectives: (1) identify brain regions associated with 

sequence-specific representations through action observation, and (2) identify the extent to which 

patterns of activity become more sequence-specific following observational training of action 

sequences. To test whether the observation of action sequences is associated with sequence-specific 

representations in frontoparietal cortex, we used MVPA to analyse brain activity patterns that 

emerge when watching the four sequences within each condition (Trained and Untrained). 

Consistent with the previous physical training study (Wiestler and Diedrichsen, 2013), we first 

examined sequence-specific patterns within each condition separately to test if neural 

representations in frontoparietal cortices distinguish between observed key-press sequences in 

general. Second, we then compared the results across training conditions to determine whether the 

patterns of activity in frontoparietal cortex become more distinct for trained compared to untrained 

sequences (Figure 1E).   

The dissimilarity between activity patterns was measured using cross-validated Mahalanobis 

distance (Diedrichsen et al., 2016), which is closely related to linear discriminant analysis (LDA), 

and therefore termed linear discriminant contrast (LDC). In a recent study, LDC proved to be the 

most reliable MVPA measure, outperforming other more popular measures, such as pattern 

classification (LDA and support vector machine) and Pearson correlation (Walther et al., 2016).   

LDC is a continuous dissimilarity measure, which includes multivariate noise normalisation 

(pre-whitening), cross-validation, and does not depend on baseline activity. Similar to LDA, LDC 

compares two conditions using a linear discriminant that has been estimated with independent data. 

However, instead of a binary decision, which is then converted into classification accuracy, LDC 

computes the mean difference between the two conditions measured along the linear discriminant. 
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Cross-validation ensures that the measured dissimilarities between conditions are not due to noise in 

the data that makes conditions appear to differ by chance, but instead it ensures that dissimilarity 

measures represent a true difference with a meaningful zero point (Diedrichsen et al., 2016; Walther 

et al., 2016). If a brain region differentiates between the two types of stimuli (or two conditions), 

the average cross-validated dissimilarity measure of the activity patterns would be above zero.   

Here the LDC analysis was implemented using the RSA Toolbox (Nili et al., 2014) and custom-

written MATLAB scripts. To obtain activity patterns for LDC analysis, a first-level GLM was 

estimated for each participant using the spatially realigned and slice-time corrected images, without 

normalisation and smoothing. For the pre-training and post-training data separately, a unique 

regressor for each of the eight sequences (four Trained, four Untrained) within each of the 10 runs 

was modelled as a boxcar function and convolved with an HRF. Each regressor averaged the brain 

activity across the two occurrences of the 13-second videos of each sequence within each run.  

The LDC analysis of the activity patterns across sequences was performed for each condition 

(Trained and Untrained) and each participant separately. The estimated beta weights of the voxels 

in each region (ROI or searchlight) were extracted and pre-whitened to construct noise normalised 

activity patterns for each sequence within each run (Diedrichsen et al., 2016; Walther et al., 2016). 

As such, the input data for the LDC analysis consisted of 4 x 10 (four sequences, 10 runs) activation 

estimates for a set of 160 neighbouring voxels within each ROI. Leave-one-run-out cross-validated 

LDC analysis was performed, and dissimilarity estimates averaged across the ten possible cross-

validation folds.  

For each training condition and ROI separately, we compared patterns of activity between all 

four observed sequences to each other. This produced a total of six comparisons. For each 

comparison, we calculated the dissimilarity in patterns of activity as measured by 1 minus the 

correlation of the activity patterns (Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013). Hence, 

if patterns of activity between two sequences were perfectly correlated, there would be zero 

dissimilarity. Likewise, lower correlations (similarity) between the patterns of activity between two 
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sequences will produce greater dissimilarity scores. The resulting six dissimilarity scores were 

averaged to obtain the average dissimilarity estimate between the four sequences. An above-zero 

dissimilarity estimate indicates that the examined region (ROI or searchlight) has a pattern of 

activity that represents sequence-specific information.   

 For MVPA ROI analyses, we used a random subspace approach to increase the reliability of 

LDC measures (Diedrichsen et al., 2013). To do so, for each ROI separately, subsets of 160 voxels 

were randomly selected 1000 times. LDC analysis was performed on each subset and dissimilarity 

estimates from all 1000 subsets were averaged to obtain the final LDC measure for each ROI and 

each condition: LDC pre-Trained, LDC pre-Untrained, LDC post-Trained, and LDC post-

Untrained. Results were then submitted for statistical analyses.  

First, we estimated the condition-average sequence-specific coding pre- and post-training 

separately. To do so, for the pre- and post-training scanning data separately, we averaged the 

Trained and Untrained LDC values and tested them against zero using one-tailed t-test. An above 

zero value would indicate that patterns of activity are distinct between sequences. Next, we assessed 

the post-training difference (intercept) between the training conditions (trained > untrained), 

correcting for the possible pre-training differences (as described previously). All tests were 

Bonferroni-corrected for the four ROIs. Accordingly, the significance threshold for the statistical 

comparisons was p < 0.0125. 

 

Multi-voxel pattern analysis – searchlight approach  

 

In an exploratory whole-brain analysis, we performed a surface-based searchlight analysis 

(Oosterhof et al., 2011) to identify brain regions coding sequence-specific information across the 

whole cortical surface (Kriegeskorte et al., 2006). Cortical surfaces were reconstructed from 

individual T1-weighted images using FreeSurfer (Dale et al., 1999). Around each surface node, 

spheres of searchlights were defined and all voxels between pial and white-grey matter surface 
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selected for analysis. The radius of each sphere was adjusted such that each searchlight contained 

exactly 160 voxels. The average searchlight radius was 10.37 mm.  

For each searchlight, LDC analysis was performed for the four sequences within each 

condition as described in the MVPA ROI analysis section above. The dissimilarity estimate of each 

searchlight was assigned to the central voxel, constructing a surface map of dissimilarity estimates. 

The acquired individual subject maps (LDC pre-Trained, LDC pre-Untrained, LDC post-Trained, 

and LDC post-Untrained) were then normalised to the MNI template, with a resolution of 2 mm3, 

and spatially smoothed, with a 3D Gaussian kernel of 4 mm FWHM.  

The normalised and smoothed maps were then entered into a second-level random-effect 

analysis to obtain group average results of brain areas that code sequence-specific information when 

watching sequences pre-training and post-training (one-sample t-tests against zero of LDC pre-

Trained ⋃ LDC pre-Untrained and of LDC post-Trained ⋃ LDC post-Untrained). We also 

calculated the post-training difference between the Trained and Untrained conditions, correcting for 

possible pre-training differences, using the linear regression approach as described previously.  

In addition, following Wiestler and Diedrichsen (2013) approach, we also inspected the 

sequence-specific representations globally, averaging over all involved cortical regions. 

Specifically, for each participant we created a mask of cortical areas where LDC value was above 

zero for any of the four conditions. Within this mask, for each condition separately, we calculated 

the average LDC value and the total area where the LDC value was above zero. Next, individual 

participant LDC and total area values where entered into the regression analyses to compare the 

post-training difference between the Trained and Untrained conditions, correcting for possible pre-

training differences (as described previously). 

 

Reported confidence intervals 

All sample means are reported with their 95% confidence intervals in square brackets. Confidence 

intervals for two-tailed tests were calculated as SE * 2.13, whereas confidence intervals for one-
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sided tests were calculated as SE * 1.74 for df 15 (Cumming, 2012). When reporting results for 

multiple conditions, within-subject confidence intervals were used (Cousineau, 2005). 

 

Data sharing 

Stimuli, data, and code for this study are freely available at https://osf.io/jz4nk/. In addition, we also 

performed an exploratory functional connectivity analysis using psychophysiological interactions 

(PPI) analyses (see PPI_analysis; https://osf.io/jz4nk/). Unthresholded fMRI maps, LDC maps and 

group ROIs are uploaded at http://neurovault.org/collections/1892/.  

 

Results 

Behavioural data 

We first assessed the extent to which participants were paying attention to the videos during 

observational training and scanning sessions by analysing accuracy of performance on identifying 

error videos. The average accuracy across the four training days was 87% [81%, 93%]. On average, 

accuracy improved across the four training days (Figure 3A), but the difference was not significant, 

as measured by a 4-way repeated-measures analysis of variance, F3,42 = 1.076, p = 0.370. The 

average accuracy during the scanning sessions was 69% [58%, 80%], with no significant difference 

between the two sessions, t15 = 0.786, p = 0.444, dz = 0.20. Therefore, we can be reasonably 

confident that participants paid attention to the videos during observational training and scanning 

sessions. 

Post-training, sequence initiation time for the trained sequences (M = 600 ms [526 ms, 674 ms]) 

was significantly faster than for the untrained sequences (M = 684 ms [612, 756]), t14 = 2.238, p = 

0.042, dz = 0.56, B0 = -84 ms  [-165, -4] (Figure 3B). Execution time for the trained sequences (M = 

1338 ms [1215 ms, 1461 ms]) was significantly faster than for the untrained sequences (M = 1464 

ms [1365, 1562]), t14 = 3.495, p = 0.004, dz = 0.87, B0 = -115 ms [-185, -45] (Figure 3C). Therefore, 

effects sizes for our primary behavioural measures of observational learning (initiation and 
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execution time) are typically considered medium and large, according to Cohen’s benchmarks 

(Cohen, 1992). Error rate did not differ between the two conditions (post-Trained M = 12% [7, 18]; 

post-Untrained M = 13%, [9, 18]), t14 = 0.319, p = 0.754, dz = 0.08, B0 = -0.6% [-5, 4] (Figure 3D). 

 

fMRI data 

Univariate analyses 

Brain regions engaged in action observation 

To identify brain regions engaged when watching sequences in general, a group average contrast of 

pre-Trained ⋃ pre-Untrained > implicit baseline was assessed. The brain regions that emerged from 

this contrast included bilateral superior and inferior parietal lobules, intraparietal sulci, dorsal 

premotor cortices (including supplementary motor area), hippocampi, and left ventral premotor 

cortex. A list of the major peaks of activated clusters is given in Table 1 and all activated areas 

visualised in Figure 4A. Apart from no activation in the primary motor areas, the other activated 

areas closely matched those reported in the prior physical training study that the current study was 

based on (Wiestler and Diedrichsen, 2013). The activated bilateral frontoparietal regions largely 

correspond to the action observation network identified in previous studies (Caspers et al., 2010; 

Cross et al., 2009; Molenburghs et al., 2012; Kirsch & Cross, 2015). Brain activity maps of Trained 

and Untrained conditions pre- and post-training are visualised in Figure 4B. 

 

Brain regions sensitive to observational training 

The post-Untrained > post-Trained contrast revealed clusters in the right superior parietal lobule 

(extending across right precuneus and left superior and inferior parietal lobules), bilateral dorsal 

premotor cortices, and left ventral premotor cortex (Table 2 and Figure 5A). After the four days of 

observational training, therefore, these brain regions showed decreased brain activity when 

watching trained compared to untrained sequences, which is consistent with prior physical training 
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effects using the same sequences (Wiestler and Diedrichsen, 2013) and observational learning 

studies using similar sequence learning paradigms (Sakreida et al., 2018). No regions with higher 

activity for trained compared to untrained were found (as in Wiestler and Diedrichsen, 2013).  

We hypothesised that brain regions that show decreased activity following training would 

also show distinctive patterns of activity for different sequences in general, as well as for trained 

compared to untrained sequences (Figure 1E). To investigate this hypothesis, we performed a 

MVPA on the four ROIs that showed a reduced BOLD response for trained compared to untrained 

sequences. In addition, we performed an exploratory MVPA using a searchlight approach across the 

whole brain. 

 

Multi-voxel pattern analysis results: sequence-specific representations of observed actions 

LDC analyses were used to test whether brain regions hold sequence-specific information following 

the observation of action sequences and whether the coding of such information is more distinct for 

trained compared to untrained sequences. The average dissimilarity (LDC value) of activity patterns 

between the four sequences within each condition was used as a measure of sequence-specific 

representations.  

Multi-voxel pattern analysis - ROI approach 

We evaluated four ROIs that were sensitive to observational practice (Table 2, Figure 5A): right 

superior parietal lobule, right dorsal premotor cortex, left ventral premotor cortex, and left dorsal 

premotor cortex. Each ROI contained an average of 325 voxels (SD = 48.83). On average across 

Trained and Untrained conditions post-training, sequence-specific activity patterns were found in 

the right superior parietal lobule, left ventral premotor cortex, and left dorsal premotor cortex 

(Figure 5B, Table 3). More specifically, sequence-specific activity patterns were found in the right 

superior parietal lobule, both at pre- and post-training; right dorsal premotor cortex only at pre-

training; and left ventral premotor and left dorsal premotor cortices only at post-training. The effect 

sizes were medium to large in magnitude according to Cohen’s benchmark criteria (Cohen, 1992), 
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as they ranged from Cohen dz = 0.65 to 0.77 (Table 3). These results show that parts of 

frontoparietal cortex that show sensitivity to observational learning, as measured by changes in 

average activity, also show distinctive patterns of activity as a function of observed keypress 

sequences.  

In the same ROIs, there was only suggestive evidence that sequence-specific representational 

dissimilarity was different between Trained and Untrained sequences at the post-test (Table 3, 

Figure 5B). In two ROIs, there was a trend towards sequence-specific representations in 

frontoparietal cortex showing training-specific effects. In these two ROIs, the training-specific 

effects at the post-training scan (trained > untrained) were small to medium in size (Cohen’s d = 

0.25 for left ventral premotor cortex and 0.35 for superior parietal cortex). However, none of the 

ROIs showed a significant effect of training. Therefore, four days of observational training 

produced relatively weak evidence that regions of frontoparietal cortex develop distinctive 

sequence-specific patterns of activity when observing trained compared to untrained sequences.  

 

Multi-voxel pattern analysis - searchlight approach 

Whole-brain exploratory surface-based searchlight analysis revealed pre-training (averaged across 

pre-Trained and pre-Untrained conditions) sequence-specific activity patterns in the right anterior 

intraparietal sulcus and posterior superior parietal lobule (Table 4; Figure 6A, left panel). In 

addition, post-training (averaged across post-Trained and post-Untrained conditions), sequence-

specific activity patterns were found in bilateral supramarginal gyri, anterior intraparietal sulci 

(homologous to macaque AIP; Culham et al., 2006), left anterior superior parietal lobule, left 

primary motor and somatosensory cortices, and right parietal operculum (Table 4; Figure 6A, right 

panel).  

Similar to the ROI analyses, there was only suggestive evidence that sequence-specific 

activity patterns become more distinct when watching Trained compared to Untrained sequences 

following observational training. For exampe, at a cluster FWE-corrected threshold of p < 0.05, no 
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brain regions showed sequence-specific and training-specific patterns of activity. In addition, when 

comparing the sequence-specific activity patterns globally, averaging over all involved cortical 

regions, there was only suggestive evidence for more distinct and more widespread sequence-

specific coding following practice. Specifically, the average LDC measure of the post-Trained 

sequences was higher than of the post-Untrained sequences, however the difference was not 

significant, t14 = 1.128, p = 0.278, dz = 0.28, B0 = 0.155 [-0.139, 0.449] (Figure 6B). Similarly, the 

average cortical surface area coding sequence-specific representations of the post-Trained 

sequences was larger than of the post-Untrained, but the difference was not significant, t14 = 1.935, 

p = 0.073, dz = 0.48, B0 = 0.34 cm2 [-0.035, 0.715] (Figure 6C). 

 

Discussion 

The neural changes that underpin how visual signals are mapped onto motor circuits when we learn 

by observation have remained largely unclear. Here we show that observed action sequences are 

modelled by distinct patterns of activity in frontoparietal cortex and that such representations 

largely generalise to very similar, but untrained, sequences. These findings advance our 

understanding of what is modelled during observational learning (sequence-specific information), 

as well as how it is modelled (reorganisation of frontoparietal cortex is similar manner to that of 

physical practice). Thus, on a more fine-grained neural level than demonstrated previously, we 

show the representational structure of how frontoparietal cortex maps visual information onto motor 

circuits to order to enhance motor performance.    

 

Sequence-specific activation patterns in frontoparietal brain regions during the observation of 

action sequences 

Prior work has shown that physically practicing keypress sequences leads to reduced engagement 

and patterns of activity that are sequence-specific in frontoparietal cortex (Wiestler & Diedrichsen, 

2013). Here, we show that observation of action sequences also leads to a similar functional 
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reorganisation of frontoparietal cortex. Right SPL, Left PMd and PMv showed a reduction in 

engagement after visual training of these sequences (Vogt et al., 2007; Higuchi et a., 2012; Sakreida 

et al., 2018), as well as sequence-specific patterns of activity. The results show close 

correspondence to prior work on physical practice (Wiestler & Diedrichsen, 2013), by 

demonstrating that similar regions that distinguish between physically practiced sequences also 

show sequence-specific patterns when sequences are trained via observation. Moreover, the 

searchlight analysis showed that premotor and parietal cortices, rather than primary motor cortex, 

showed sequence-specific representations. As such, similar levels of the motor system hierarchy 

(Abrahamse et al., 2013; Diedrichsen & Kornysheva, 2015) appear to be modified following 

physical and observational exposure to action sequences. Thus, we show that patterns of activity in 

frontoparietal cortices represent action sequences in a similar manner whether the action sequences 

are physically performed or observed.    

 The results update our understanding of the role of frontoparietal cortex in shared 

representations between action and perception in general (Gentsch et al., 2016), as well as our 

understanding of the features modelled during observational learning (Blandin et al., 1999; Hodges 

et al., 2007; Boutin et al., 2010). Prior work has shown that action observation and performance 

share cognitive and neural mechanisms (Gentsch et al., 2016; Giese & Rizzolatti, 2015; Prinz, 

1997), which span different levels of the motor hierarchy (e.g., intentions, goals, motor commands; 

Grafton & Hamilton, 2007). In the present study, sequences were similar to each other at all levels 

of the motor hierarchy (intentions, goals, motor commands), and differed only in the sequential 

order of keypresses. Despite the close similarity between the individual actions, we found sequence-

specific representations in right SPL, left PMd and PMv. This result deepens understanding of what 

is shared between perception and production of action (de Vignemont & Haggard, 2008). Rather 

than observed sequences being represented on a coarser scale (5 keypresses in any order, for 

example), they are discriminable at an individual sequence level in frontoparietal cortex. This 
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finding thus demonstrates how motor circuit involvement in perception of action sequences has 

high fidelity to the physical performance. 

 

Neural plasticity following observational practice 

Behavioural data show that observational training leads to faster initiation and movement times for 

trained compared to untrained sequences and decreases in neural activity within frontoparietal 

cortex, which mirrors results from physically practicing identical sequences (Wiestler & 

Diedrichsen, 2013). Therefore, in terms of averaged activity, similar neural efficiency or 

redundancy gains were seen following observational practice as physical practice (Higuchi et al., 

2017; Wiestler & Diedrichsen, 2013). In addition, we show similar evidence of neural 

generalisation following training: sequence-specific representations were measurable when 

observing trained and untrained sequences after four days of training, which replicates prior 

physical training effects (Wiestler & Diedrichsen, 2013) and is consistent with our behavioural data. 

These data show clear evidence of generalisation of learning from trained to untrained sequences. 

Given that these sequences were visual and motorically very similar to each other and many of the 

trained sequences had similar finger transitions to the untrained sequences (Wiestler & Diedrichsen, 

2013), it was expected that generalisation would occur. Indeed, it is likely that learned transitions 

are “chunked” during learning and therefore benefit performance when those transitions between 

key-presses are present in the untrained sequences (Wymbs et al., 2012).   

Wiestler and Diedrichson (2013) also showed that physical practice leads to more distinct 

sequence-specific representations for trained compared to untrained sequences in frontoparietal 

cortex. The current study only shows suggestive evidence that following observational learning 

sequence-specific representations in frontoparietal cortex are more distinctive for trained compared 

to untrained sequences. For example, in our ROI approach, training-specific effects of MVPA were 

relatively small (Cohen’s d 0.25 and 0.35) and did not reach a pre-defined statistical threshold of p 

<0.05. In addition, although evidence in support of training-related differences in representational 
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distinctiveness was relatively weak, the whole-brain searchlight approach also suggested that 

frontoparietal cortex develops training-specific and sequence-specific representations, which covers 

a greater proportion of cortex following training. Although more robust than what we report here, it 

is worth noting that the effects of physical practice in prior work were also rather subtle (Wiestler 

and Diedrichsen, 2013). In a global analysis that averaged activity in frontal and parietal areas, the 

effect of physical training corresponded to a 4% increase. Further, in a map-wise analysis, only left 

SMA / pre-SMA showed a reliable effect for trained compared to untrained sequences. Given that 

the behavioural effect of observational learning is smaller than physical learning, it is possible that 

observational learning results in more distinctive sequence-specific patterns of activity but the effect 

sizes are smaller than physical practice and therefore harder to detect. Given the similarity in 

behavioural training effects between physical and observational learning of sequences, as well as 

the similarity in magnitude-based measures of neural activity in frontoparietal cortex, we suggest 

that this interpretation is likely. Alternatively, it is possible that observational learning does not lead 

to modified patterns of activity that are sequence and training specific in a manner similar to 

physical learning. Only future research will be able to confirm or deny these possibilities. 

 Together, these findings point towards a more general insight into the functional re-

organisation of frontoparietal cortex following observational learning. If only univariate results are 

considered, then reduced engagement of frontoparietal cortex is consistent with greater efficiency in 

neural function: reduced and less widespread neural engagement is associated with improved 

physical performance (Steele and Penhune, 2010). However, by unpacking the representational 

structure of frontoparietal cortex in a sequence-specific manner, we are able to show that 

frontoparietal cortex develops a richer and more widespread representation of observed action 

sequences, which largely generalises to untrained sequences. Previous research based on averaging 

activity across voxels has fuelled much debate about the relative contribution of increased or 

decreased engagement of the motor system in learning (Dayan & Cohen, 2011; Gardner, Aglinskas 

& Cross, 2017; Steele and Penhune, 2010). Extending this work, here we emphasise that unlocking 
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the code that is hidden within averaged activity can provide an altogether different understanding of 

brain organisation (Kriegeskorte, 2008; Norman, 2006). Moreover, the results highlight the value of 

using representational similarity analyses in the context of learning to understand plasticity, which 

few studies have focussed upon to date (Kriegeskorte & Kievit, 2013). 

 

Limitations 

In the present study, all eight sequences (four to-be-trained and four untrained) were physically 

performed before the four days of observational training. Thus, the post-training performance 

improvement, at least partly, could be driven by the consolidation of physical performance (Censor 

et al., 2012). While some contribution of physical practice is possible, there was considerably more 

observational practice (100s of observations per sequence vs. 5 executions). Moreover, trained and 

to-be-untrained sequences were all physically practiced before the first scan, so any comparisons 

between trained and untrained sequences were matched for physical practice. For these reasons, we 

do not think that physical practice had a substantial influence on training-specific effects.  

Differences between the current results and those obtained previously from physical practice 

may result from different dose-response relationships. Although the behavioural and univariate 

effects of observational training were quite large, the potency of observational practice is likely to 

be less than physical practice. Therefore, if we had provided sufficient training through 

observational practice to match the behavioural training gains following physical practice, an even 

closer set of results may emerge between observational and physical training. Further, we also 

acknowledge that participants in the current study were not told to intentionally learn the observed 

action sequences. Instead, participants were told to detect errors. As such, it is possible that the 

training effects would be larger if participants were given a clear intention to learn. Nonetheless, it 

remains clear that unintentional learning leads to the type of cognitive and neural re-organisation, 

which has been outlined in the present paper. Future work that investigates the effect of 

intentionality in learning using representational similarity analyses would be of interest.   
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Table 1. Activated brain regions when watching sequences before the training (pre-Trained ⋃ pre-
Untrained > implicit baseline). 

Anatomical location 
Cytoarchitectonic 
location 

Peak MNI 
coordinates 

Cluster level Voxel-level 

x y z voxels PFWE-corr PFWE-corr t15 
L Superior parietal lobule 7PC -30 -56 60 1845 < 0.001 0.001 11.48 
L Superior parietal lobule 7A -20 -70 56   0.010  9.21 
L Intraparietal sulcus hIP3 -36 -50 54   0.014  8.98 
R Inferior parietal lobule  Area 2 40 -40 54 1702 < 0.001 0.002 10.61 
R Superior parietal lobule  7A 24 -64 58   0.003 10.19 
R Intraparietal sulcus hIP3 26 -56 58   0.010  9.17 
L dPM, Superior frontal gyrus  -20 -6 54 1261 < 0.010 0.008  9.38 
L vPM, Precentral gyrus  -32 -8 48   0.051  7.90 
L vPM, Precentral gyrus Area 44 -48 4 38   0.117  7.19 
R dPM, Middle frontal gyrus  34 -4 54 759 < 0.001 0.013  9.00 
R Hippocampus  22 -32 0 179 0.010 0.000 12.50 
L Hippocampus  -22 -34 0 123 0.046 0.002 10.58 
Results are thresholded at a single voxel level, p < 0.001, k = 10 voxels. Only clusters with cluster FWE-corrected significance at 
p < 0.05 are shown, and up to three local maxima when a cluster has multiple peaks more than 8 mm apart.  
L, left; R, right; IPS, intraparietal sulcus; dPM, dorsal premotor cortex; vPM, ventral premotor cortex. 
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Table 2. Brain regions showing lower activity for trained compared to untrained sequences post-
training. 

Anatomical location 
Cytoarchitectonic 
location 

Peak MNI 
coordinates 

Cluster level Voxel-level 

x y z voxels PFWE-corr PFWE-corr t14 
R Superior parietal lobule  7A 22 -68 56 1710 < 0.001 0.007 9.43 
R Precuneus  10 -58 48   0.068 7.86 
L Intraparietal sulcus  hIP3 -28 -50 40   0.210 7.16 
R dPM, Superior frontal gyrus  30 -4 58 610 < 0.001 0.049 8.07 
R dPM, Precentral gyrus  28 -6 50   0.066 7.88 
R dPM, Posterior-medial frontal cortex  16 -4 62   0.979 5.09 
L vPM, Inferior frontal gyrus 
(opercularis) Area 44 

-44 2 24 372 < 0.001 0.708 5.94 

L vPM, Inferior frontal gyrus (opercularis) Area 44 -56 8 10   0.891 5.50 
L vPM, Precentral gyrus Area 44 -50 6 20   0.958 5.24 
L dPM, Superior frontal gyrus  -24 -4 60 321 < 0.001 0.044 8.14 
L dPM, Middle frontal gyrus  -24 -6 50   0.814 5.71 
L dPM, Middle frontal gyrus  -12 -4 58   0.994 4.88 
Results are thresholded at a single voxel level, p < 0.001, k = 10 voxels. Only clusters with cluster FWE-corrected significance at 
p < 0.05 are shown, and up to three local maxima when a cluster has multiple peaks more than 8 mm apart. Highlighted are the 
highest peaks within each cluster which were selected for ROI analyses.  
L, left; R, right; IPS, intraparietal sulcus; dPM, dorsal premotor cortex; vPM, ventral premotor cortex.  
The opposite contrast (post-Trained > post-Untrained) did not result in any significant clusters. 
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Table 3. Sequence-specific coding in regions of interest. 

ROI Mean LDC, One-sample, one-tailed t-test Post-Trained versus Post-Untrained 
R SPL Pre:  0.68 [0.24, 1.11] t15 = 2.7 p = 0.008 dz = 0.68 B0 = 0.41 [-0.22, 1.05], n.s., d = 0.35 Post:  0.42 [0.18, 0.65] t15 = 3.08 p = 0.004 dz = 0.77 
R dPM Pre:  0.35 [0.14, 0.56] t15 = 2.91 p = 0.005 dz = 0.73 B0 = -0.04 [-0.64, 0.57], n.s., d = 0.03 Post:  0.04 [-0.25, 0.33] n.s. dz = 0.06 
L vPM Pre:  -0.05 [-0.26, 0.16] n.s. dz = 0.11 B0 = 0.22 [-0.26, 0.70], n.s., d = 0.25 Post:  0.29 [0.10, 0.49] t15 = 2.59 p = 0.01 dz = 0.65 
L dPM Pre:  0.24 [-0.04, 0.52] n.s. dz = 0.38 B0 = -0.14 [-0.66, 0.39], n.s., d = 0.14 Post:  0.35 [0.12, 0.58] t15 = 2.69 p = 0.008 dz = 0.67 
LDC, Linear discriminant contrast; L, left; R, right; SPL, Superior parietal lobule; dPM, dorsal premotor cortex; vPM, ventral 
premotor cortex; n.s., non-significant. 
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Table 4. Brain regions showing sequence-specific coding for Trained ⋃ Untrained conditions pre- 
and post-training. 

Anatomical location 
Cytoarchitectonic 
location 

Peak MNI 
coordinates 

Cluster level Voxel-level  

x y z voxels PFWE-corr PFWE-corr t15 
Average 
LDC 

Pre-training 
R Intraparietal sulcus hIP3 22 -62 58 453 < 0.001 0.543 5.88 0.95  
R Superior parietal lobule 7A 20 -68 50   0.590 5.79 1.02 
R Superior parietal lobule  20 -56 48   0.914 5.04 0.52 
Post-training 
L Supramarginal gyrus PFop -56 -26 22 269 0.001 0.377 6.32 0.82 
L Supramarginal gyrus PFt -56 -24 32   0.949 4.96 0.74 
L Supramarginal gyrus PFt -66 -26 38   0.995 4.53 0.30 
L M1, Precentral gyrus  4a -50 -10 42 157 0.020 0.170 7.04 0.77 
L M1, Postcentral gyrus 4p -42 -8 34   0.849 5.29 0.32 
L S1, Postcentral gyrus  3b -46 -16 48   0.994 4.57 0.88 
R Intraparietal sulcus hIP2 48 -38 42 145 0.029 0.971 4.83 0.96 
R Supramarginal gyrus PF  58 -40 30   0.997 4.46 0.74 
R Inferior parietal lobule Area 2 48 -36 52   1.000 4.24 0.71 
L Intraparietal sulcus hIP2 -46 -48 54 143 0.030 0.907 5.12 0.92 
L Superior parietal lobule 5L -32 -42 46   0.970 4.48 0.55 
R Parietal operculum OP4 58 -8 12 134 0.039 0.874 5.22 0.70 
Results thresholded at a single voxel level, p < 0.001, k = 10 voxels. Only clusters with cluster FWE-corrected significance at p < 
0.05 are shown, and up to three local maxima when a cluster has multiple peaks more than 8 mm apart.  
L, left; R, right; M1, Primary motor cortex; S1, Primary somatosensory cortex; S2, Secondary somatosensory cortex; IPL, Inferior 
parietal lobule; IPS, Intraparietal sulcus; SPL, Superior parietal lobule. 
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Figure 1. Experimental paradigm. 

 
Figure 1. Experimental paradigm. A. Experimental procedure. The experiment involved pre-test and post-test, 
separated by four training days and two scanning (fMRI) sessions. In the pre- and post-test, participants performed eight 
keypress sequences (four of them to be trained, the other four untrained). In the scanning sessions, participants watched 
videos of a hand performing the same eight sequences. In the training sessions, participants watched videos of a hand 
performing four of the eight sequences. B. Execution trial example. A cued sequence had to be memorised and then 
executed five times while receiving performance feedback. C. Observation trial example. A sequence cue was followed 
by a video showing a hand executing the sequence five times, either correctly or incorrectly. Occasionally a question 
was asked whether there was an error in any of the five repetitions, and a response had to be made. D. Brain area 
coverage for fMRI analysis focused on premotor and parietal brain regions, and did not include the cerebellum, 
occipital lobes, or inferior temporal lobes. E. During pre- and post-training fMRI sessions, participants watched videos 
of 8 different sequence executions; 4 sequences belonged to Trained and 4 others to Untrained conditions. Within each 
condition and each fMRI session, we measured the dissimilarity between each pair of the 4 sequences (six pairs) and 
obtained the average dissimilarity estimate (linear discriminant contrast; LDC) between the 4 sequences. The 
dissimilarity measures were used to investigate our main hypotheses: 1) action observation evokes movement-sequence-
specific brain activity patterns (the average dissimilarity between 4 sequences is above zero); 2) the activity patterns 
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become more distinct following observational practice (the average dissimilarity between 4 trained sequences is higher 
than between 4 untrained sequences). 
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Figure 2. Region of interest (ROI) definition procedure. 

 
Figure 2. Region of interest (ROI) definition procedure. The peak voxels of significant clusters showing the training-
related brain activity changes were selected for ROI based functional connectivity and MVPA analyses. First, 15 mm 
radius spheres were created in the MNI space, centred on the group level voxels with the highest t-value of the post-
training difference between Trained and Untrained conditions (independent of the direction). Second, at a participant 
level, each individual’s peak voxels were identified within the group level 15 mm radius spheres. Third, 10 mm radius 
spheres centred on the identified individuals’ peak voxels were created for beta weight extraction. Fourth, the 10 mm 
radius spheres were mapped from the MNI space onto individual subject anatomies for MVPA analysis. 
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Figure 3. Behavioural results. 

 
Figure 3. Behavioural results. A. Group-averaged accuracy in response to the error question during observational 
training. Error bars represent within-subject 95% CI.B., C. and D. Pre- and post-training difference in initiation time, 
execution time and error rate between trained and untrained sequences. The training effect was measured as the 
intercept of the regression line between the pre-training difference (predictor) and the post-training difference 
(outcome). The intercept represents the predicted post-training difference if the pre-training difference is zero. This 
method reduces the noise of unwanted differences in the difficulty of trained and untrained sequences and thus allows a 
more accurate measurement of the training effect. Error bars represent 95% CI of the intercept. * p < 0.05, ** p < 0.01, 
n.s.: non-significant at p < 0.05.  
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Figure 4. Univariate results for observing action sequences in general and across trained and 

untrained sequences. 
 

 
 
Figure 4. Univariate results. A. Activated brain regions when watching sequences before the training (pre-Trained ⋃	
pre-Untrained > implicit baseline). Statistical maps are overlaid on inflated standard MNI cortical surface (SPM12) and 
a group-average T1-weighted image in MNI template space. Maps are thresholded at a single voxel level p < 0.001 
(uncorrected, k = 10), showing only clusters with cluster FWE-corrected significance at p < 0.05. B. Brain activity maps 
of Trained (red) and Untrained (blue) conditions pre- and post-training. Maps are thresholded at a single voxel level p < 
0.001 (uncorrected), k = 10. 
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Figure 5. Univariate and multi-voxel pattern analysis region-of-interest results. 

 
 
Figure 5. Univariate and multi-voxel pattern analysis region-of-interest (ROI) results. A. Univariate results of 
post-training difference between Trained and Untrained conditions, corrected for pre-training difference. Maps are 
thresholded at a single voxel level p < 0.001 (uncorrected), k = 10, showing only clusters with cluster FWE-corrected 
significance at p < 0.05. Plots illustrate pre- and post-training difference in beta weights between Trained and Untrained 
conditions in the four significant regions selected for further ROI analyses. Error bars represent 95% CI of the intercept. 
B. Top panel: MVPA results of sequence-specific coding pre- and post-training in the four ROIs, showing dissimilarity 
estimate (average LDC value) between the sequences within the Trained and Untrained conditions and across both 
conditions on average. Error bars represent within-subject 95% CI; * p < 0.05. Bottom panel: Pre- and post-training 
difference between Trained and Untrained LDC. Error bars represent 95% CI of the intercept; n.s. – non-significant. L, 
left; R, right; vPM, ventral premotor cortex; dPM, dorsal premotor cortex; SPL; superior parietal lobule. 
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Figure 6. Multi-voxel pattern analysis searchlight results. 
 

 
 
Figure 1. MVPA searchlight results. A. Pre-training and post-training sequence-specific representations. Maps are 
thresholded at a single voxel level p < 0.001 (uncorrected), k = 10, showing only clusters with cluster FWE-corrected 
significance at p < 0.05. B. and C. Specificity (the average LDC measure) of sequence-specific representations and the 
cortical surface area coding sequence-specific representations averaged over all involved cortical regions per condition 
(left; Error bars represent within-subject 95% CI; * p < 0.05) and pre- and post-training difference (right; Error bars 
represent 95% CI of the intercept; n.s.: non-significant at p < 0.05). 
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