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Spontaneous focal synchronization of collective spiking followed by induced traveling

waves can occur in the cortical sheet and in cultured planar neuronal networks. In

the first case, it is well-known focal epilepsy leading to a seizure and, in the second,

this synchronization originates from one of a few steady nucleation sites resulting in

a so-called population spike. Assuming functional similarity between the nucleation

sites and non-lesional epileptic foci, the major unsolved problem in both cases is that

it is unclear whether activation of the focus originates internally (i.e., autonomously

relative to interaction with surrounding neuronal tissue) or externally. The ’internal’

scenario implies that the focus spatially contains some pacemakers. In turn, several

experimental findings indicate a complex spatially non-local activation of epileptic

focus. Here, we suggest a generative mechanistic model of planar neuronal network,

where the spatial configuration of pacemaker neurons is artificially engineered in

order to resolve the above mentioned problem: all pacemakers are placed within a

circular central spot. Leaving the global dynamic regime unaffected, this crucially

helps to clarify the activation process, visualizing of which is hindered in the natural

spatially-uniform configuration. We show in simulations that the nucleation sites (i)

can emerge in spatial regions, where pacemakers are completely absent and (ii) can

be activated even without direct links from pacemakers. These results demonstrate

the principle possibility of external, or remote, activation of a focal source of epileptic

activity in the brain. The suggested deterministic model provides the means to study

this network phenomenon systematically and reproducibly.

Keywords: planar neuronal network, short-term synaptic plasticity, population spike,
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1. Introduction

Pulsed, ’spiking’ electrical activity of neurons is the main dynamic marker of both on-

going physiological state and information processing in the brain. Experimental studies of

spiking activity of the living brain (’in vivo’ ) are relatively complicated because these re-

quire intracranial surgical interventions. Nevertheless, the surgery is often a necessity in

the case of drug-resistant focal epilepsy, where intracranial electroencephalography, or elec-

trocorticography (ECoG), is used for an accurate spatial identification of the seizure-onset

zone (SOZ) and for assessing the outcome of its resection. At the same time, the fraction of

fully-successful ’seizure-free’ outcomes (standardly referred as Engel’s Class 1) is yet below

75% [1–7]. Indeed, there is growing evidence that epilepsy, especially non-lesional epilepsy,

is rather a network-distributed disease or, in other words, emergent network dysfunction

and that a local epileptogenic zone can be just ’the tip of the iceberg’ [8–15].

Specifically, ECoG recordings allowed to identify the existence of a few so-called local

hypersynchrony regions (LHRs) in the brain of focal epilepsy patients [8] (see also [9]). The

LHRs were stable and generally located in the proximity of the clinically-determined SOZ,

but sometimes these were relatively remote from it. In the latter cases, the surgical resec-

tion was unsuccessful, i.e. epileptic seizures still happened afterwards. More recent findings

on focal epilepsy have revealed spatial non-locality of statistically-significant harbingers for

epilepsy source activation, i.e. that the predictive spiking activity for focal epilepsy can oc-

cur outside the focus [10–12, 15]. Despite the diversity of computational models of epilepsy

(reviewed in [16–21]), a mechanistic neuronal-network model of this spatially non-local in-

teraction is currently absent.

Here, it is important to make a distinction between two issues: (i) how an epilepsy

source is activated at the beginning of an ictal event and (ii) how the activated source

affects the functional state of the rest of the neuronal network. The latter issue is much

more extensively studied [13, 14, 22–31] than the former one. In what follows, we focus on

formulating a biophysical network model useful for exploring the first issue.

To this purpose, we draw an analogy between focal epilepsy and a similar phenomenon

observed in two-dimensional, or planar, neuronal networks grown in artificial conditions (’in

vitro’ ) from initially dissociated neurons. Indeed, planar neuronal networks in vitro, typically

placed on the surface of multi-electrode arrays (MEAs), are regularly used as a simplest

experimental model of the cerebral cortex. The uniqueness of this model system is that such
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a neuronal network is isolated from the outside world, i.e. from the very beginning deprived

of sensory perception, which has a significant influence on the formation of cortical neuronal

networks in vivo. Due to this isolation, it is well established experimentally that spontaneous

spiking activity of such networks, despite significant variations from network to network [32,

33], exhibits some universal features [34–61]. In particular, this often shows the irregularly

repetitive events of peak synchronization, so called ’population/network bursts/spikes’ (all

four combinations occur in the literature as the designation, hereinafter we use ’population

spikes’).

These events have a clear resemblance with the ictal events in focal epilepsy. Indeed,

analysis of spatiotemporal patterns during a sequence of population spikes (PSs) [36, 37, 41,

55, 60, 62, 63] revealed the existence of a few stable and spontaneously arising nucleation

sites of synchronous spiking activity similar to LHRs [8], epileptic ’choke points’ [15] or,

generally, epilepsy foci [9, 11–14]. Therefore, there is an attractive opportunity to shed light

on the long-standing problem of the origin of epileptic focus and initiation of its activity by

addressing the same questions for the nucleation sites of PSs in cultured neuronal networks.

However, despite the fact that the origin, stability, and the functional role of the regime

of spontaneous, irregularly repetitive PSs have been intensively studied [42, 51, 52, 55, 58–

60, 64–78], some key aspects, including a mechanistic explanation of PSs initiation and the

nucleation effect, are yet to be unraveled. Fortunately, there are two fostering factors. On the

one hand, state-of-the-art experimental methods such as CMOS-based MEAs [79–84], refined

calcium imaging [52, 55], and special voltage-sensitive dyes [85, 86] allow high-precision

visualization of spatiotemporal patterns during PSs. On the other hand, the development

of biophysical spatially-embedded network models [55, 60, 63, 87–92] enables to perform

efficient numerical simulations directly comparable with the experimental results.

Before proceeding further, it is worth noting that similar phenomena, i.e. spontaneous

PSs, their spatial nucleation, and related ’UP states’ of network spiking have been repeatedly

observed in organotypic brain slice cultures [93–101]. Unlike the cultured networks of initially

dissociated neurons, these systems essentially retain the specific (and unknown) network

connectome and cell-type neighborhood, and have relatively high cell density. Therefore, it

is much more challenging both to develop generative network models for slice cultures and

to deduce statistically-valid predictions from simulations.

A mechanistic modeling of spontaneous PSs was started with the pioneering work [102]

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2018. ; https://doi.org/10.1101/355255doi: bioRxiv preprint 

https://doi.org/10.1101/355255


4

(see also [103, 104]), where it was proposed a model of the recurrent network of leaky

integrate-and-fire (LIF) neurons with short-term synaptic plasticity, demonstrating irregular

PSs in simulations.

In [63] we proposed a generalization of the model [102] to the case of spatially-dependent

network topology, where the probability of formation of a synaptic connection decreases

exponentially with the distance between neurons. Notably, a network made by this way

has structural topology of a ’small-world’ type [105] that is consistent with experimental

findings [38, 39]. It was shown that in such planar neuronal networks the spatiotemporal

pattern of a PS is inhomogeneous: population spikes occur in a probabilistic manner from

one of a few spontaneously-formed stationary nucleation sites, from where traveling waves of

synchronous spiking activity arise and propagate farther, igniting more numerous secondary

nucleation sites that cannot activate themselves independently (cp. with spatiotemporal

neural activity during human seizures [30, 31]). Importantly, the type of structural network

topology apparently plays a key role in the formation of the nucleation sites (along with more

general influence on collective spiking [61, 88, 106–108]). For instance, PSs occur without

initial nucleation [63] if the network topology has a ’random’ type [105] associated with the

classic Erdos-Renyi random graph model.

Finally, being completely deterministic dynamically, the generative model [63] guarantees

(i) full reproducibility of all simulations and (ii) the possibility of systematic studying the

influence of any model parameter on the simulation result, by comparing with some reference

simulation.

In the present study, using the model [63] we show that the nucleation sites of PSs can

occur spatially non-local in relation to pacemakers (these are autonomously active neurons,

which periodically generate spikes in the absence of incoming signals). To do this, we use a

fundamental advantage of modeling by creating such a spatial configuration of pacemakers

and the rest of the neurons that cannot be obtained experimentally because of the impos-

sibility, first, to determine the functional identity of a neuron at the stage of the network

formation and, secondly, to place specific neurons spatially precise in geometrically defined

areas. In particular, we placed all pacemakers within a circular central spot. Leaving the

global dynamic regime unaffected, this crucially helps to clarify the activation process, visu-

alizing of which is hindered in the natural spatially-uniform configuration. The simulations

have revealed that the nucleation sites (i) can emerge in spatial regions, where pacemakers
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are completely absent and (ii) can be activated even without direct links from pacemakers.

Assuming the validity of qualitative extrapolation of the model system to the cortical

sheet, the obtained results suggest the possibility of remote activation of a source of epileptic

activity in the brain. This favourably correlates with the recent experimental findings on

focal epilepsy [10–12, 15] (see also [8, 9]), where the spatial non-locality of harbingers for

epilepsy source activation was indicated. When comparing these findings with our results, we

imply that activating of a source of epilepsy mainly occurs through horizontal, ’intra-layer’

connections of the cerebral cortex. Note that previous mechanistic neuronal-network models

of focal epilepsy [109, 110] (as well as the phenomenological neural mass/field models, e.g.,

[111–119]) do not explicitly address the remote activation. At last, it is also worth mentioning

that the modeling results confirm the assumption made in seizure prediction method [120]

about the involvement of distant neurons in activating the SOZ.

2. Methods

2.1. Neuronal network model. This consists of three main components: (i) algorithm

for generating the network connectome, (ii) the model of a neuron, and (iii) synapse model

describing the interaction between neurons. As a standard, the network has 80% excitatory

and 20% inhibitory neurons [49, 121–124].

2.1.1. Network connectome model. The connections between neurons are formed

as follows. N point neurons are uniformly distributed over a square area L× L of unit size

(L = 1). Then the probability density P (r) to detect two neurons at a distance r from each

other is given by (r is expressed in units of L)

P (r) =



















2r · (π − 4r + r2), r ≤ 1,

4r · (2 arcsin(1/r) + 2
√
r2 − 1− . . .

−π/2− r2/2− 1), 1 < r ≤
√
2,

(1)

such that

√

2
∫

0

P (r)dr = 1.

We assume that the probability of formation of a unilateral connection between each pair

of neurons depends on the distance r between them as [125–127] (in engineering, this is

sometimes referred as the Waxman model [128])

pcon(r, λ) = exp(−r/λ), (2)
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FIG. 1. Left graph: Probability density P (r), given by (1), of detecting two point neurons,

randomly and independently dropped on the square L × L, at the distance r from each other.

Inset: the normalized mean value of the total number of interneuronal connections for a network of

N neurons as a function of parameter λ (see (2) and (3)). Right graph: Probability density F (ν),

given by (10), for self-frequencies ν of pacemaker neurons (solid line is for excitatory neurons,

dashed line is for inhibitory neurons; the difference originates from the different values of the

refractory period), if the background currents are distributed by the non-negative and upper-

bounded normal distribution (7). Inset: Fraction of pacemaker neurons Npm/N (formula (11) with

Imax = 20 pA) as a function of two basic parameters for the normal distribution (7) of background

currents - the mean µ and standard deviation σ. The filled gray circle indicates the values used in

the numerical experiments. The critical value of the background current, above which the neuron

is a pacemaker, is Ic = 15 pA.

where λ is the characteristic connection length, which is also expressed in units of L. For sim-

plicity, λ is chosen independent of the types of pre- and postsynaptic neurons (i.e. whether

the neurons are excitatory or inhibitory). As the square area is a convex set of points, we

assumed that the interneuronal connections may be modeled by segments of straight lines.

Importantly, the connections do not cross boundaries of the square. Due to this, the neurons

in the vicinity of the boundaries have fewer connections. To simplify the model, the forma-

tion of autaptic connections (i.e. self-connections) is prohibited. The resulting distribution

of interneuronal connection lengths is given by the product pcon(r, λ)P (r), which reaches its

maximum at r ≈ λ for λ . 0.1 (see Fig. 1). The average number of interneuronal connec-
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tions in the network of N neurons is Ncon(λ) = p̄con(λ)N(N − 1), where the space-averaged

probability

p̄con(λ) =

√

2
∫

0

pcon(r, λ)P (r)dr. (3)

Function p̄con(λ) increases monotonically with λ, asymptotically reaching unity at infinity.

At λ ≪ 1 it has a simple form p̄con(λ) ≈ 2πλ2. For the whole range of λ, an approximate

analytical expression of p̄con(λ) is given in [63]. In turn, the average number of outgoing

connections per neuron is m̄ = p̄con(λ)(N − 1).

The delays resulting from the uniform propagation of spikes along the axons are calculated

by formula

τdel = τdel,min + r/vsp, (4)

where τdel is the total propagation delay of a spike along the axon of length r, τdel,min is the

minimal axonal delay same for all synapses, and vsp is the constant speed of spike propagation

along the axon. Note that the distribution of axonal delays (4) is also determined by the

product pcon(r, λ)P (r).

Numerical values of parameters for the network connectome model: N = 50000, λ =

0.01L that give m̄ = 32 outgoing connections per neuron (cp. [130]), τdel,min = 0.2 ms, and

vsp = 0.2 L/ms [129] with L = 1 mm by default.

2.1.2. Neuron model. We use the standard LIF-neuron that has no ability for intrinsic

bursting (cp. [131–134]). Subthreshold dynamics of transmembrane potential V of such a

neuron is described by equation

τmdV/dt = Vrest − V (t) + (Isyn(t) + I)Rm, (5)

where Vrest is the neuron’s resting potential, τm is the characteristic time for relaxation of V

to Vrest, Rm is the electrical resistance of the neuron’s membrane, Isyn(t) is the total incoming

synaptic current, which, as a function of time t, depends on the choice of the dynamic model

of a synapse and the number of incoming synapses, I is a constant ’background’ current, the

magnitude of which varies from neuron to neuron. The background currents determine the

diversity of neuronal excitability and the fraction of pacemaking neurons in the network.

When the transmembrane potential reaches a threshold value Vth = V (tsp), it is sup-

posed that the neuron emits a spike, then V abruptly drops to a specified value Vreset,

Vrest < Vreset < Vth, and retains this value during the period of refractoriness τref , then
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the dynamics of the potential is again described by the equation (5). The result of the

LIF-neuron dynamics is a sequence of spike generation moments {t(1)sp , t
(2)
sp , . . .}.

If a neuron has the value of I that exceeds a critical value Ic = (Vth − Vrest)/Rm, then

this neuron is a pacemaker, i.e. it is able to emit spikes periodically with frequency

ν = (τref + τm ln[(I − Ir)/(I − Ic)])
−1, (6)

where Ir = (Vreset−Vrest)/Rm, in the absence of incoming signals from other neurons. Based

on experimental findings [135, 136], we assume that both excitatory and inhibitory neurons

may be pacemakers. In turn, if the background current I is less than Ic, then this leads to an

increase of depolarization of the neuron’s potential to some asymptotic subthreshold value,

i.e. to the effective renormalization of the neuronal resting potential, V eff
rest (I) = Vrest+I ·Rm.

In what follows, we consider that the background current values are distributed according

to the non-negative and upper-bounded part of the normal (Gaussian) distribution, with the

mean µ and standard deviation σ,

G(I, µ, σ) =















exp(− (I−µ)2

2σ2 )

S
√
2πσ2

, 0 ≤ I ≤ Imax

0, otherwise.

(7)

Here, Imax is the upper value of the background current and S = 1
2
(erf( Imax−µ

σ
√

2
) + erf( µ

σ
√

2
)),

where erf(. . .) represents the error function, is a normalization factor ensuring equality
Imax
∫

0

G(I, µ, σ)dI = 1.

Then distribution density for self-frequencies (6) of the pacemaker neurons is given by

formula

F (ν, µ, σ) = G(I(ν), µ, σ)

∣

∣

∣

∣

dI(ν)

dν

∣

∣

∣

∣

, (8)

where

I(ν) =
Ir − Ic exp(1/(ντm)− τref/τm)

1− exp(1/(ντm)− τref/τm)
(9)

is the inverse function for ν(I), see (6). Explicitly, one gets (dependencies on µ and σ are

implied)

F (ν) = G(I(ν)) · 1

τmν2
· (I(ν)− Ic)(I(ν)− Ir)

(Ic − Ir)
. (10)

The distribution density F (ν) is plotted in Fig. 1 (right graph). In turn, the number of

pacemakers Npm is explicitly given by formula

Npm/N =
erf( Imax−µ

σ
√

2
)− erf( Ic−µ

σ
√

2
)

erf( Imax−µ

σ
√

2
) + erf( µ

σ
√

2
)
, (11)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2018. ; https://doi.org/10.1101/355255doi: bioRxiv preprint 

https://doi.org/10.1101/355255


9

In all simulations we assume such inequalities σ < µ < Ic that Npm ≪ N .

Numerical values of parameters for the neuron model: τm = 20 ms, Rm = 1 GΩ, Vrest = 0

mV, Vth = 15 mV, Vreset = 13.5 mV. These give the critical current value Ic = 15 pA

and Ir = 13.5 pA. Refractory period τref = 3 ms for excitatory neurons, τref = 2 ms for

inhibitory neurons. The non-negative part of normal distribution for background currents,

bounded above by Imax = 20 pA, has the mean µ = 7.7 pA and the standard deviation

σ = 4.0 pA. These give the fraction (11) of pacemakers Npm/N = 3.4% with the maximal ν

value 121 Hz for excitatory neurons and 138 Hz for inhibitory ones (see the right graph in

Fig. 1).

2.1.3. Synapse model. A single contribution to the incoming synaptic current in the

TUM model [102] is determined as

Isyn(t) = J · y(t), (12)

where J is the maximum amplitude of synaptic current, the sign and magnitude of which

depend on the type of pre- and postsynaptic neurons (i.e., whether the neuron is excitatory

or inhibitory), and y(t) is a dimensionless parameter, 0 ≤ y ≤ 1, the dynamics of which is

determined by the following system of equations:


















dx/dt = z/τrec − u · x · δ(t− tsp − τdel),

dy/dt = −y/τI + u · x · δ(t− tsp − τdel),

dz/dt = y/τI − z/τrec,

(13)

where x, y, and z are the fractions of synaptic resources in the recovered, active and inactive

state, respectively, x+ y+ z = 1, τrec, τI are the characteristic relaxation times, δ(. . .) is the

Dirac delta function, tsp is the moment of spike generation at the presynaptic neuron, τdel

is the spike propagation delay (see (4)), and u is the fraction of recovered synaptic resource

used to transmit the signal across the synapse, 0 ≤ u ≤ 1. For the outgoing synapses of

inhibitory neurons, the dynamics of u is described by equation

du/dt = −u/τfacil + U · (1− u) · δ(t− tsp − τdel), (14)

where τfacil is the characteristic relaxation time, and 0 < U ≤ 1 is a constant parameter.

For the outgoing synapses of excitatory neurons, u remains constant and equals to U .

In the numerical simulations all synaptic parameters, except τI , are normally distributed

with the mean values µk described below, i.e. each synapse has its own unique values of these
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parameters. Standard deviations for all distributed parameters equal 0.5µk. The maximal

(or minimal, if the parameter is negative) values of the distributions equal 4µk (or 1, if

4µk > 1 for parameter U), and the minimal (maximal, if the parameter is negative) values

equal zero (or time step, for the time constants).

Numerical values of parameters for the synapse model: τI = 3 ms, mean values for the

normal distributions τrec,ee = τrec,ei = 800 ms, τrec,ie = τrec,ii = 100 ms, τfacil,ie = τfacil,ii =

1000 ms, Jee = 38 pA, Jei = 54 pA, Jie = Jii = −72 pA, Uee = Uei = 0.5, Uie = Uii = 0.04.

Here, the first lowercase index denotes the type (e = excitatory, i= inhibitory) of presynaptic

neuron and the second index stands for the type of postsynaptic neuron.

2.2. Initial conditions and numerical method

The initial conditions for common dynamic variables are the same for all neurons, V (t =

0) = Vrest, and for all synapses: x(t = 0) = 0.98, y(t = 0) = z(t = 0) = 0.01. For

the outgoing synapses of inhibitory neurons, values u(t = 0) equal to the corresponding U

values, which are normally distributed (see Sec. 2.1.3).

The differential equations for the membrane potential of LIF-neuron (5) and the fractions

of synaptic resource (13), (14) are solved numerically using the standard Euler method with

time step dt = 0.1 ms. All numerical simulations have been performed on the custom-made

software NeuroSim-TM [63] written in C, its source code can be provided by the authors

upon request.

2.3. Main output values

The main output values in the numerical simulations are raster, network activity, and

spatial coordinates of neurons. Raster shows the moments of spike generation for every

neuron. In turn, normalized network activity (or, briefly, net activity) is a histogram showing

the number of spikes generated by the network within time bins △t = 2 ms and divided

by the total number of neurons, N . Coordinates of neurons and raster are needed for

reconstructing the spatiotemporal patterns of spiking activity of the neuronal network. In

addition, we have used the network connectome data in order to highlight the outgoing

connections of spiking neurons at the initial stage of a population spike.

3. Results

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2018. ; https://doi.org/10.1101/355255doi: bioRxiv preprint 

https://doi.org/10.1101/355255


11

FIG. 2. Simulation of spiking activity of the neuronal network consisting of 50 thousand LIF-

neurons (80% excitatory, 20% inhibitory) statistically uniformly distributed over the square L×L.

Synaptic connections have been formed with probability pcon that decreases exponentially with

increasing distance r between neurons, pcon(r, λ) = exp(−r/λ). At λ = 0.01L this gives 32 ± 6

(mean ± SD) outgoing connections per neuron. All pacemaker neurons (3.4% of the total number

of neurons) are exclusively localized in the central circular region of radius R = 0.1L. The value

of R is chosen such that the average density of pacemakers inside the region is the same as the

average density of neurons throughout the square. TOP: Network spiking activity, averaged over 2

ms and normalized to the total number of neurons, during 10 seconds of the simulation. BOTTOM:

The network activity and exact raster of active neurons (left), and six frames of the corresponding

spatial dynamics (right) for the population spike marked by the arrow in the top graph. On

the frames, blue dots depict inactive neurons and red dots highlight active neurons. Each frame

corresponds to the whole area L × L. The round area containing pacemakers is highlighted by

the grey circle. There are no pacemakers outside this circle. Finally, on the first three frames (A,

B, C) the outgoing connections of active neurons are shown by green lines. It is seen that the

nucleation site of the population spike occurs at sufficiently large distance from the circular spot

with pacemakers. Supplementary video of spatiotemporal dynamics of network spiking during the

selected population spike is available.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2018. ; https://doi.org/10.1101/355255doi: bioRxiv preprint 

https://doi.org/10.1101/355255


12

In routine simulations of the planar neuronal networks, spatial locations of a few primary

nucleation sites of PSs depend on specific network realization, and pacemaker neurons are

distributed spatially uniform over all area, as the rest of the neurons [63]. In the present

case, for the purpose of a clear and unambiguous demonstration of a spatially non-local

effect, we placed all pacemakers in a circular central spot so that their spatial density was

equal to the average density of neurons, N/L2 = Npm/(πR
2), whence we got the spot radius

value (see also formula (11) for Npm/N)

R = L
√

(Npm/N)/π ≈ 0.1L. (15)

It turns out that in such a configuration some of primary nucleation sites of population

spikes can occur non-locally relative to the spot with pacemakers, i.e. at a relatively large

distance from it (Fig. 2).

Alternatively, the nucleation sites can occur locally, i.e. in the immediate vicinity of the

spot, along its perimeter. This ’local’ case is especially pronounced (cp. [36, 37, 137]), but

not exclusive, if spiking activity of the inhibitory neurons is blocked (see details in [63])

so that the inhibitory restraint of global ictal synchronization becomes inactive. Thus, the

activity of inhibitory neurons favours spatially non-local activation of the nucleation sites

that qualitatively agrees with experimental findings [138–144].

One should note that since the pacemakers are located close to each other, they have

many synaptic connections to each other. This may cause a significant change in their

self-frequencies (6) of generating spikes. However, auxiliary simulations have shown that

banning the formation of connections between pacemakers does not affect the occurrence of

the effect of non-locality of nucleation sites.

To clarify the mechanism of nonlocal activation of the nucleation sites, we conducted two

additional experiments with the same neuronal network, the activity of which is shown in

Fig. 2. In the first experiment (’Exp1’), starting at the given moment tstart we disabled all

the interneuronal connections (by turning to zero the synaptic current amplitudes) whose

lengths were larger than some specified value lmin. This restriction would lead to preventing

activation of the nonlocal nucleation site, if this happens by means of long-length incoming

connections. Herewith, to unveil the role of direct incoming connections from pacemakers,

in the second experiment (’Exp2’) we similarly disabled only the outgoing connections from

pacemakers to non-pacemakers.
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The results of both experiments are shown in Fig. 3. The minimal distance between the

nucleation site and the spot with pacemakers is 0.3L. At lmin = 2R = 0.2L and tstart = 7000

ms in the first experiment the non-local activation of the nucleation site disappears, while

in the second experiment the nucleation site is still activated, meaning that this can happen

exclusively by incoming connections from other non-pacemakers.

To know whether these results hold if tstart is getting closer to initiation moment (7576 ms,

see frame A in Fig. 2) of the targeted population spike, we performed the same experiments

for three additional values of tstart: 7570, 7580, and 7590 ms. For Exp1, at tstart = 7570

ms the result was the same as before (see Fig. 3), however, at tstart = 7580 ms or 7590 ms

the remote activation of the nucleation site revived. At the same time, both the averaged

activity waveform and the spatiotemporal pattern of the population spike coincided with

those of the original simulation (Fig. 2) only during some initial stage (see frames A-D in

Fig. 2 or frames A-E in Fig. 3 for Exp2), when the nucleation site was the main focus of

network activity. For Exp2, in contrast, the results were the same as before for all three tstart

values, though the initiation moments and the waveforms of population spikes following the

targeted one became different.

The results of Exp2 serve as an actual proof that remote activation of the nucleation site

is realized not through single and strong long-length connections from the central spot to

specific neurons outside the spot, but in a more complex, indirect way. Nevertheless, both the

results of varying tstart in Exp1 and a visual inspection of highlighted outgoing connections

of spiking neurons (see example in Fig. 2) have shown that the remote activation does occur

due to relatively long-length outgoing connections rather than by a chain of short-length

ones. The typical sources of these activating connections are particular non-pacemaker

neurons, which we call ’quasi-pacemakers’. These are the excitatory neurons with (i) the

highest excitability, defined by the smallest positive difference Vth − V eff
rest (I) and/or (ii) the

largest number of strong excitatory incoming connections from pacemakers or from the other

quasi-pacemakers. These properties make quasi-pacemakers be most active, yet irregularly,

among the non-pacemakers. Notably, a loop of reciprocally-connected quasi-pacemakers,

once activated, can serve as an actual pacemaker for some time, until synaptic depression

or another reason deactivates it. Our analysis indicates that the remote activation of the

nucleation site is mediated by one or a few quasi-pacemakers, which in turn are excited from

the central spot.
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Overall, these three experiments have shown that nucleation sites can be activated re-

motely, indirectly (i.e. not by direct outgoing connections from pacemakers), and by several

activation routes.

One can hypothesise that the nucleation site is determined by coincidence of (i) spatial

proximity of a few excitatory neurons with relatively high excitability and (ii) sufficient

number of efficient connections between them and the rest of the network. It is likely

that these few ’trigger’ neurons are functionally-equal, meaning the ability of each of them

to induce the nucleation site activation. It is also plausible to assume that most trigger

neurons either belong to the subset of quasi-pacemakers or have strong/multiple incoming

connections from them. In general, it is quite evident that each nucleation site is formed

by a local functional cluster (LFC) of several neurons. Such LFCs for different nucleation

sites are unlikely the same microcircuit with specific internal connectivity, but rather these

are structurally variable microcircuits sharing the same topological properties (e.g., trigger

neurons within LFCs could form a ’rich-club’ subnetwork [145, 146]), though this issue

requires a thorough separate study [147, 148].

Whatever the LFC structure, from the experiments performed it is clear that the key role

in non-local activation of the nucleation site is played by long-length outgoing connections.

Given that, the activation may go either by single incoming connections with strong synapses

or by an ensemble of weaker connections, whose cooperative activity [149–151] ultimately

leads to the increase in transient excitability of neurons composing (and surrounding) the

LFC and to the firing of one of its trigger neurons.

4. Discussion

Taken together, these results suggest that the nucleation sites of a population spike can

be remotely activated from a ’physiologically-normal’ region of the network that has quasi-

stationary spiking activity. For instance, this region could be a spatial cluster of real or

quasi-pacemakers [152]. The remote activation depends essentially on properties of the neu-

ronal network topology, in particular, on the presence of a sufficient fraction of long-distance

connections between neurons [153]. Such connections are always present in the ’small-world’

topology that is inherent to our neuronal network model [63] and to brain networks in gen-

eral [154–157]. Herewith, it is important to distinguish between structural and functional

network topologies: the structural one is based on real connections between neurons and
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FIG. 3. Two simulations of spiking activity for the same neuronal network as in Fig. 2, with a

subset of interneuronal connections disabled (by turning to zero the synaptic current amplitudes)

after the moment tstart = 7000 ms preceding the population spike marked by the arrow in Fig. 2.

The minimal distance between the corresponding nucleation site and the spot with pacemakers is

0.3L. In the first ’Exp1’ simulation (blue curve in the top graph here, and the middle panel), we

disabled all the interneuronal connections whose lengths were larger than lmin = 2R = 0.2L. In the

second ’Exp2’ simulation (green curve in the top graph and the bottom panel), only the outgoing

connections from pacemakers to non-pacemakers were disabled in the same range of lengths. TOP:

Network spiking activities, averaged over 2 ms and normalized to the total number of neurons,

during 10 seconds of the simulation. The original activity (Fig. 2, top) is shown by the grey curve.

Before tstart all three activity curves coincide completely. MIDDLE: The network activity (left)

and six frames of the corresponding spatial dynamics (right) for the population spike marked by

the arrow and label ’1’ in the top graph. Other notations are the same as for the corresponding

panel in Fig. 2. BOTTOM: The same as for the middle panel, but for the population spike

marked by the arrow and label ’2’ in the top graph. It is seen that in the first case the non-local

activation of the nucleation site disappears, and in the second it is conserved. Supplementary

video of spatiotemporal dynamics of network spiking is available for each of two population spikes

considered here.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 29, 2018. ; https://doi.org/10.1101/355255doi: bioRxiv preprint 

https://doi.org/10.1101/355255


16

for the functional one the connections between the network nodes are algorithmically recon-

structed from correlations in local field potential (or spiking activity) recordings at node’s

locations [158]. For cultured neuronal networks in vitro, functional network topology may

reflect the structural one for sparse networks [159–161], but it is strongly dependent on

the current dynamic state of the network [162–164]. Possibly due to this, some experimen-

tal data indicate ’small-world’ type [54, 163, 165, 166] for the functional topology in such

systems, while other data suggest ’scale-free’ type [42].

The present study was initiated by the results [8–12, 15] indicating spatial non-locality of

harbingers of the epilepsy focus activation (cp. [167–169]). Here, the harbinger is a certain

local pattern or a localized spot of spiking activity detected remotely from the epilepsy focus

every time before its activation. Our network model suggests that the epilepsy focus can be

activated by such harbingers, enabling to explore systematically the mechanisms of how the

remote activation occurs. Given this, two circumstances are worth noting.

First, since the model does not include the dynamics of neither the amplitudes of synaptic

currents nor the background currents, it leaves aside the development of a steady functional

network state with population spikes [170–172]. This state likely appears (and is preserved,

see [173]) due to homeostatic synaptic plasticity that may also underlie the process of post-

traumatic epileptogenesis [174].

Second, the harbingers that we are discussing, i.e. a distant localized spiking activity

resulting in the nucleation site ignition, should not be directly associated with inteictal

spikes [175, 176]. The fact is that there are experimental results indicating that inteictal

spikes can also precede ictal events [177]. In our model, provided a large number (10-fold and

more than in the present study) of outgoing connections per neuron, there exist distinctive

ripples of network activity that precede each population spike (see Fig. 6 in [63]). These

ripples may be associated with interictal spikes. However, in the present study the neuronal

connections are not such dense and the ripples do not occur.

It seems also worthwhile to outline the implied qualitative picture of the nucleation effect.

A nucleation site of PSs is likely a small functional cluster of spatially-localized neurons.

Such a cluster can contain a few functionally-equal ’trigger’ neurons, given that the exact

structure of the clusters underlied different nucleation sites can vary substantially. Firing of

one of such neurons leads to avalanche-like activation of other neurons in the cluster, i.e. to

the activation of the nucleation site. This nucleation site, in turn, activates other nucleation
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sites in the first place and then they collectively activate the rest of the network. Such a

recruitment process is consistent with the concept of ’trigger network’ introduced in [41]

to describe the initiation of PSs with spatially distinct nucleation, implying that a node of

the trigger network is spatially-localized neuronal circuit underlied a nucleation site. One

can suggest that an abnormal trigger network is formed during epileptogenesis [178] and the

SOZ may determine just the most active node of this network.

In principle, a nucleation site may be formed by just a single trigger neuron, though

not less plausible seems the case where a nucleation site is formed by a few trigger neurons

located near each other. If this happens the nucleation site is relatively active. One can

assume that there is an ’inherent’ statistical/combinatorial variability of the structure of

nucleation sites: on the one hand, strong and, simultaneously, long-range connections are

rare within the subset of spatially-distributed trigger neurons. On the other hand, long-

range connections are not needed if these neurons are located close to each other, but such a

proximity is also statistically rare. More accurate quantitative definition of a trigger neuron

is clearly required to specify the most probable structure.

Finalizing the description of the qualitative picture, it is worth noting that the suggested

concepts and the schematic of recruitment process during initiation of a PS are generally con-

sistent with previous findings [35, 41, 42, 48, 73, 77, 179–182]. In particular, the concept of

’trigger’ neurons is closely related to the neurons of ’nacelles’ [35], ’early-to-fire’ neurons [42],

’major burst leaders’ [48], ’leader’ neurons [180–182], and ’critical’ neurons [73]. Typically,

such special neurons are excitatory neurons with a large number of incoming connections

[181] and/or with high internal excitability [182] that are systematically active just before

the PS generation. Moreover, spiking activity of the leader neurons in the intervals between

PSs is assumed to be relatively weak, i.e. these are unlikely pacemakers [42, 180]. Our

present findings favor the suggestion about a ’sub-network’ of leader neurons [180], though

in our representation this sub-network can alternatively be quite local in space forming the

core of a nucleation site (similar to the nacelles in [35]).

In conclusion, our computational results unambiguously demonstrate that the nucleation

sites are not determined by the locations of pacemakers and can be activated even without

direct links from them. Notably, the nucleation sites can emerge in spatial regions, where

pacemakers are completely absent. We believe that the suggested mechanistic model can be
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used for making a renewed theoretical framework [183] for the focal epilepsy research.
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