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Abstract 22 
 23 
We present MuSiC, a method that utilizes cell-type specific gene expression from 24 
single-cell RNA sequencing (RNA-seq) data to characterize cell type 25 
compositions from bulk RNA-seq data in complex tissues. When applied to 26 
pancreatic islet and whole kidney expression data in human, mouse, and rats, 27 
MuSiC outperformed existing methods, especially for tissues with closely related 28 
cell types. MuSiC enables characterization of cellular heterogeneity of complex 29 
tissues for identification of disease mechanisms. 30 
 31 
Bulk tissue RNA-seq is a widely adopted method to understand genome-wide 32 
transcriptomic variations in different conditions such as disease states. Bulk RNA-seq 33 
measures the average expression of genes, which is the sum of cell type-specific gene 34 
expression weighted by cell type proportions. Knowledge of cell type composition and 35 
their proportions in intact tissues is important, because certain cell types are more 36 
vulnerable for disease than others. Characterizing the variation of cell type composition 37 
across subjects can identify cellular targets of disease, and adjusting for these 38 
variations can clarify downstream analysis.  39 
 40 
The rapid development of single-cell RNA-seq (scRNA-seq) technologies have enabled 41 
cell type-specific transcriptome profiling. Although cell type composition and proportions 42 
are obtainable from scRNA-seq, scRNA-seq is still costly, prohibiting its application in 43 
clinical studies that involve a large number of subjects. Furthermore, scRNA-seq is not 44 
well suited to characterizing cell type proportions in a solid tissue, because the cell 45 
dissociation step is biased towards certain cell types1.  46 
 47 
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Computational methods have been developed to deconvolve cell type proportions using 48 
cell type-specific gene expression references2. CIBERSORT3, based on support vector 49 
regression, is a widely used method designed for microarray data. More recently, 50 
BSEQ-sc4 extended CIBERSORT to allow the use of scRNA-seq gene expression as a 51 
reference. TIMER5, developed for cancer data, focuses on the quantification of immune 52 
cell infiltration. These methods rely on pre-selected cell type-specific marker genes, and 53 
thus are sensitive to the choice of significance threshold. More importantly, these 54 
methods ignore cross-subject heterogeneity in cell type-specific gene expression as 55 
well as within-cell type stochasticity of single-cell gene expression, both of which cannot 56 
be ignored based on our analysis of multiple scRNA-seq datasets (Supplementary 57 
Figure 1a).     58 
 59 
Here we introduce a new MUlti-Subject SIngle Cell deconvolution (MuSiC) method 60 
(https://github.com/xuranw/MuSiC) that utilizes cross-subject scRNA-seq to estimate 61 
cell type proportions in bulk RNA-seq data (Figure 1). A key concept in MuSiC is 62 
“marker gene stability”. We show that, when using scRNA-seq data as a reference for 63 
cell type deconvolution, two fundamental types of stability must be considered: cross-64 
subject and cross-cell, in which the first is to guard against bias in subject selection, and 65 
the second is to guard against bias in cell capture in scRNA-seq. By incorporating both 66 
types of stability, MuSiC allows for scRNA-seq datasets to serve as effective references 67 
for independent bulk RNA-seq datasets involving different individuals.  68 
 69 
Rather than pre-selecting marker genes from scRNA-seq based only on mean 70 
expression, MuSiC gives weight to each gene, allowing for the use of a larger set of 71 
genes in deconvolution. The weighting scheme prioritizes stable genes across subjects: 72 
up-weighing genes with low cross-subject variance (informative genes) and down-73 
weighing genes with high cross-subject variance (non-informative genes). This 74 
requirement on cross-subject stability is critical for transferring cell type-specific gene 75 
expression information from one dataset to another. 76 
 77 
Solid tissues often contain closely related cell types, and correlation of gene expression 78 
between these cell types leads to collinearity, making it difficult to resolve their relative 79 
proportions in bulk data. To deal with collinearity, MuSiC employs a tree-guided 80 
procedure that recursively zooms in on closely related cell types. Briefly, we first group 81 
similar cell types into the same cluster and estimate cluster proportions, then recursively 82 
repeat this procedure within each cluster (Figure 1). At each recursion stage, we only 83 
use genes that have low within-cluster variance, a.k.a. the cross-cell stable genes. This 84 
is critical as the mean expression estimates of genes with high variance are affected by 85 
the pervasive bias in cell capture of scRNA-seq experiments, and thus cannot serve as 86 
reliable reference. See online methods for details.  87 
 88 
To demonstrate and evaluate MuSiC, we started with a well-studied tissue, the islets of 89 
Langerhans, which are clusters of endocrine cells within the pancreas that are essential 90 
for blood glucose homeostasis. Pancreatic islets contain five endocrine cell types 91 
(α,β,δ,ϵ, and γ), of which β cells, which secrete insulin, are gradually lost during type 2 92 
diabetes (T2D). We applied MuSiC to bulk pancreatic islet RNA-seq samples from 89 93 
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donors from Fadista et al.6, to estimate cell type proportions and to characterize their 94 
associations with hemoglobin A1c (HbA1c) level, an important biomarker for T2D. We 95 
were motivated to re-analyze this data because, as shown in Figure 2 and in Baron et 96 
al.4, existing methods failed to recover the correct β cell proportions, which should be 97 
around 50-60%7, and also failed to recover their expected negative relationship with 98 
HbA1c level. As reference, we experimented with scRNA-seq data from two sources: 6 99 
healthy and 4 T2D adult donors from Segerstolpe et al.8, and 12 healthy and 6 T2D 100 
adult donors from Xin et al.9. All bulk and single-cell datasets in this analysis are 101 
summarized in Supplementary Table 1.   102 
 103 
First, to systematically benchmark, we applied MuSiC and three other methods 104 
(Nonnegative least squares (NNLS), CIBERSORT, and BSEQ-sc) to artificial bulk RNA-105 
seq data constructed by simply summing the scRNA-seq read counts across cells for 106 
each single-cell sequenced subject. In this case, true cell type proportions are known, 107 
which allows the evaluation of accuracy. More details on artificial bulk construction are 108 
described in the Supplementary Note. Figure 2a, Supplementary Figure 1c and 109 
Supplementary Figure 2b show the estimation results when the artificial bulk and the 110 
single-cell reference data are from the same study, either both from Segerstolpe et al.8 111 
or both from Xin et al.9. MuSiC achieves improved accuracy over existing procedures. 112 
Figure 2b and Supplementary Figure 2a show the estimation results when the 113 
artificial bulk and the single-cell reference data are from different studies. This is a more 114 
challenging but more realistic scenario, since library preparation protocols vary across 115 
labs and bulk deconvolution analyses are often performed using single-cell reference 116 
generated by others.  MuSiC still maintains high accuracy, while other methods perform 117 
substantially worse.  Further comparisons show that, unlike existing methods that rely 118 
on pre-selected marker genes, MuSiC gives accurate results when the cell type 119 
composition in the bulk data is substantially different from that of the single cell 120 
reference (Supplementary Figure 2c and Supplementary Note 2), and when the bulk 121 
tissue contains minority cell types that are missing in the reference (Supplementary 122 
Figure 3 and Supplementary Note 3). MuSiC’s ability to transfer knowledge across 123 
data sources is derived from its consideration of marker gene stability.  124 
 125 
We now turn to the deconvolution of bulk RNA-seq data from Fadista et al.6. We used 126 
the scRNA-seq data from Segerstolpe et al. as reference for all methods. MuSiC 127 
recovers the expected ~50-60% β cell proportion for the healthy subjects7, whereas 128 
other methods grossly overestimate the proportion of α cells and underestimate the 129 
proportion of β cells. Furthermore, MuSiC detects a significant association of β cell 130 
proportion with HbA1c level (p-value 0.00126, Figure 2d). Based on clinical standard, 131 
HbA1c level <6.0% is classified as normal, and >6.5% is classified as diabetic. After 132 
adjusting for age, gender and body mass index, MuSiC estimates suggest that 0.5% 133 
increase in HbA1c level, representing the magnitude of increase from normal to the 134 
diabetes cutoff, corresponds to a drop of 6.14% ± 4.98% in β cell proportion.   135 
 136 
As a second tissue example, we used the kidney, a complex organ consisting of several 137 
anatomically distinct segments each playing critical roles in the filtration and 138 
reabsorption of electrolytes and small molecules of the blood. Chronic kidney disease 139 
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(CKD), the gradual loss of kidney function, is increasingly recognized as a major health 140 
problem, affecting 10-16% of the global adult population. We aim to characterize how 141 
kidney cell type composition changes during CKD. Fibrosis is the histologic hallmark 142 
common to all CKD models, and hence, we analyzed the bulk RNA-seq data from three 143 
mouse models for renal fibrosis: unilateral ureteric obstruction induced by surgical 144 
ligation of the ureter (UUO, Arvaniti et al.10), toxic precipitation in the tubules induced by 145 
high dose folic acid injection (FA, Craciun et al.11), or genetic alteration by transgenic 146 
expression of genetic risk variant APOL1 in podocytes (APOL1 transgenic mice12). As 147 
reference, we used the mouse kidney specific scRNA-seq data from Park et al.1. Details 148 
of all datasets are summarized in Supplementary Table 2. We systematically 149 
benchmarked all methods on artificial bulk experiments performed using the Park et al. 150 
scRNA-seq data, finding similar trends as those in Figure 2a-b (Supplementary Figure 151 
4a-b). 152 
 153 
Hierarchical clustering of the cell types in the single cell reference reveals that, apart 154 
from neutrophils and podocytes, kidney cells fall into two large groups: Immune cell 155 
types (macrophages, fibroblasts, T lymphocytes, B lymphocytes, and natural killer cells) 156 
and kidney-specific cell types (proximal tubule, distal convolved tubule, loop of Henle, 157 
two cell types forming the collecting ducts, and endothelial cells). Of these, proximal 158 
tubule (PT) is the dominant cell type in kidney, and the proportion of PT cells is known 159 
to decrease with CKD progression. MuSiC finds this decrease in all three mouse 160 
models (Figure 3b-d). Other methods also detect this association for the APOL1 and 161 
UUO mouse models, but showed ambiguous results for the FA model.   162 
 163 
Distal convolved tubule cells (DCT) are known to be the second most numerous cell 164 
type in kidney, with an expected proportion of ∼10-20%1. Yet, CIBERSORT did not 165 
detect DCT in any of the three bulk datasets; BSEQ-sc missed it in two datasets and 166 
grossly over-estimated its proportion in the third dataset at the cost of a grossly 167 
underestimated PT proportion. This is due to the high similarity between DCT and PT, 168 
observable in Figure 3a.  Through its tree-guided recursive algorithm, MuSiC first 169 
estimates the combined proportion of kidney cell types versus immune cell types using 170 
stable genes for these two large groups, and then zooms in and deconvolves the kidney 171 
cell types using genes re-selected for each kidney cell type. This allows MuSiC to 172 
successfully separate PT and DCT cells in all three bulk datasets, recovering a 173 
consistent DCT proportion between 8-20%, matching expectations. Interestingly, unlike 174 
for PT, the proportion of DCT cells show a consistent increase with disease progression 175 
across all three mouse models. This may seem counterintuitive given that loss of kidney 176 
function is expected to be associated with the loss of kidney cell types. But given the 177 
substantial drop of the dominant PT cell type, the proportion of DCT cells relative to the 178 
whole may increase, even if its absolute count drops.    179 
 180 
Next, consider immune cells, known to play a central role in the pathogenesis of CKD. 181 
MuSiC found the largest immune sub-type to be macrophage, and all methods detected 182 
the expected increase of macrophage proportion with disease progression. Apart from 183 
this, MuSiC also found fibroblasts, B-, and T-lymphocytes to increase in proportion with 184 
disease progression, giving a consistent immune signature that is reproduced across 185 
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mouse models. These findings are consistent with clinical and histological observations, 186 
indicating tissue inflammation is a consistent feature of kidney fibrosis. Such 187 
reproducible signatures were not found by other methods, which show much less 188 
agreement across mouse models.   189 
 190 
Finally, to illustrate MuSiC’s cross-species applicability, we used the mouse kidney 191 
scRNA-seq reference from Park et al.1 to deconvolve the bulk rat RNA-seq data from 192 
Lee et al.13, which contains 105 samples obtained from 14 segments spaced along the 193 
renal tubule. We mapped samples to their physical locations, and computed correlations 194 
between their cell type proportions (Figure 3e). Reassuringly, cell types recovered by 195 
MuSiC for each segment agree with knowledge about the dominant cell type at its 196 
mapped position, e.g. DCT cells come from the DCT region. Correlation between 197 
samples is also high within anatomically distinct segments.   198 
 199 
Knowledge of cell type composition in disease relevant tissues is an important step 200 
towards the identification of cellular targets in disease. Although most scRNA-seq data 201 
do not reflect true cell type proportions in intact tissues, they do provide valuable 202 
information on cell type-specific gene expression. Harnessing multi-subject scRNA-seq 203 
reference data, MuSiC reliably estimates cell type proportions from bulk RNA-seq. As 204 
bulk tissue data are more easily accessible than scRNA-seq, MuSiC allows the 205 
utilization of the vast amounts of disease relevant bulk tissue RNA-seq data for 206 
elucidating cell type contributions in disease. 207 
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 262 
 263 
Figure Legends 264 
 265 
Figure 1: Overview of MuSiC framework. 266 
MuSiC starts from scRNA-seq data from multiple subjects, classified into cell types 267 
(shown in different colors), and constructs a hierarchical clustering tree reflecting the 268 
similarity between cell types. Based on this tree, the user can determine the stages of 269 
recursive estimation and which cell types to group together at each stage. MuSiC then 270 
determines the group-stable genes and calculates cross-subject mean (red to blue) and 271 
cross-subject variance (black to white) for these genes in each cell type. MuSiC up-272 
weighs genes with low cross-subject variance and down-weighs genes with high cross-273 
subject variance. In the example shown, deconvolution is performed in two stages, only 274 
cluster proportions are estimated for the first stage. Constrained by these cluster 275 
proportions, the second stage estimates cell type proportions, illustrated by the length of 276 
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the bar with different colors. The deconvolved cell type proportions can then be 277 
compared across disease cohorts. 278 
 279 
Figure 2: Pancreatic islet cell type composition in healthy and T2D human samples.  280 
a and b Benchmarking of deconvolution accuracy on bulk data constructed by 281 
combining together scRNA-seq samples. a. The bulk data is constructed for 10 subjects 282 
from Segerstolpe et al. while the single cell reference is taken from the same dataset. 283 
The cell type proportions of healthy subjects are estimated by leave-one-out single cell 284 
reference. The subject names are relabeled; the table shows average root mean square 285 
error (RMSD), mean absolute deviation (mAD), and Pearson correlation (R) across all 286 
samples and cell types. b. The bulk data is constructed for 18 subjects from Xin et al. 287 
while the single cell reference is 6 healthy subjects from Segerstolpe et al.  c. Jitter plots 288 
of estimated cell type proportions for Fadista et al subjects, color-coded by 289 
deconvolution method. Of the 89 subjects from Fadista et al., only the 77 that have 290 
recorded HbA1c level are plotted, and T2D subjects are denoted as triangles. d. HbA1c 291 
vs beta cell type proportions estimated by each of 4 methods. The reported p-values are 292 
from single variable regression β cell proportion ~ HbA1c. Multivariable regression 293 
results are reported in Supplementary Table 3. 294 
 295 
Figure 3: Cell type composition in kidney of mouse CKD models and rat.  296 
a. Cluster dendrogram showing similarity between 13 cell types that were confidently 297 
characterized in Park et al. Abbreviations: Neutro: neutrophils, Podo: podocytes, Endo: 298 
endothelials, LOH: loop of Henle, DCT: distal convolved tubule, PT: proximal tubule, 299 
CD-PT: collecting duct principal cell, CD-IC: CD intercalated cell, Macro: macrophages, 300 
Fib: fibroblasts, NK: natural killers. b, c and d. Average estimated proportions for 6 cell 301 
types in bulk RNA-seq samples taken from 3 different studies, each study based on a 302 
different mouse model for chronic kidney disease.  Results from three different 303 
deconvolution methods (MuSiC, BSEQ-sc and CIBERSORT) are shown by different 304 
colors. Supplementary Figure 5a-c show complete estimation results of all 13 cell 305 
types. b. Bulk samples are from Beckerman et al., who sequenced 6 control and 4 306 
APOL1 mice. c. Bulk data are from Craciun et al.9, where samples are taken before (C) 307 
and at 1, 2, 3, 7, 14 days after administering folic acid.  Line plot shows cell type 308 
proportion changes over time (days), averaged over 3 replicates at each time point. d. 309 
Bulk data are from Arvaniti et al.10, where samples are taken from mice after Sham 310 
operation (C), 2 days after UUO operation (D2), and 8 days after UUO operation (D8). 311 
The average proportions at each time point are plotted. e. MuSiC estimated cell type 312 
proportions of rat renal tubule segments.  The estimated cell type proportions (left) and 313 
the proportions correlations between samples (right) are shown as heatmap. Segment 314 
names are color coded and aligned according to their physical positions along the renal 315 
tubule. Supplementary Figure 6a-c show NNLS, BSEQ-sc and CIBERSORT results. 316 
Segment name abbreviation: S1: S1 proximal tubule; S2: S2 proximal tubule; S3: S3 317 
proximal tubule; SDL: Short descending limb; LDLOM: Long descending limb, outer 318 
medulla; LDLIM: Long descending limb, inner medulla; tAL: Thin ascending limb; mTAL: 319 
Medullary thick ascending limb; cTAL: Cortical thick ascending limb; DCT: Distal 320 
convoluted tubule; CNT: connecting tubule; CCD: Cortical collecting duct; OMCD: Outer 321 
medullary collecting duct; IMCD: Inner medullar collecting duct. 322 
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 323 
 324 
 325 
Online Methods 326 
 327 
MuSiC model set-up 328 
In this section, we derive the relationship between gene expression in bulk tissue and 329 
cell type-specific gene expression in single cells. This relationship forms the basis of our 330 
regression-based deconvolution. For gene 𝑔, let 𝑋𝑗𝑔 be the total number of mRNA 331 

molecules in subject 𝑗 of the given tissue, which is composed of 𝐾 cell types. 332 
Then, 𝑋𝑗𝑔 = ∑ ∑ 𝑋𝑗𝑔𝑐𝑐∈𝐶𝑗

𝑘
𝐾
𝑘=1 , where 𝑋𝑗𝑔𝑐 is the number of mRNA molecules of gene 𝑔 in 333 

cell 𝑐 of subject 𝑗, and 𝐶𝑗
𝑘 is the set of cell index for cell type 𝑘 in subject 𝑗 with 𝑚𝑗

𝑘 =334 

|𝐶𝑗
𝑘| being the total number of cells in this set. The relative abundance of gene 𝑔 in 335 

subject 𝑗 for cell type 𝑘 is  336 
 

𝜃𝑗𝑔
𝑘 =

∑ 𝑋𝑗𝑔𝑐𝑐∈𝐶𝑗
𝑘

∑ ∑ 𝑋𝑗𝑔′𝑐
𝐺
𝑔′=1𝑐∈𝐶𝑗

𝑘

  . 
 

(1) 

We can show that 337 

𝑋𝑗𝑔 =   ∑ 𝑚𝑗
𝑘 𝑆𝑘

𝑗
𝜃𝑗𝑔

𝑘𝐾
𝑘=1 =   𝑚𝑗  ∑ 𝑝𝑗

𝑘𝑆𝑗
𝑘𝜃𝑗𝑔

𝑘𝐾
𝑘=1 ,                              (2) 338 

where, for subject 𝑗,  𝑆𝑗
𝑘 =

∑ ∑ 𝑋𝑗𝑔′𝑐
𝐺
𝑔′=1𝑐∈𝐶𝑗

𝑘

𝑚𝑗
𝑘  is the average number of total mRNA 339 

molecules for cells of cell type 𝑘 (also referred to as “cell size” below), 𝑚𝑗 =  ∑ 𝑚𝑗
𝑘𝐾

𝑘=1  is 340 

the total number of cells in the bulk tissue, and 𝑝𝑗
𝑘 =

𝑚𝑗
𝑘

𝑚𝑗
 is the proportion of cells from 341 

cell type 𝑘. Let 𝑌𝑗𝑔 =
𝑋𝑗𝑔

∑ 𝑋𝑖𝑔′
𝐺
𝑔′=1

 be the relative abundance of gene 𝑔 in the bulk tissue of 342 

subject 𝑗. Equation (2) implies 343 
 344 
 

 𝑌𝑗𝑔 ∝  ∑ 𝑝𝑗
𝑘 𝑆𝑗

𝑘

𝐾

𝑘=1

𝜃𝑗𝑔
𝑘 . 

 
(3) 

 345 
Thus, across 𝐺 genes in subject 𝑗, we have 346 
 347 

                     [

𝑌𝑗1

⋮
𝑌𝑗𝐺

] ∝ [

𝜃𝑗1
1 ⋯ 𝜃𝑗1

𝐾

⋮ ⋱ ⋮
𝜃𝑗𝐺

1 ⋯ 𝜃𝑗𝐺
𝐾

] ⋅  [

𝑆𝑗
1   

 ⋱  
  𝑆𝑗

𝐾
] ⋅ [

𝑝𝑗
1

⋮
𝑝𝑗

𝐾
].    

 
(4) 

 348 
The goal of MuSiC is to estimate 𝑝𝑗

𝑘 using data from scRNA-seq and bulk RNA-seq. 349 

 350 
Model assumptions 351 
If scRNA-seq data were available for subject 𝑗, we would be able to obtain the cell size 352 
factor 𝑆𝑗

𝑘 and cell type-specific relative abundance 𝜃𝑗𝑔
𝑘 . With bulk RNA-seq data in 353 
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subject 𝑗, we get the bulk tissue relative abundance 𝑌𝑗𝑔, and, if 𝜃𝑗𝑔
𝑘  and 𝑆𝑗

𝑘 were known, 354 

we would be able to perform a regression to estimate 𝑝𝑗
𝑘. However, since scRNA-seq is 355 

still costly, most studies cannot afford the sequencing of a large number of individuals 356 
using scRNA-seq. To make deconvolution possible for a broader range of studies, it is 357 
desirable to utilize cell type-specific gene expression from other studies or from a 358 
smaller set of individuals in the same study. This is feasible under the following two 359 
assumptions: (A1) Individuals with scRNA-seq and bulk RNA-seq are from the same 360 
population, with their cell-type specific relative abundances 𝜃𝑗𝑔

𝑘  in equation (1) following 361 

the same distribution with means 𝜃𝑔
𝑘 and variances 𝜎𝑔𝑘

2 , 362 

 363 
  𝜃𝑗𝑔

𝑘 ∼ 𝐹(𝜃𝑔
𝑘, 𝜎𝑔𝑘

2 ). (5) 

 364 
Under this assumption, deconvolution can use available single cell data from other 365 
subjects or even subjects from other studies as reference for cell type proportion 366 

estimation. (A2) The ratio of average cell size 𝑆𝑘
𝑗
 across cell types are the same 367 

regardless of subjects and studies 368 
 369 
 𝑆𝑗

𝑘

𝑆𝑗
𝑘′ =

𝑆𝑗′
𝑘

𝑆𝑗′
𝑘′    for all 𝑗, 𝑗′ ∈ {1, … , 𝑁} and 𝑘, 𝑘′ ∈ {1, … , 𝐾}. 

 
(6) 

 370 
The second assumption allows us to replace 𝑆𝑗

𝑘 by a common value 𝑆𝑘 across subjects.  371 

In MuSiC, we use the average cell size and relative abundance across all subjects from 372 
the scRNA-seq data to estimate 𝑆𝑗

𝑘 and 𝜃𝑔
𝑘.  373 

 374 
Cell type proportion estimation 375 
To estimate cell type proportions 𝒑𝑗 = { 𝑝𝑗

𝑘, 𝑘 = 1, … , 𝐾}, we need to consider two 376 

constraints: (C1) Non-negativity: 𝑝𝑗
𝑘 ≥ 0 for all 𝑗, 𝑘; (C2) Sum-to-one: ∑ 𝑝𝑗

𝑘𝐾
𝑘=1 = 1 for 377 

all 𝑗. Because the bulk tissue and single-cell relationship derived in equation (5) is a 378 
“proportional to” relationship, to satisfy the (C2) constraint, we need a normalizing 379 
constant 𝐶 so that 380 
 381 

𝑌𝑗𝑔 =  𝐶 ⋅ ∑ 𝑝𝑗𝑘 𝑆𝑘 𝜃𝑗𝑔
𝑘

𝐾

𝑘=1

+  𝜖𝑗𝑔 , 
 
(8) 

where 𝜖𝑗𝑔 ∼ 𝑁(0, 𝛿𝑗𝑔
2 ) represents bulk tissue RNA-seq gene expression measurement 382 

noise. When cell type proportions 𝒑𝑗 = { 𝑝𝑗
𝑘, 𝑘 = 1, … , 𝐾}  and subject-specific relative 383 

abundances 𝜽𝑗𝑔 = {𝜃𝑗𝑔
𝑘 , 𝑘 = 1, … , 𝐾} are known, the variance of bulk tissue gene 384 

expression measurement is 385 
 386 
 𝑉𝑎𝑟[𝑌𝑗𝑔| 𝒑𝑗 , 𝜽𝑗𝑔] =  𝛿𝑗𝑔

2 .  (9) 

Given only cell type proportions, the variance is 387 
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 388 
 𝑉𝑎𝑟[𝑌𝑗𝑔| 𝒑𝑗] =  𝐸[𝑉𝑎𝑟[𝑌𝑗𝑔|𝒑𝑗, 𝜽𝑗𝑔]] + 𝑉𝑎𝑟[𝐸[𝑌𝑗𝑔|𝒑𝑗, 𝜽𝑗𝑔]]

=  𝛿𝑗𝑔
2 + 𝑉𝑎𝑟 [𝐶 ⋅ ∑ 𝑝𝑗𝑘 𝑆𝑘 𝜃𝑗𝑔

𝑘

𝐾

𝑘=1

]

=  𝛿𝑗𝑔
2 +   𝐶2 ⋅ ∑ 𝑝𝑗𝑘

2  𝑆𝑘
2 𝑉𝑎𝑟[𝜃𝑗𝑔

𝑘 ]

𝐾

𝑘=1

=  𝛿𝑗𝑔
2 +  𝐶2 ∑ 𝑝𝑗𝑘

2 𝑆𝑘
2 𝜎𝑔𝑘

2

𝐾

𝑘=1

=
1

𝑤𝑗𝑔
  

 
 
 
(10) 

 389 
Because of the heteroscedasticity of gene expression over genes, including the weight 390 
𝑤𝑗𝑔 can improve estimates. Since 𝛿𝑗𝑔

2  is unknown, we will estimate the weight 𝑤𝑗𝑔 391 

iteratively, initialized by NNLS. 392 
 393 
MuSiC is a weighted non-negative least squares regression (W-NNLS), which does not 394 
require pre-selected marker genes. Indeed, the iterative estimation procedure 395 
automatically imposes more weight on informative genes and less weight on non-396 
informative genes. Because it is a linear regression-based method, genes showing less 397 
cross cell type variations will have low leverage, thus having less influence on the 398 
regression, whereas the most influential genes are those with high weight and high 399 
leverage. To illustrate this point, we also performed benchmarking experiments to show 400 
that applying MuSiC using all genes gives more accurate results than applying MuSiC 401 
using pre-selected marker genes, thus demonstrating that MuSiC’s weighting scheme 402 
makes marker gene pre-selection unnecessary (Supplementary Figure 1c, 403 
Supplementary Figure 2).   404 
 405 
Recursive tree-guided deconvolution for closely related cell types 406 
Complex solid tissues often include closely related cell types with similar gene 407 
expression levels. Correlation in gene expression can lead to collinearity, making it 408 
difficult to reliably estimate cell type proportions, especially for less frequent and rare 409 
cell types. Although the collinearity problem can be improved by selecting marker genes 410 
through support vector regression, as is done in CIBERSORT3 and BSEQ-sc4, these 411 
approaches still have limited power to resolve similar cell types. In MuSiC, we introduce 412 
a recursive tree-guided deconvolution procedure based on a cell type similarity tree, 413 
which can be easily obtained through hierarchical clustering. In stage 1 of this 414 
procedure, cell types in the design matrix are divided into high-level clusters by 415 
hierarchical clustering with closely related cell types clustered together. Proportion for 416 
these cell type clusters are estimated using genes with small intra-cluster variance 417 
(cluster-stable genes) using the above described W-NNLS. In stage 2, for cell types in 418 
each cluster, the cell type proportions are estimated using W-NNLS with genes 419 
displaying small intra-cell type variance, subject to the constraint on the pre-estimated 420 
cluster proportions.  If necessary, more than 2 stages of recursion can be applied, with 421 
each stage separating the cell types within each large cluster into finer clusters, and 422 
using cluster-stable genes to do W-NNLS subject to the constraint that fixes higher-level 423 
cluster proportions. 424 
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 425 
To illustrate this recursive tree-guided deconvolution procedure, we start with a simple 426 
case with four cell types and 𝐺 genes. Let 𝑋1, 𝑋2, 𝑋3, 𝑋4 represent cell type-specific 427 
expression in the design matrix, obtained from scRNA-seq, and let 𝑌 be the gene 428 
expression vector in the bulk RNA-seq data. The relationship of bulk and single-cell 429 
data can be written as 430 
 431 
 

(𝑌(1)

𝑌(2)
) = (

𝑋1
(1)

𝑋2
(1)

𝑋3
(1)

𝑋4
(1)

𝑋1
(2)

𝑋2
(2)

𝑋3
(2)

𝑋4
(2)

) (

𝑝1

𝑝2
𝑝3

𝑝4

) + (𝜖(1)

𝜖(2)
) , 

 
(11) 

 432 
where the superscripts (1) and (2) indicate two sets of genes. Suppose the four cell 433 
types are grouped into two clusters, (𝑋1, 𝑋2) and (𝑋3, 𝑋4). The first set of genes are those 434 

showing small intra-cluster variance in gene expression, that is, 𝑋1
(1)

≈ 𝑋2
(1)

 and 𝑋3
(1)

≈435 

𝑋4
(1)

, whereas the second set of genes are the remaining genes.  436 
 437 
Stage 1: Estimate cluster proportions 𝜋1 = 𝑝1 + 𝑝2 and 𝜋2 = 𝑝3 + 𝑝4, 438 
 439 

 𝑌(1) = 𝑋1
(1)

𝜋1 +  𝑋3
(1)

𝜋2 + 𝜖(1). (12) 

The cluster proportions, �̂�1 and �̂�2, are estimated by W-NNLS using intra-cluster 440 
homogenous genes. 441 
 442 
Stage 2: Estimate cell type proportions (𝑝1, 𝑝2, 𝑝3, 𝑝4),  443 
 444 
 𝑌(2) = 𝑋1

(2)
𝑝1 + 𝑋2

(2)
𝑝2 + 𝑋3

(2)
𝑝3 +  𝑋4

(2)
𝑝4 + 𝜖(2). (13) 

 445 
The cell type proportions are estimated by W-NNLS using the remaining genes subject 446 
to the constraint that 447 
 448 
 �̂�1 +  �̂�2 =  �̂�1,  and �̂�3 +  �̂�4 =  �̂�2. (14) 

 449 
Construction of benchmark datasets and evaluation metrics 450 
To evaluate MuSiC and compare with other deconvolution methods, we need bulk RNA-451 
seq data with known cell type proportions. Therefore, we construct artificial bulk tissue 452 
data from a scRNA-seq dataset in which the bulk data is obtained by summing up gene 453 
counts from all cells in the same subject. Relative abundance is calculated by equation 454 
(1). The true cell type proportions in the artificial bulk data can be directly obtained from 455 
the scRNA-seq data and this allows us to use this artificially constructed bulk data as a 456 
benchmark dataset to evaluate the performance of different deconvolution methods. 457 
Denote the true cell type proportions by 𝒑 and the estimated proportions by �̂�. 458 
Deconvolution methods are evaluated by the following metrics. 459 

(i) Pearson correlation, 𝑅 = 𝐶𝑜𝑟(𝒑, �̂�). 460 

(ii) Root mean squared deviation, RMSD = √𝑎𝑣𝑔(𝒑 − �̂�)2; 461 
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(iii) Mean absolute deviation, mAD = 𝑎𝑣𝑔(|𝒑 − �̂�|). 462 
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