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Abstract 
Alterations in cancer genomes originate from mutational processes taking place throughout 

oncogenesis and cancer progression. We show that likeliness and entropy are two properties of somatic 

mutations crucial in cancer evolution, as cancer-driver mutations stand out, with respect to both of 

these properties, as being distinct from the bulk of passenger mutations. Our analysis can identify novel 

cancer driver genes and differentiate between gain and loss of function mutations.  
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Mutational likeliness and entropy help to identify driver mutations  

and their functional role in cancer  
 

Cancer genomes display a complex landscape determined by the accumulation of mutations. In 

individual cancer types specific patterns of mutations, referred to as mutational signatures1, have been 

identified, that can be ascribed to errors during DNA replication or repair, as well as to other effects of 

exposure to mutagens. However, in each tumour only a handful of mutations define the cancer 

phenotype and influence its evolutionary process (driver mutations)2–4. The majority of somatic 

mutations found in a given tumour are mostly neutral with respect to cancer evolution (passenger 

mutations), as they hitchhike on fitness-increasing mutations. In numbers, passenger mutations greatly 

exceed driver mutations, hence they can be used to describe the neutral mutational landscape of cancer 

genomes. 

Identifying driver mutations in the haystack of passenger mutations is a major outstanding problem in 

cancer research. Several approaches to discriminate between driver and passenger mutations have been 

developed, based on factors such as mutation frequency5–7, gene expression8, protein domain 

analysis9,10, markers of positive selection11, network enrichment analysis12 and recurrent amino acid 

change analysis13–16.  

 

Since driver mutations are under positive selection11, their mutational pattern might diverge from that 

observed in the much more numerous passenger mutations. In order to test this notion, we made use of 

a dataset of cancer mutations derived from the one generated by Chang et al.16 using several cancer-

genome resources. The full dataset comprises ~2 million single-nucleotides variants present in over 

11,000 cancer exomes from patients who had one of 41 tumour types. In order to calculate the 

probability of non-synonymous mutations, we applied on this dataset a Markov model trained on 

synonymous mutations, as they are mostly neutral. We preferred a zero-order rather than a higher order 

model, as we are dealing with coding sequences where, by virtue of the triplet genetic code, higher 

order patterns are confounded by constraints related to the protein sequence. Having worked out the 

parameters of the transition matrix of our model based on synonymous mutations, we refer to this 

output as the Mutational Background Model (see methods, Fig.1a), as these mutations reflect the 

outcomes of errors in the replicative/repair pathways and/or exposure to mutagens during cancer onset 

and progression. Next, we used the background model to calculate for each group of non-synonymous 
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mutations (GNSM: the set of all mutations hitting the same codon in a given transcript among all 

patients) two scores. (a) Mutational likeliness: this measures the probability for a given GNSM to result 

simply from the background model. A negative value of this parameter indicates a nucleotide change 

that does not conform to the overall mutational pattern of the tumour; in other words, a decreased 

likeliness of an individual mutation may reflect selective pressure on that mutation. (b) Mutational 

entropy: this score, calculated by applying the Shannon entropy to each mutated codon, measures the 

bias towards a specific amino acid that is encoded by a GNSM compared to the expectations from the 

background model (Fig.1a). Mutational entropy is maximal when all amino acids are equally 

represented; entropy is zero when, of all possible outcomes, we observe only one amino acid. 

The significance of the two scores for each GNSM was then calculated by simulating 10,000 equally 

sized groups of mutations according to probabilities based on the background model. Then, for each 

GNSM we transformed mutational likeliness and mutational entropy into the corresponding Z-scores, 

using the estimated average and standard deviation obtained from the simulations (Supplementary 

Table S1).  

In order to compile a list of non-synonymous mutations in bona fide cancer driver genes (Driver), and a 

list of non-synonymous mutations in other genes (non-Driver: presumably passenger mutations) we 

used the Cancer Gene Census17. We use this information to compare the Z-score distributions of 

mutational likeliness and mutational entropy for the Driver and the non-Driver sets of mutations 

(Supplementary Table S1). 

The distribution of mutational likeliness for Driver mutations is significantly shifted towards lower 

values than that of non-Driver mutations (p<0.0001, Fig.1b). This means that a substantial fraction of 

nucleotide changes in the driver genes are not explained by the mutational background model: we 

suggest this is due to positive selection acting on the cancer driver mutations. The shift is even greater 

(p<0.0001) when we only consider a set of validated driver codons (Validated, 293 positions on 75 

genes, Supplementary Table S1), whose oncogenicity has been experimentally demonstrated 

(Fig.1b). This further reinforces the notion that the distribution of mutations that have been the subject 

of Darwinian selection during cancer development stand out as not representative of the overall 

outcomes of the mutational processes taking place in the cell during tumorigenesis or in the tumour.  

With respect to mutational entropy, again the values we obtained are lower for Drivers than for non-

Drivers, albeit with a lower level of statistical significance (p=0.0281, Fig.1c): this suggests that 

selection favours a reduced set of amino acid changes at these positions compared to the background 
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model. However, we did not observe a significant difference between Validated and non-Driver 

mutations with regards to mutational entropy.  

We reasoned that the entropy of a GNSM might be closely related to protein function: only a small 

subset of the amino acid changes that can be derived from a given codon will produce gain of function 

(GOF); conversely, a wider set of amino acid changes can lead to loss of function (LOF). For instance, 

among TP53 mutations, A161T results in a gain of function (GOF)18, whereas R181P results in loss of 

function (LOF)19. Indeed, in our dataset, A161 mutations mostly change to Threonine, which results in 

an entropy score of -0.91. Conversely, there is no preference with regards to mutations at R181 and the 

entropy score is 0.08. When we analysed a whole set of Validated amino acid changes that are 

associated with GOF (n=100) or with LOF (n=172) (Supplementary Table S1), we found no 

difference between their mutational likeliness distributions (Fig.1b); on the other hand, the distribution 

of entropy values for GOF mutations when compared to that of LOF mutations was significantly 

shifted towards lower values (p=0.0016; Fig.1c). Thus, whereas the same evolutionary pressure applies 

to both GOF and LOF mutations (as they bear similar likeliness distributions), the difference in 

mutational entropy points towards the functional differences acquired through the amino acid changes. 

Thus, entropy scores highlight the dichotomy between gain- and loss-of-function mutations, which is 

fundamental in cancer biology, as in general GOF is characteristic of oncogenes and LOF of tumour 

suppressor genes. 

Based on these results, we examined whether mutational likeliness and mutational entropy could 

provide a way to identify novel driver genes. We performed bibliographic searches on the 31 mutant 

genes in the non-Driver list for which mutational likeliness and entropy were below the 1st percentile of 

the Driver distribution (Fig.1d; Supplementary Table S2): we found that 18 of them (58%) are 

convincingly associated with oncogenesis and/or cancer phenotypes (on 6 there is no information: see 

Supplementary Table S2). The same was true for the 68 out of 172 non-Driver genes within the 5th 

percentile for which information was available (Supplementary Table S2). Among the 31 genes 

below the 1st percentile, only one has been identified by other approaches5,11,15–17 (11 below the 5th 

percentile) (Supplementary Table S2). Among these, one mutation in RUNX220-21, that encodes a 

transcription factor associated with lymphomagenesis and bone metastasis, is not currently found in 

any of the cancer driver gene lists (Supplementary Table S2). Thus, our approach might be able to 

point towards a different set of cancer driving genes that may not be otherwise discoverable. 
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Cancer genomes are riddled with somatic mutations that are in part spontaneous and in part result from 

exogenous mutagens. Only a few of the mutant genes are subject to selection, and this has made it 

difficult to disentangle driver mutations from passenger mutations within the mutational landscape. We 

have found that likeliness and entropy of individual mutations can identify known driver mutations and 

predict some that have yet to be confirmed. 

The difference in likeliness distributions between driver and passenger mutations is consistent with the 

notion that the mutational signatures observed in cancer genomes mainly reflect passenger mutations. 

Of course known cancer driver mutations may conform to the mutational background (e.g. PIK3CA 

mutations in HPV-related cancers22); but a low mutational likeliness score emerges as characteristic of 

cancer driver mutations, as they have been selected among the many others generated by the mutational 

processes prevailing in a particular tumour. 

This analysis may also enable for the first time to differentiate between gain- and loss-of-function 

mutations. Whereas mutations are stochastic phenomena, and a set of mutations may bear the 

‘signature’ of a mutagenic agent, evolutionary pressure depends on GOF, or LOF, or any change of 

function entailed by any particular mutation, regardless of its original signature.  

Mutational likeliness and mutational entropy can identify cancer-driving mutant genes that are missed 

by other approaches and can guide the selection of potential cancer drivers for experimental validation. 

This is of special importance for precision medicine, since driver mutations are preferred potential 

targets of new therapies.  
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Methods  
 

The cancer dataset 

We started with a dataset of cancer mutations obtained from Chang et al.16, comprising of 2 million 

single-nucleotides variants (SNVs) identified in 11,115 cancer exomes from 41 tumours types. From 

the starting dataset, we removed the SNPs and all that SNVs that did not match the correct position in 

the coding sequence with regards to grch37 coding sequences. The dataset we used thus consisted of 

1,799,208 mutations. 
 

Mutational background model 

For all patients with more than 100 total mutations in coding regions, we selected the synonymous ones 

to calculate the transition matrix of a zero-order Markov model describing the background mutational 

process of each tumor type. All data from patients affected by the same tumor type contribute to the 

transition matrix for the given tumor type (Adrenocortical Carcinoma, Adenoid Cystic Carcinoma, 

Hypodiploid Acute Lymphoid Leukemia, Bladder Cancer, Breast Invasive Carcinoma, Cervical 

Squamous Cell Carcinoma And Endocervical, Chronic Lymphocytic Leukemia, Colorectal Carcinoma, 

Cutaneous Squamous Cell Carcinoma, Non Hodgkin Lymphoma, Esophageal Carcinoma, Gallbladder 

Carcinoma, Glioblastoma, High Grade Pontine Glioma, Head And Neck Squamous Cell Carcinoma, 

Kidney Chromophobe Cancer, Kidney Renal Clear Cell kirc Carcinoma, Kidney Renal Papillary Cell 

Carcinoma, Acute Myeloid Leukemia, Brain Lower Grade Glioma, Liver Hepatocellular Carcinoma, 

Lung Adenocarcinoma, Lung Squamous Cell Carcinoma, Lung Small Cell Carcinoma, 

Medulloblastoma, Mantle Cell Lymphoma, Myelodysplasia, Multiple Myeloma, Rhabdoid Cancer, 

Neuroblastoma, Nasopharyngeal Carcinoma, Adenocarcinoma Ovarian Serous Cystadenocarcinoma, 

Pancreatic Adenocarcinoma, Pancreatic Neuroendocrine Carcinoma, Pilocytic Astrocytoma, Skin 

Cutaneous Melanoma, Stomach Adenocarcinoma, Thyroid Carcinoma, Uterine Corpus Endometrial 

Carcinoma, Uterine Carcinosarcoma, Prostate Adenocarcinoma). For cancer types for which the 

transition model could not be calculated as there were no tumours with at least 100 mutations we built 

an average model obtained by averaging all models from the other cancer types.  

As expected, considering the directionality of coding sequences, complementary mutations (e.g. A → 

C and T → G) are not symmetric and we treated them separately. Each model is thus composed by a 

vector of 12 probabilities, one for each possible nucleotide change: 

 i.e. M = [p(A→C ), p(A→G), p(A→T), ..., p(T →C), p(T →G)].  
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As we analyzed mutations in their codon context, we define as a group of non-synonymous mutations 

(GNSM) the set of all mutations hitting the same codon in the same transcript in different patients. We 

considered for analysis only those codons for which at least three mutations existed in the dataset. 

 

Mutational likeliness  

The mutational background model is used to extrapolate the background probability distribution of 

amino acids resulting from non-synonymous mutations hitting a certain codon (Fig.1a).  

This distribution is then compared with the set of amino acids observed at a given codon mutated. For 

instance, let’s suppose that several patients have a given codon CAC (Histidine) mutated. From the 

background model we know the values of p(C→A, G, T) and p(A→C, G, T) and therefore we can 

calculate the probability of going from one codon to another by means of a single point mutation, e.g. 

p(CAC → AAC, GAC,...). From the probabilities towards each possible codon, we calculate the 

corresponding expected distribution of amino acids by merging the probability of codons coding for the 

same amino acid. In the case of the CAC codon we get all the possible resulting codons, which lead to 

N, D, Y, P, R, L, Q, Q. Thus, each amino acid change has its own probability to happen in this codon 

context:  

p(H→N) = p(CAC→AAC) and p(H→Q) = p(CAC→CAA) + p(CAC→CAG).  

Since we only consider non-synonymous mutations, while some of the amino acids reachable from a 

certain codon are synonymous, the probabilities for non-synonymous changes are then rescaled to 1. 

We define the mutational likeliness score as: 

𝐿 = 𝑙𝑜𝑔!"𝑝!
!"#

!

!!!

 

 

with n the number of observed mutations and 𝑝!
!"# the probability of a certain mutation given by the 

background model; this formula therefore allows to calculate the probability of a certain set of 

mutations at a certain codon for a specific tumour background model. Mutations in line with the 

background model will have large mutational likeliness, as they will tend to have large 𝑝!
!"#, while 

those that do not conform to the background model show a bias towards smaller scores. We then 

perform random sampling to assess the significance of the score observed for each GNSM: we use the 

background model to generate 10,000 equally sized sets of mutations starting from the wild type codon 
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and we calculate the average and standard deviation of the score. This procedure allows to calculate the 

Z-score and therefore the significance for each observed GNSM. This measure allows the identification 

of the codons where the set of observed mutations diverges the most with respect to the background 

model.  

 
Mutational entropy 

In order to analyze whether (a subset of) driver mutations tend to prefer certain amino acid changes, we 

consider all amino acids changes found in each patient genome for a given GNSM, and we calculate its 

entropy using the Shannon formula23: 

𝐻 = −  𝑓!𝑙𝑜𝑔!𝑓!
!!!,!,!..

 

 

Where the sum runs over the different amino acids encoded by the GNSM (x, y, z...) with frequencies 

𝑓!. As in the previous case, the entropy of each set of mutations is transformed in a Z-score by using the 

background model to produce 10,000 equally sized group of amino acids from which we calculate the 

expected average entropy and its standard deviation. Therefore, while the mutational likeliness 

identifies mutations with a pattern of nucleotide changes differing significantly from the expected 

(given the background model), the mutational entropy identifies those mutations that might be in line 

with the background probabilities but not with the expected amino acid distribution. 

 
Cancer Gene Census List 

We exploited the Cancer Gene Census17 to define a list of known cancer driver genes. In this work, we 

excluded all those genes that are not present in our dataset and whose oncogenicity derives from copy 

number alterations, gene fusions and truncations, insertions, or deletions. Our Driver dataset comprises 

of 2666 mutations on 399 driver genes (Supplementary Table S1). The complementary dataset of 

mutations outside these driver genes (non-Driver) includes 31037 mutations on 9846 non-Driver genes 

(Supplementary Table S1). 

 

Experimentally Validated Driver Codons (Validated) 

Starting from our list of 2666 driver mutations, we manually selected 293 codons for which the effects 

of the specific mutation on the gene have been reported in the literature. Many of the validated 
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positions were taken from the JAX Clinical Knowledgebase (The Jackson Laboratory; 

https://ckb.jax.org) and confirmed through further bibliographic search. We divided the Validated 

amino acid changes in two subgroups containing mutations inducing either gain-of-function (GOF = 

100) or loss-of-function (LOF = 172) depending on the effect of the amino acid change on protein 

function. To create GOF and LOF lists, we usually had to consider only the starting amino acid 

position (e.g. BRAF V600); in rare cases a single codon could be classified both as GOF or LOF, 

depending on the resulting amino acid change; in our analysis we considered each mutation separately, 

in both subgroups (e.g. the mutation of Y646 in the EZH2 gene leads to LOF for Y646C or to GOF for 

Y646F) (Supplementary Table S1). It is noteworthy that only 10% of mutations in the Drivers dataset 

has been tested and catalogued as GOF or LOF. This highlights the need for experimental approaches 

to validate cancer-associated mutations and to allow a proper identification and functional 

characterization. 

 

Driver mutations in the non-Driver dataset 

We selected mutations in the non-Driver dataset whose mutational likeliness and entropy scores were 

below the 1st and the 5th percentiles of the Driver dataset distributions. For each gene, we performed a 

bibliographic analysis (using all aliases for the gene name) and selected those whose function had been 

linked to cancer processes and phenotypes. (Supplementary Table S2). 

 

Statistical analysis 

The distributions of the mutated codon groups were compared using the Mann-Whitney test with 

Bonferroni multiple comparison correction. Continuous variables were expressed as mean, standard 

deviation, median, 25th and 75th percentiles. The significance level was set to 5%. The statistical 

analysis was performed using SAS 9.3. 
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Table 1  

The p-values for each comparison are shown. Significant differences are reported in Fig.1b and c. 

 

Mutational Likeliness 

   Bonferroni (p-value) 

    

Driver vs non-Driver < .0001 

Validated vs non-Driver < .0001 

non-Driver vs GOF < .0001 

non-Driver vs LOF < .0001 

GOF vs LOF 1.000 

 

Mutational Entropy 

   Bonferroni (p-value) 

    

Driver vs non-Driver 0.0281 

Validated vs non-Driver 0.0696 

non-Driver vs GOF < .0001 

non-Driver vs LOF < .0001 

GOF vs LOF 0.0016 
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Fig.1. Mutational likeliness and mutational entropy distribution highlight differences between 

cancer driver and passenger mutations. (a) Synonymous mutations from the cancer dataset are used 

to derive the probability for each single nucleotide change in each tumour type (Nucleotide to 

Nucleotide model). The values obtained are used to build a model representing the probabilities for 

each non-synonymous change to occur given a tumour-specific mutational background (Codon to 

Codon model). From this, the probability for all the codons that can be produced by single nucleotide 

substitutions from any other codon was calculated (summing probabilities as needed; e.g. the case of 

Q) (Amino Acid to Amino Acid model). This model is then used to estimate the mutational likeliness 

and entropy scores for each non-synonymous mutation using the equations shown. pi in the mutational 

likeliness formula represents the probability of a given amino acid change, depending on the wild type 

codon and the mutational background model. The mutational entropy is calculated considering the 

frequency (fR) of amino acid changes observed at the mutated codon. The mutational likeliness and 

mutational entropy were converted to Z-scores and the relative distributions were plotted. (b, c) The 

box-plots show the Z-score distributions of codons arising from cancer driver mutations (Driver, 

n=2666 positions on 399 genes), non-driver mutations (non-Driver, n=31037 positions on 9846 genes), 

experimentally validated ones (Validated, n=293), gain-of-function (GOF, n=100) and loss-of-function 

(LOF, n=172). and the horizontal black lines indicate the median for each group. The statistical 

significance is indicated *-p≤0.05; **-p≤0.01; ***-p≤0.001; ****-p≤0.0001; full details in the Table 

1); the comparison not reaching statistical significance is indicated by a dotted horizontal line. (d) 

Scatterplot of mutational likeliness and entropy of the non-Driver dataset (Supplementary Table S2). 

Areas below the 1st percentile of the Driver dataset (mutational likeliness = -113.68; mutational 

entropy = -6.16) are shaded in grey. Codon mutations on genes experimentally associated to cancer 

related processes are indicated in yellow. 
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