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Abstract

Adaptation in spatially heterogeneous environments results from the balance between local
selection, mutation and migration. We study the interplay among these different evolutionary forces
and demography in a classical two habitat scenario with asexual reproduction. We develop a new
theoretical approach that fills a gap between the restrictive assumptions of Adaptive Dynamics and
Quantitative Genetics. This analysis yields more accurate predictions of the equilibrium phenotypic
distribution in different habitats. We examine the evolutionary equilibrium under general conditions
where demography and selection may be non-symmetric between the two habitats. In particular
we show how migration may increase differentiation in a source-sink scenario. We discuss the
implications of these analytic results for the adaptation of organisms with large mutation rates
such as RNA viruses.

Key-Words: local adaptation, migration-selection balance, gene flow, adaptive dynamics,
quantitative genetics, skew.

1 Introduction

Spatially heterogeneous selection is ubiquitous and constitutes a potent evolutionary force that pro-
motes the emergence and the maintenance of biodiversity. Spatial variation in selection can yield
adaptation to local environmental conditions, however, other evolutionary forces like migration and
mutation tend to homogenize the spatial patterns of differentiation and thus to impede the build
up of local adaptation. Understanding the balance between these contrasted evolutionary forces is
a major objective of evolutionary biology theory [Slatkin, 1978, Whitlock, 2015]). In this article,
we consider a two-habitat model with explicit demographic dynamics as in [Meszéna et al., 1997,
Day, 2000, Ronce and Kirkpatrick, 2001, Débarre et al., 2013]. We assume that adaptation is gov-
erned by a single quantitative trait where individuals reproduce asexually. Maladapted popula-
tions have a reduced growth rate and, consequently, lower population size. In other words, se-
lection is assumed to be ’hard’ [Christiansen, 1975, Débarre and Gandon, 2010] as the population
size in each habitat is affected by selection, mutation and migration. These effects are complex
because, for instance, asymmetric population sizes affect gene flow and adaptation feeds back on de-
mography and population sizes [Nagylaki, 1978, Lenormand, 2002, Meszéna et al., 1997, Day, 2000,
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Ronce and Kirkpatrick, 2001, Débarre et al., 2013]. To capture the complexity of these feed backs
it is essential to keep track of both the local densities and the distributions of phenotypes in
each habitat. Note that this complexity often led to the analysis of the simplest ecological sce-
narios where the strength of selection, migration and demographic constraints are assumed to be
the same in the two habitats (but see [Holt and Gaines, 1992, Garćıa-Ramos and Kirkpatrick, 1997,
Gomulkiewicz et al., 1999, Holt et al., 2003] for analyses of asymmetric ecological scenarios). Three
different approaches have been used to analyze this two-population model. Each of these approaches
rely on a set of restrictive assumptions regarding the relative influence of the different evolutionary
forces acting on the evolution of the population.

First, under the assumption that the rate of mutation is weak relative to selection it is possi-
ble to use the Adaptive Dynamics framework [Meszéna et al., 1997, Day, 2000, Débarre et al., 2013,
Fabre et al., ]. This analysis captures the effect of migration and selection on the long-term evolution-
ary equilibrium. In particular, this approach shows that weak migration relative to selection promotes
the coexistence of two specialist strategies (locally adapted on each habitat). In contrast, when mi-
gration is strong relative to selection, a single generalist strategy is favored. The main limit of this
approach is that it relies on the assumption that there is a very limited amount of genetic variability.
At most, 2 genotypes can coexist with these assumptions.

Second, Quantitative Genetics formalism has been used to track evolutionary dynamics in het-
erogeneous habitats when there is substantial level of phenotypic diversity in each population
[Ronce and Kirkpatrick, 2001]. In this model the additive genetic variance is maintained by sexual
reproduction but it may also be generated by large mutation rates in models with asexual repro-
duction [Débarre et al., 2013]. This formalism allows to recover classical migration thresholds below
which specialization is feasible. But the analysis of [Ronce and Kirkpatrick, 2001] also reveals the
existence of evolutionary bistability where transient perturbations of the demography can have long
term evolutionary consequences on specialization. Yet, the assumption on the shape of the phenotypic
distribution (assumed to be Gaussian in each habitat) is a major limit of this formalism.

Third, attempts to account for other shapes of the phenotypic distributions in heterogeneous
environments have been developed recently [Yeaman and Guillaume, 2009, Débarre et al., 2013,
Débarre et al., 2015]. These models highlight that calculations based on the Gaussian approxima-
tion which neglects the skewness of the equilibrium phenotypic distribution underestimates the level
of phenotypic divergence and local adaptation. Yet, there is currently no model able to accurately
describe the build up of non-Gaussian distributions. The only attempt to model this distribution
is to describe the phenotypic distributions in each habitat as the sum of two Gaussian distributions
[Yeaman and Guillaume, 2009, Débarre et al., 2013]. These models, however, only yield approximate
predictions on long-term evolutionary equilibria.

Here we develop an alternative formalism that yields the phenotypic distribution in each habi-
tat at the equilibrium between selection, mutation and migration. We start with the limiting case
where the genetic variance due to mutations is very low, and we fully characterize the evolutionary
equilibria of our system using Adaptive Dynamics. Second, we extend this analysis to a scenario
where mutations are more frequent, and we derive approximations for the level of adaptation un-
der a migration-selection-mutation balance. We also explore the effects of asymmetric constraints on
selection, migration or demography between the two habitats. We evaluate the accuracy of these ap-
proximations by comparing them to numerical solutions of our deterministic model and we show that
our approach improves previous attempts to study the interplay between adaptation and demography
in heterogeneous environments. We contend that our results are particularly relevant for organisms
with high mutation rates and may help to understand the within-host dynamics of chronic infections
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by RNA viruses [Drake and Holland, 1999, Sanjuán et al., 2010].

2 The model

We model an environment containing two habitats that we label 1 and 2 (Figure 1). The population
is structured by a quantitative trait z. In each habitat there is selection towards an optimal value
of the trait. Maladapted individuals suffer from a decreased growth rate : growth rate in habitat i
is denoted by ri(z) which has its maximum rmax,i for the optimal traits θi which yields (for habitat
i = 1, 2):

ri(z) = rmax,i − si (z − θi)2 . (1)

We denote by si the selection pressure in habitat i. Without loss of generality we assume that
θ1 = −θ2 = −θ.

θ1 θ2

rmax,1

rmax,2

g1

g2

m1

m2

F
IT
N
E
S
S

P
O
P
U
LA
T
IO
N
S

μ1 μ2

phenotype z

phenotype z

differentiation

Figure 1 – Schematic representation of the 2 habitat model. The top figure shows the growth rate
(fitness) in each habitat as a function of the phenotypic trait z. In habitat i the growth rate is assumed
to be maximized at z = θi and the strength of selection is governed by si (see equation (1)). Here
we illustrate a scenario with asymmetric fitness functions. The bottom figure shows the phenotypic
distribution in each habitat (light blue and light red in habitats 1 and 2, respectively). Migration
from population i is governed by the parameter mi and tends to reduce the differentiation (i.e. the
difference between the mean phenotypes) between populations.

Reproduction is assumed to be asexual. Offsprings inherit the phenotype of their parent except
when there is mutation (i.e. no environmental variance). We consider a continuum of alleles model
[Kimura, 1965]. Mutation occurs with rate U , and add an increment y to the parents’ phenotype; we
assume that the distribution of these mutational effects is given by µ(y), with mean 0 and variance
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equal to V . We also assume that individuals disperse among habitats with rates m1 and m2 which
are independent of phenotype.

Let ni(z) be the phenotypic distribution in habitat i at time t. The dynamics of this distribution in
each habitat is given by (for i = 1, 2 and j = 2, 1):

∂ni(z)

∂t
= U

( ∫ +∞

−∞
ni(z + y)µ(y)dy − ni(z)

)
︸ ︷︷ ︸

mutation

+ni(z)

(
ri(z)− κi

∫ +∞

−∞
ni(t, y)dy

)
︸ ︷︷ ︸

reproduction

+mjnj(z)−mini(z)︸ ︷︷ ︸
migration

.

(2)
The first term in the right hand side of the above equation corresponds to the effect of mutations. The
second term corresponds to logistic growth that results from the balance between reproduction given
by (1) and density dependance where κi measures the intensity of competition within each habitat.
The last term corresponds to the dispersal of individuals between habitats.
If we assume that the variance of the mutation distribution is small enough while the mutation rate U
is not very small, we can consider an approximate model where we replace the mutation term in (2)
by a diffusion (see [Kimura, 1965, Lande, 1975] and the more recent article [Champagnat et al., 2008]
where the diffusion term has been derived directly from a stochastic individual based model). See also
[Bürger, 2000]–pages 239-241 for a discussion on the domain of the validity of such model. Our model
then becomes:

∂ni(z)

∂t
= Vm

∂2ni(z)

∂z2
+ ni(z)

(
ri(z)− κi

∫ +∞

−∞
ni(t, y)dy

)
+mjnj(z)−mini(z), (3)

where Vm is proportional to UV . This model is close to the model studied in [Débarre et al., 2013]).
The total population sizes in each habitat is given by:

Ni =

∫ +∞

−∞
ni(z)dz, for i = 1, 2. (4)

In other words, ni(z) refers to the distribution of the phenotype in habitat i, while Ni refers to the
density of the polymorphic population in habitat i. Using (1) and (3) one can derive dynamical
equations for the size of the population and the mean phenotype (µi = 1

Ni

∫
zni(z)dz):

d

dt
Ni = Ni(rmax,i − κiNi)− siNi

(
(µi − θi)2 + σ2i

)
+mjNj −miNi,

d

dt
µi = −si

(
2(µi − θi)σ2i + ψi

)
+mj

Nj

Ni
(µj − µi),

where σ2i and ψi are the variance and the third central moment of the phenotypic distribution, respec-
tively . These two quantities are also dynamical variables and their dynamics are governed by higher
moments of the phenotypic distribution. These higher moments are also dynamical variables that de-
pend on higher moments which indicates that we are dealing with a dynamical system that is not closed.
Various approximations, however, have been used to capture its behavior. Typically, many results are
based on the Gaussian approximation that focuses on the dynamics of the mean and the variance
and discards all higher cumulants of the distribution [Bürger, 2000, Rice, 2004]. Yet several authors
pointed out that neglecting the skewness of the distribution can underestimate the amount of differenti-
ation and local adaptation [Yeaman and Guillaume, 2009, Débarre et al., 2013, Débarre et al., 2015].
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Indeed, in the case of symmetric habitats, one can readily obtain the size and the mean trait of
the population at equilibrium (the equilibrium is indicated by a superscript ∗). Using the fact that
N∗1 = N∗2 = N∗, µ∗1 = −µ∗2, σ∗1 = σ∗2 = σ∗ and ψ∗1 = −ψ∗2 = ψ∗, we obtain:

N∗ =
1

κ

(
r − s

((2mθ − sψ∗)2

4(m+ gσ∗ 2)2
+ σ∗ 2

))
,

µ∗1 =
−s(ψ∗ + 2θσ∗ 2)

2(m+ sσ∗ 2)
.

The differentiation between the two habitats is thus (Figure 1):

µ∗2 − µ∗1 =
s(ψ∗ + 2θσ∗ 2)

m+ sσ∗ 2
. (5)

There is, however, no analytic predictions on the magnitude of the skewness of the phenotypic distri-
bution except in the limit when the mutation rate is extremely low [Débarre et al., 2013].

3 The selection-mutation-migration equilibrium

We want to characterize the stationary solutions of (3) which results from the equilibrium between
selection, mutation and migration in each habitat. In the following we present our two-step approach.
First, we analyse the evolutionary equilibria of (3) when mutations are rare (i.e. U is vanishingly
small). This allows to identify monomorphic or dimorphic evolutionary stable strategies (ESS). Second,
we use these ESSs to derive an approximation for the stationary solutions of (3) when mutation is
more frequent and maintains a standing variance at equilibrium.

3.1 Adaptive dynamics and evolutionary stable strategies

We consider a resident population at a demographic equilibrium set by the phenotypic distributions
of the resident in both habitats. We want to determine the fate of a mutant with phenotype zm
introduced in this resident population. The ability of the mutant to invade is determined by its fitness
given by (i.e. per capita growth rate minus density dependence):

wi(zm;Ni) = ri(zm)− κiNi, for i = 1, 2. (6)

To take into account migration between habitats we introduce an effective fitness which corresponds to
the growth rate of a trait in the whole environment (see [Szilágyi and Meszéna, 2009, Mirrahimi, 2013,
Fabre et al., ]). The effective fitness W (zm;N1, N2), which corresponds to the effective growth rate
associated with trait zm in the resident population (n1, n2), is the largest eigenvalue of the following
matrix:

A(zm;N1, N2) =

(
w1(zm;N1)−m1 m2

m1 w2(zm;N2)−m2

)
(7)

After some time the dynamical system will reach a stable demographic equilibrium. Because there are
two habitats, we expect that at most two distinct traits can coexist. With an analysis of the effective
fitness W , we characterize such equilibrium corresponding to the evolutionary stable strategy (see the
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supplementary information and [Mirrahimi, 2017]). This equilibrium is indeed either monomorphic
(with phenotype zM∗ and the total population size NM∗

i ) or dimorphic (with phenotypes zD∗I and zD∗II

and the total population sizes ND∗
i , where the subscripts I and II indicate that the phenotype is best

adapted to habitat 1 and 2, respectively).

3.2 Equilibrium distributions with mutation

In the above section (see also the supplementary information) we derived the evolutionary equilibria
when mutations are very rare. These equilibria also correspond to a scenario where all the phenotypic
strategies are present initially but where mutation is absent. In the following we allow mutation rate
to increase and we study the impact of mutations on the ultimate evolutionary equilibrium of the
phenotypic distributions. We present below the general principle of the approach before examining
specific case studies.

We introduce a new parameter ε =
√
Vm, and hence in what follows we replace Vm by ε2, and we

approximate the population’s phenotypical distribution nε,i(z) in terms of ε.

Our method is based on the following ansatz:

nε,i(z) =
1√
2πε

exp
(uε,i(z)

ε

)
. (8)

Note that a first approximation of the population’s distribution which is indeed commonly used in the
theory of quantitative genetics is a Gaussian approximation of the following form around z∗:

nε,i(z) ≈ NiN (z∗, σ2ε). (9)

Another approximation that has been commonly used to study models of selection and mutation with
continuous traits, is the house-of-cards approximation [Kingman, 1978, Turelli, 1984, Bürger, 2000].
This approximation is based on the assumption that the mutation distribution is independent of the
original state of the gene. The house-of-cards approximation is valid in the limit of small mutation
rates [Bürger, 2000]. Our analysis, however, is valid when the variance of the mutation distribution is
small but the mutation rate is not vanishing. Our assumptions are thus closer to the domain of the
validity of the Gaussian approximation. Yet, our objective is to obtain more accurate results than (9)
and to approximate uε,i without making an a priori Gaussian assumption. To this end we postulate
an expansion for uε,i in terms of ε:

uε,i(z) = ui(z) + εvi(z) + ε2wi(z) +O(ε3), (10)

and we try to compute the coefficients ui(z), vi(z), and wi(z). First we can show that, when there
is migration in both directions (i.e. mi > 0 for i = 1, 2), the zero order terms are the same in both
habitats : u1(z) = u2(z) = u(z) (see the supplementary information). We can indeed compute explic-
itly u(z) which is given by (A.5) in the monomorphic case and by (A.6) in the dimorphic case. As we
observe in the formula (A.5) and (A.6), u(z) attains its maximum (which is equal to 0) at the ESS
points identified in the previous section. This means that the peaks of the population’s distribution are
around the ESS points (zM∗ in the case of monomorphic ESS and (zD∗I , zD∗II ) for the dimorphic ESS).
We are also able to compute the first order term vi and the value of wi at the ESS points. This allows
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us to provide an approximation of the population’s density Nε,i and the population’s distribution nε,i
that we will call henceforth our first approximation. This approximation can be computed relatively
easily (see [Mirrahimi, 2017]) and approximates very well the population’s distribution at equilibrium
(see for instance Figure 2).

In order to provide more explicit formula for the moments of order k ≥ 1 of the population’s distri-
bution in terms of the parameters of the model, we also provide a second approximation. This second
approximation, instead of using the values of u and vi in the whole domain, is based on the computation
of a fourth order approximation of u and a second order approximation of vi around the ESS points.
Our second approximation is by definition less accurate than the first one. It still provides convincing
results when the parameters are such that we are far from the transition zone from monomorphic to
dimorphic distribution (see for instance Figure 2). This approximation is indeed based on an integral
approximation which is relevant only when the population’s distribution is relatively sharp around
the ESS points. This is not the case in the transition zone unless the effect of the mutations, i.e. ε, is
very small.

4 Case studies

4.1 Symmetric fitness landscapes

We focus first on a symmetric scenario where, apart from the position of the optimum, the two habi-
tats are identical: m1 = m2 = m,κ1 = κ2 = κ, s1 = s2 = s, rmax,1 = rmax,2 = rmax. In this special
case it is possible to fully characterize the evolutionary equilibrium.

When migration rate is higher than critical migration threshold m > mc = 2sθ2 migration prevents
the differentiation of the trait between the two habitats [Mirrahimi, 2017]. The evolutionary equi-
librium, when the mutation rate is vanishingly small, is monomorphic and satisfies zM∗ = 0 and
nM∗1 (z) = nM∗2 (z) = NM∗δ(z), where δ(.) is the dirac delta function and NM∗ = 1

κ

(
rmax − sθ2

)
.

Monomorphic case: Let’s suppose that mc = 2sθ2 ≤ m. Then zM∗ = 0 is the only ESS and
NM∗ = 1

κ

(
rmax − sθ2

)
. Then, the population’s distribution nε,i(z) can be approximated following

the method introduced above. In particular, defining φ =
√

1− 2sθ2/m, we can approximate the
moments of the population’s distribution (Figure 2):

NM∗
ε,1 = NM∗

ε,2 =
∫
nM∗ε,i (z)dz = 1

κ

(
rmax − sθ2

)
− ε

√
sφ
κ +O(ε2),

µM∗ε,1 = 1
NM∗

ε,1

∫
znM∗ε,1 (z)dz = −ε

√
sθ

mφ +O(ε2),

µM∗ε,2 = 1
NM∗

ε,2

∫
znM∗ε,2 (z)dz = ε

√
sθ

mφ +O(ε2),

σM∗ 2ε,1 = σM∗ 2ε,2 = 1
NM∗

ε,i

∫
(z − µM∗ε,i )2nM∗ε,i (z)dz = ε√

sφ
+O(ε2),

ψM∗ε,i = 1
NM∗

ε,i

∫
(z − µM∗ε,i )3nM∗ε,i (z)dz = O(ε3).

Note that the variance σM∗2ε,i is larger than the case with no heterogeneity between the habitats, where
we recover the well-known equilibrium variance ε√

s
of quantitative genetics [Lande, 1975, Bürger, 2000,

Rice, 2004]. This increase of the variance comes from φ which depends on dispersion and the hetero-
geneity between the two habitats. The variance of the distribution increases as φ decreases. When
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φ = 0 the approximation for the variance becomes infinitely large. This corresponds to the threshold
value of migration below which the above approximation collapses because the distribution becomes
bimodal. In this case we have to switch to the analysis of the dimorphic case. Note also that the
differentiation between habitats depends also on φ. Some differentiation start to emerge even when
the migration rate is above the critical migration rate, mc (Figures 2 and 3).

Figure 2 – Effects of migration in a symmetric scenario on (A) the total population size in habitat
1, (b) the differentiation between habitats, (c) the variance and (d) the third central moment of the
phenotypic distribution in habitat 1. The dots refer to the numerical resolutions of the problem
with ε = 0.05, the red line indicates the case where ε = 0 while the lines in black refer to our
two approximations when ε = 0.05 (the dashed line for the first approximation and the full line for
the second approximation). The vertical gray line indicates the critical migration rate below which
dimorphism can evolve in the adaptive dynamics scenario. Other parameter values: rmax = 1, s = 2,
θ = 0.5, κ = 1. Note that, in this figure and in the following ones, to compute numerically the
equilibrium, we have solved numerically the dynamic problem (3) and kept the solution obtained after
long time when the equilibrium has been reached.

Dimorphic case: When m < mc, the only globally stable evolutionary equilibrium is dimorphic

which yields the following ESS: {zD∗I , zD∗II } with zD∗I = −zD∗II = −zD∗ and zD∗ =
√
4s2θ4−m2

2sθ . This
yields the following equilibrium distribution when ε = 0: nD∗i (z) = νI,iδ(z − zD∗I ) + νII,i δ(z − zD∗II )
(analytic expressions for νI,j and νII,j are given in the supplementary information). One can then
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Figure 3 – Selection-mutation-migration equilibrium distributions in the two habitats in a symmet-
ric scenario and in a case where the population’s distribution is unimodal in each habitat. We plot
the exact equilibrium distributions obtained from numerical computations (blue line) together with
our 2 approximations (dashed lines for the first approximation and full black line for the second
approximation) and the approximation given in [Débarre et al., 2013] (red line). Note that our ap-
proximations capture the emergence of some differentiation even though we are above the critical
migration rate leading to the evolution of a dimorphic population. In presence of mutations, the
population’s distribution is indeed shifted to the left(respectively right) in the first(respectively sec-
ond) habitat, while [Débarre et al., 2013] provided the same approximation for both habitats. Note
also that our approximation yields better approximations for the variance of the distribution in each
habitat ([Débarre et al., 2013] underestimates this variance). Parameter values: m = 1.5, rmax = 3,
s = 2; θ = 0.5, κ = 1, ε = 0.1.

approximate the local moments of the population’s distribution nε,i(z), with γ =
√

1− m2

4s2θ4
,

ND∗
ε,1 = ND∗

ε,2 = 1
κ

(
m2

4sθ2
+ rmax −m

)
− ε

√
sγ
κ +O(ε2),

µD∗ε,I,1 = zD∗I + ε
(

m2

4s2
√
sθ5γ2

− 4s2θ4(1−γ)2
θ
√
sγ(4s2θ4(1−γ)2+m2)

)
+O(ε2),

µD∗ε,I,2 = zD∗I + ε
(

m2

4s2
√
sθ5γ2

+ m2

θ
√
sγ(4s2θ4(1−γ)2+m2)

)
+O(ε2),

µD∗ε,II,1 = zD∗II − ε
(

m2

4s2
√
sθ5γ2

+ m2

θ
√
sγ(4s2θ4(1−γ)2+m2)

)
+O(ε2),

µD∗ε,II,2 = zD∗II − ε
(

m2

4s2
√
sθ5γ2

− 4s2θ4(1−γ)2
θ
√
sγ(4s2θ4(1−γ)2+m2)

)
+O(ε2),

σD∗ 2ε,I,1 = σD∗ 2ε,I,2 = σD∗ 2ε,II,1 = σD∗ 2ε,II,2 = ε√
sγ

+O(ε2),

ψD∗ε,I,i = m2ε2

4s3θ5γ3
+O(ε3),

ψD∗ε,II,i = − m2ε2

4s3θ5γ3
+O(ε3),

where the subscripts I and II indicate that the local moments are in the sets OI = (−∞, 0) and
OII = (0,∞) which include respectively zDI and zDII (see the supplementary information for the precise
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definitions). One can compute the global moments of the population’s distribution from the above
local moments.

4.2 Non-symmetric scenarios

A general non-symmetric scenario: In a non-symmetric scenario there also exists a unique ESS
which is either monomorphic or dimorphic. There is still a threshold value of migration above which
the maintenance of a dimorphic polymorphism is impossible: ∆ = m1m2

4s1s2θ4
≥ 1. Note that this con-

dition generalizes the condition in the symmetric case (i.e. when m1 = m2 and s1 = s2). However,
for the ESS to be dimorphic, the condition ∆ < 1 is not enough and two other conditions should also
be satisfied. These conditions (i.e. η1 < β2rmax,2 − α1rmax,1 and η2 < β1rmax,1 − α2rmax,2 with the
constants αi,βi and ηi depending on the parameters m1, m2, s1, s2, κ1, κ2 and θ, see the supplemen-
tary information), guarantee that the qualities of the habitats are not very different. Indeed, if one
habitat has a higher quality it is likely to overwhelm the dynamics of adaptation to the other habitat.
This will yield a monomorphic equilibrium biased toward the high quality habitat. Figure 4 illustrates
that a polymorphism is only maintained in a range of parameter values where the two habitats are
relatively similar. Interestingly, in spite of the asymmetry of the two habitats, the locations of the two
peaks of the phenotypic distribution are always symmetric and consequently: zD∗1 = −zD∗2 = −zD∗
where: zD∗ =

√
θ2(1−∆). See the supplementary information for the expressions of the densities in

each habitat and [Mirrahimi, 2017] for the derivation of this stable equilibrium.

A source-sink scenario: An extreme case of asymmetry occurs when one population (the source)
does not receive any migrant from the second population (the sink). For instance, when m1 > 0 and
m2 = 0 there is no immigration in habitat 1. Note that, this is a degenerate case and in particular,
we are not anymore in the framework of Section 3.1, where the ESS was always the same in the both
habitats as a result of strict positivity of migration rate in both directions. Moreover, the computation
of the equilibrium in presence of mutations is also slightly different because of this degeneracy (see
[Mirrahimi, 2017] for more details). In particular, we are not able to compute the first order corrector
v2 in the whole domain. However, a local approximation of v2 gives already convincing results (Figure
5).

The evolutionary outcome in the first habitat is obvious because it depends only on selection acting
in habitat 1: the ESS is −θ and

N∗1 =
rmax,1 −m1

κ1
.

Moreover, the population’s phenotypically distribution nε,1 can be computed explicitly: nε,1 = Nε,1fε,

where Nε,1 =
rmax,1−m1−ε

√
s1

κ1
and fε is the probability density of a normal distribution N (−θ, ε√

s1
).

In habitat 2, the evolutionary outcome results from the balance between migration from habitat 1
and local selection and two situations can arise (Figure 5): (i) monomorphic case: under the condition

4s2θ
2rmax,2

κ2
<
m1(rmax,1 −m1)

κ1
,

the evolutionary equilibrium is monomorphic and the evolutionary stable strategy is z∗ = −θ. And
the total population is given by

N∗2 =
1

2κ2

(
rmax,2 − 4s2θ

2 +

√
(rmax,2 − 4s2θ2)2 + 4

κ2
κ1
m1(rmax,1 −m1)

))
.
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Figure 4 – Maintenance of polymorphism and asymmetric adaptation as a function of the maximal
growth rates rmax,1 and rmax,2 in the two habitats. In (A) we examine a symmetric situation where
all the parameters are identical in the two habitats: m1 = m2 = 0.5, s1 = s2 = 2, κ1 = κ2 = 1. In
(B) we show an asymmetric case with the same parameters as in (A) except m1 = 0.5 and m2 = 0.7.
The black area indicates the parameter space where the population is driven to extinction because
the maximal growth rates are too low. In the grey area some polymorphism can be maintained in the
two-habitat population as long as the difference in the maximal growth rates are not too high. When
this difference reaches a threshold polymorphism cannot be maintained and the single type that is
maintained is more adapted to the good-quality habitat (the habitat with the highest maximal growth
rate).

There is indeed a population of size N∗2 in the second habitat which is of type z∗ = −θ : this population
is very maladapted.
The population’s distribution nε,2(z) can also be approximated. In particular we can approximate the
moments of the population’s distribution:

NM∗
ε,2 = N∗2 − ε

m1N∗1N
∗
2

m1N∗1+κ2N
∗2
2

(
−
√
s1

κ1N∗1
− N∗2

√
s1

m1N∗2
+

(s2−s1)(rmax,2−κ2N∗2 )+4s2(s1+3s2)θ2

(κ2N∗2−rmax,2+4s2θ2)2
√
s1

)
+O(ε2),

µM∗ε,2 = −θ + ε 4s2θ√
s1
(
κ2N∗2−rmax,2+4s2θ2

) +O(ε2),

σM∗ 2ε,2 = ε√
s1

+O(ε2),

ψM∗ε,2 = O(ε3).

When the above condition is not satisfied, i.e.

4s2θ
2rmax,2

κ2
>
m1(rmax,1 −m1)

κ1
,

the evolutionary equilibrium is dimorphic in the second habitat (Figure 5):

n∗2 = νI,2δ(z + θ) + νII,2δ(z − θ),
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with

νI,2 =
m1(rmax,1 −m1)

4s2θ2κ1
, νII,2 =

rmax,2

κ2
− m1(rmax,1 −m1)

4s2θ2κ1
), νI,2 + νII,2 = N∗2 =

rmax,2

κ2
.

Then, the moments of the population’s distribution nε,2(z) can be approximated as below:

ND∗
ε,2 = N∗2 − ε

√
s2
κ2

+O(ε2),

µD∗ε,I,2 = −θ + ε 1
θ
√
s1

+O(ε2),

µD∗ε,II,2 = θ +O(ε2),

σD∗ 2ε,I,2 = ε√
s1

+O(ε2),

σD∗ 2ε,II,2 = ε√
s2

+O(ε2),

ψD∗ε,I,2 = sD∗ε,II,2 = O(ε3).

This source-sink scenario illustrates the complex and unexpected effects of migration when there is an
asymmetry between the two habitats. Indeed, Figure 5A shows that the population size in the sink is
maximized for intermediate values of migration. More migration from the source has a beneficial effect
on the demography of the sink but it prevents local adaptation. Yet, when migration from the source
becomes very strong it limits the growth rate of the source. This limits the influence of the source on
the sink and may even promote adaptation to the sink. In fact it is worth noting that differentiation
between the two habitats can actually increase with migration (Figure 5B).

5 Discussion

We derive approximations for the equilibrium distribution between selection, mutation and migra-
tion in a two-habitat environment. The derivation starts with the analysis of our model when the
mutation rate is assumed to be vanishingly small. This Adaptive Dynamics approach allows to char-
acterize the long-term evolutionary outcome. First, when migration is strong relative to selection,
the population generally evolves towards a monomorphic evolutionary stable equilibrium. Second,
when migration is limited the population generally evolves towards a dimorphic evolutionary equilib-
rium. Our derivation in the small mutation limit generalizes the results obtained in previous studies
[Ronce and Kirkpatrick, 2001, Débarre et al., 2013] to scenarios where the two habitats may be asym-
metric. In particular we show that the condition for the maintenance of a two specialized strategies are
more restrictive with asymmetric scenarios (Figure 4). Indeed, asymmetries promote a single strategy
that is more locally adapted to the habitat with larger population size and/or lower immigration rate.
The fact that asymmetric migration promotes monomorphism was also observed in a related model
[Akerman and Bürger, 2014]. The analysis of an extreme case with source-sink dynamics reveals the
complex interplay between migration, demography and local selection. The maintenance of a polymor-
phic equilibrium is possible when migration from the source is either very weak or very strong. This
result challenges the classical prediction where migration is always an homogenizing force reducing
the differentiation among populations (Figure 5).

Our approach allows to derive approximations for equilibrium phenotypic distributions under larger
mutation rates. In the symmetric scenario we recover the classical results from quantitative genetics
[Lande, 1975, Bürger, 2000, Rice, 2004] but expand this to heterogeneous scenarios. In particular, we
capture the emergence of differentiation between habitats when the migration rate decreases. When
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Figure 5 – Effects of migration in a source-sink scenario on (A) the total population size in the sink
habitat, (B) the differentiation between habitats, (C) the variance and (D) the third central moment
of the phenotypic distribution in sink. The dots refer to exact numerical computations when ε = 0.05,
the red line indicates the case where ε = 0 while the lines in black refer to our two approximations when
ε = 0.05 (dashed line for the first approximation and the full line for the second approximation). The
vertical gray line indicates the critical migration rates where transition occurs from monomorphism
to dimorphism in the adaptive dynamics framework. Other parameter values: rmax,1 = 3, rmax,2 = 1,
s1 = 3, s2 = 2, κ1 = κ2 = 1, θ = 0.5.

migration is strong relative to selection, the stationary distribution is weakly affected by spatially het-
erogeneous selection. When migration is close to the critical migration rate mc we predict the build up
of some differentiation and the maintenance of a higher amount of variation in each habitat ( Figure
3). When the migration rate is much smaller than mc selection is sufficiently strong between habitats
and the equilibrium distribution in each habitat can be well approximated as the sum of two distribu-
tions. But unlike previous approximations [Yeaman and Guillaume, 2009, Débarre et al., 2013] these
two distributions are non-gaussian. We derive approximations for the moments of these distributions.
In other words, this work generalises previous attempts to derive the distribution of a phenotypic trait
at the mutation-selection-migration equilibrium. Our results confirm the importance of the skewness
in the phenotypic distribution and improve predictions of measures of local adaptation in a heteroge-
neous environment.

Our work illustrates the potential of a new mathematical tool in the field of evolutionary biology.
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In this work, we use an approach based on Hamilton-Jacobi equations (see (A.4)) which has been
developed, mostly by the mathematical community, during the last decade to describe the asymp-
totic solutions of the selection-mutation models, as the effects of the mutations vanish. We refer to
[Diekmann et al., 2005, Perthame and Barles, 2008, Mirrahimi, 2011] for the establishment of the ba-
sis of this approach. Note, however, that previous studies were mainly focused on the limit case where
the effects of mutations are vanishingly small. In the present work we go further than the previous stud-
ies and characterize the whole phenotypic distributions when the effect of mutation is more important.
Understanding the build up of this distribution is particularly important to study the effect of muta-
tion on adaptation. Although mutation is the ultimate source of adaptive variation, the accumulation
of deleterious mutations may also generate a load on the average fitness of populations. This is par-
ticularly relevant in organisms like RNA viruses which are characterized by very large mutation rates
[Drake and Holland, 1999, Sanjuán et al., 2010]. In fact, the mutation loads of RNA virus is so high
that it may even lead some populations to extinction [Bull et al., 2007, Martin and Gandon, 2010].
Our model can be used to accurately capture the effect of increasing mutation rates on the mu-
tation load of a population living in a heterogeneous environment (Figure 6). This heterogeneity
may be particularly relevant in chronic infections by pathogenic virus that can adapt to different or-
gans [Kemal et al., 2003, Sanjuán et al., 2004, Ducoulombier et al., 2004, Jridi et al., 2006]. A better
understanding of the equilibrium phenotypic distribution in heterogeneous environments may thus
provide more accurate prediction on the critical mutation rates that can ultimately lead within-host
dynamics to pathogen extinction.

Figure 6 – Effect of increasing the mutation rate ε on the total population size in the symmetric
scenario used in figure 2 with m = 0.5. The full line indicates the approximation and the dots are
the results of exact numerical computations. This figure illustrates that our approximation captures
reasonably well the effect of large mutation rates on the mutation load in a two-habitat scenario where
there is differentiation and some local adaptation.

Our analysis of the equilibrium between selection, migration and mutation could be extended in
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several new directions. More than 2 habitats could be considered, or different growth rates and/or
mutation kernels could be used (see [Mirrahimi, 2013] and the supplementary information). The ap-
proach could also be used to analyze situations away from the equilibrium. For instance, it would
be possible to track the dynamics of the distribution as the population adapts to a new environment
or to a time-varying environment [Lande and Shannon, 1996]. Hamilton-Jacobi equations have in-
deed also been used to study time-varying (but space homogeneous) environments (see for instance
[Mirrahimi et al., 2015]). Finally, it is interesting to note that the generalization of the present eco-
logical scenario to model the adaptation of sexual species in heterogeneous environments remains to
be carried out.
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Supporting Information

A Mathematical derivation

A.1 Adaptive dynamics

In this section, we provide the conditions for an evolutionary stable strategy. To be able to character-
ize the ESS one should first characterize the demographic equilibrium corresponding to a set of traits.
Because there are only two habitats, we expect that at most two distinct traits can co-exist. Therefore,
we only need to consider two scenarios where the phenotypic distribution is either monomorphic (with
phenotype zM ) or dimorphic (with phenotypes zDI and zDII , where the subscripts I and II indicate that
the phenotype is best adapted to habitat 1 and 2, respectively).

The monomorphic equilibrium is given by nMi (z) = NM
i δ(z−zM ) where δ(.) is the dirac delta function,(

NM
1 , NM

2

)T
is the right eigenvector associated with the dominant eigenvalue W (zM ;NM

1 , NM
2 ) = 0

of A(zM ;NM
1 , NM

2 ). In a similar way the dimorphic equilibrium is characterized by: nDi (z) =
νI,iδ(z − zDI ) + νII,iδ(z − zDII ), where νI,i + νII,i = ND

i and (νk,1, νk,2)
T are the right eigenvectors

associated with the largest eigenvalues W (zDk ;ND
1 , N

D
2 ) = 0 (for k = I, II) of A(zDk ;ND

1 , N
D
2 ).

The evolutionary stability of a resident strategy zM∗ can be studied with the analysis of the invasion
of a new mutant strategy zm at the demographic equilibrium

(
NM∗

1 , NM∗
2

)
set by the resident strat-

egy. The monomorphic strategy zM∗ is an evolutionary stable strategy if for any mutant zm 6= zM∗,
the effective fitness is negative: W (zm;NM∗

1 , NM∗
2 ) < 0. In a similar way, the dimorphic strategy

{zD∗I , zD∗II } is an evolutionary stable strategy if for any mutant zm 6∈ {zD∗I , zD∗II }, the effective fitness
is negative: W (zm;ND∗

1 , ND∗
2 ) < 0.

See [Mirrahimi, 2017] where such evolutionary stable strategies are characterized.

A.2 Derivation of our first approximation

Our first approximation is based on the computation of the terms ui and vi and the value of wi at
the ESS points. Based on such computations we can provide an approximation of the population’s
density Nε,i and the population’s distribution nε,i in the following form

Nε,i ≈ Ni + εKi, nε,i(z) ∝
1√
2πε

exp
(ui + εvi

ε

)
. (A.1)

Indeed we neglect the next order terms in our approximation since when ε is small, in view of (8),
they have only small contribution to the population’s distribution.

Note that the equilibrium (nε,1, nε,2) solves
0 = ε2

∂2nε,1(z)
∂z2

+ nε,1(z)
(
rmax,1(z)− κ1

∫ +∞
−∞ nε,1(t, y)dy

)
+m2nε,2(z)−m1nε,1(z),

0 = ε2
∂2nε,2(z)
∂z2

+ nε,2(z)
(
rmax,2(z)− κ2

∫ +∞
−∞ nε,2(t, y)dy

)
+m1nε,1(z)−m2nε,2(z).

(A.2)
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Replacing (8) in the above equation we obtain
0 = ε

∂2uε,1
∂z2

+ | ∂∂zuε,1|
2 + rmax,1 − κ1Nε,1 +m2 exp(

uε,2−uε,1
ε )−m1,

0 = ε
∂2uε,2
∂z2

+ | ∂∂zuε,2|
2 + rmax,2 − κ2?ε,2 +m1 exp(

uε,1−uε,2
ε )−m2.

(A.3)

We can determine ui, vi and the value of wi at the ESS points from the above equation and (10). We
show here how to obtain ui (see [Mirrahimi, 2017] for more details and the computation of vi and the
value of wi at the ESS points).
Note that the exponential terms in (A.3) suggest that, when mi > 0 for i = 1, 2, as ε → 0 uε,1 and
uε,2 converge to the same limit u. One can prove indeed that uε,1 and uε,2 converge to a solution of
the following Hamilton-Jacobi equation{

−| ∂∂zu|
2 = W (z;N∗1 , N

∗
2 ),

maxz∈R u(z) = 0,
(A.4)

where (N∗1 , N
∗
2 ) is the demographic equilibrium corresponding to the ESS and W (z;N1, N2), which is

nonpositive, is the largest eigenvalue of the following matrix:

A(z;N1, N2) =

(
rmax,1(z)− κ1N1 −m1 m2

m1 rmax,2(z)− κ2N2 −m2

)
.

Note that W is indeed the effective fitness introduced in Section 3.1.
One can also verify that (A.4) implies

{z ∈ R |u(z) = 0} ⊂ {z ∈ R |W (z;N∗1 , N
∗
2 ) = 0} = the set of ESS traits.

This property, together with the fact that there exists a unique ESS for this model [Mirrahimi, 2017],
implies that the solution of (A.4) is unique.
In the case of monomorphic ESS, u is given by

u(z) = −
∣∣ ∫ z

zM∗

√
−W (x;NM∗

1 , NM∗
2 )dx

∣∣. (A.5)

One can verify that u, given by the formula above, is smooth and solves (A.4) with its maximum
point at zM∗. Note that the absolute values are necessary since the upper limit of the integral z can
be smaller or larger than the lower limit zM∗.
In the case of dimorphic ESS, u is given by

u(z) = max
(
−
∣∣ ∫ z

zD∗I

√
−W (x;NM∗

1 , NM∗
2 )dx

∣∣, −∣∣ ∫ z

zD∗II

√
−W (x;NM∗

1 , NM∗
2 )dx

∣∣). (A.6)

One can also verify that the above function is smooth at all points except at the point where the two
functions in the maximum operator intersect. Moreover, u solves (A.4) at the smooth points and it
attains its maximum at the ESS points zD∗I and zD∗II . See [Mirrahimi, 2017] for the details on why
this is indeed the solution obtained as the limit ε→ 0.

2
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A.3 Derivation of our second approximation and Nε,i

In this section, we provide the main idea to obtain explicit formula for the moments of the population’s
distribution, and we precise the difference between our two approximations.
The computation of explicit formula for the moments of the population’s distribution is based on the
observation that, when ε is small, the population’s distribution nε,i(z) is exponentially small far from
the ESS points, since u(z) takes negative values at those points. Therefore, only the values of u, vi
and wi around the ESS points matter. We can show that to obtain a good approximation of the
population’s distribution, with an error of order ε2 on the moments, it is enough to compute a fourth
order approximation of u, a second order approximation of vi and a zero order approximation of wi
around the ESS points.

We first provide our analytic formula for the moments of the population’s distribution in the monomor-
phic and dimorphic cases. We next show how to compute such approximations, in the case where the
ESS is monomorphic.

A.3.1 Analytic formula for the moments of the population’s distribution

Monomorphic case: Let’s suppose that the model has a monomorphic ESS zM∗. In order to
provide an explicit approximation of the moments of the population’s distribution, we compute the
fourth order approximation of u(z) around zM∗:

u(z) = −A
2

(z − zM∗)2 +B(z − zM∗)3 + C(z − zM∗)4 +O(z − zM∗)5.

and the second order approximation of vi(z) around zM∗:

vi(z) = log(
√
ANM∗

i ) +Di(z − zM∗) + Ei(z − zM∗)2 +O(z − zM∗)3.

We also denote
wi(z

M∗) = Fi.

See [Mirrahimi, 2017] for the details of the computations of the above coefficients.

The above approximation allows us to estimate the moments of the population’s distribution:

NM∗
ε,i =

∫
nM∗ε,i (z)dz = NM∗

i (1 + εKi) +O(ε2),

µM∗ε,i = 1
NM∗

ε,i

∫
znM∗ε,i (z)dz = zM∗ + ε(3B

A2 + Di
A ) +O(ε2),

σM∗ 2ε,i = 1
NM∗

ε,i

∫
(z − µM∗ε,i )2nM∗ε,i (z)dz = ε

A +O(ε2),

ψM∗ε,i = 1
NM∗

ε,i

∫
(z − µM∗ε,i )3nM∗ε,i (z)dz = 6B

A3 ε
2 +O(ε3),

(A.7)

with

Ki = Fi +
Ei + 0.5D2

i

A
+

3(C +BDi)

A2
+

7.5B2

A3
.

We notice that, even in this monomorphic case, because of the terms Di, the mean trait in the habitats
are slightly different and there is a shift between the phenotypical distributions of the habitats. The
variance, up to order ε, is determined knowing only the constant A. Finally the last line indicates
that there is a non-zero skewness in the distribution when the constant B is nonzero, which may arise

3
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in a non-symmetric scenario.

Dimorphic case: Let’s suppose that the model has a dimorphic ESS {zD∗I , zD∗II } withND∗
i = νI,i+νII,i.

Similarly to above, we will use a Taylor expansion of u(z) around zD∗k , which can be easily computed
from the above formula:

u(z) = −Ak
2

(z − zD∗k )2 +Bk(z − zD∗k )3 + Ck(z − zD∗k )4 +O(z − zD∗k )5.

Following similar computations as in the case of monomorphic ESS one can also compute a second
order approximation of exp(vi(z)) around zD∗k and the value of wi(z

D∗
k ):

vi(z) = log(
√
Akνk,i) +Dk,i(z − zD∗k ) + Ek,i(z − zD∗k )2 +O(z − zD∗k )3, wi(z

D∗
k ) = Fk,i.

The above approximation allows us to estimate the local moments of the population’s distribution:

νD∗ε,k,i =
∫
Ok
nD∗ε,i (z)dz = νk,i(1 + εKk,i) +O(ε2),

µD∗ε,k,i = 1
νε,k,i

∫
Ok
znD∗ε,i (z)dz = zD∗k + ε(3Bk

A2
k

+
Dk,i

Ak
) +O(ε2),

σD∗ 2ε,k,i = 1
νε,k,i

∫
Ok

(z − µD∗ε,k,i)2nD∗ε,i (z)dz = ε
Ak

+O(ε2),

sD∗ε,k,i = 1
νD∗ε,k,i

∫
Ok

(z − µD∗ε,k,i)3nD∗ε,i (z)dz = 6Bk

A3
k
ε2 +O(ε3),

with

Kk,i = Fk,i +
Ek,i + 0.5D2

k,i

Ak
+

3(Ck +BkDk,i)

A2
k

+
7.5B2

k

A3
k

,

and OI = (−∞, 0) and OII = (0,∞). Note also that one can compute the global moments of the
population’s distribution from the above local moments.

A.3.2 Derivation of the analytic formula

We next show how to compute such approximations, in the case where the ESS is monomorphic. The
computations for the dimorphic case follow similar arguments. To compute our approximations, we
use the asymptotic expansion of uε,i:

uε,i(z) = u(z) + εvi(z) + ε2wi(z) +O(ε3),

and the Taylor expansions of u, vi and wi:

u(z) = −A
2

(z − zM∗)2 +B(z − zM∗)3 + C(z − zM∗)4 +O(z − zM∗)5,

vi(z) = log(
√
ANM∗

i )+Di(z−zM∗)+Ei(z−zM∗)2+O(z−zM∗)3, wi(z
M∗) = Fi+Gi(z−zM∗)+O(z−zM∗)2.

To obtain the zero order term in the expansion for vi(z) we use the fact that, as the mutation’s variance
vanishes (ε→ 0), the total population size Nε,i tends to NM∗

i which corresponds to the demographic
equilibrium at the ESS.
One can indeed use the above expressions to compute

Nε,i =
∫
nε,i(z)dz

=
√
ANM∗

i√
2π

∫
R e
−A

2
y2
(
1 +
√
ε(By3 +Diy) + ε(0.5(By3 +Diy)2 + Cy4 + Eiy

2 + Fi) +O(ε2)
)
dy

= NM∗
i (1 + ε(Fi +

Ei+0.5D2
i

A + 3(C+BDi)
A2 + 7.5B2

A3 )) +O(ε2),

4
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and for any integer k ≥ 1,

∫
(z − zM∗)knε,i(z)dz =

ε
k
2
√
ANM∗

i√
2π

∫
R(yke−

A
2
y2
(
1 +
√
ε(By3 +Diy) +O(ε)

)
dy

= ε
k
2NM∗

i

(
µk(

1
A) +

√
ε
(
Bµk+3(

1
A) +Diµk+1(

1
A)
))

+O(ε
k+2
2 ),

where µk(σ
2) corresponds to the k-th order central moment of a Gaussian distribution with vari-

ance σ2. Note that to compute the integral terms above we have performed a change of variable
z − zM∗ =

√
εy, therefore each term z − zM∗ can be considered as of order

√
ε in the integrations.

The above integrations are the main ingredients to obtain the approximations given in (A.7), i.e. our
second approximation.

Note that the approximation of the total population size Nε,i given above is also the one used in
our first approximation. One can indeed observe from the above formula that in the computation of
the total population size, in the contrary to the computation of the next order moments, there is a
contribution of the second order term wi via it’s value at the ESS point Fi. This is why to obtain an
approximation of Nε,i with an error of order ε2 in our first approximation, it is not enough to only use
the functions u and vi which are computed globally, and the local value of wi is still needed. However,
to compute the mean moments of higher order in our first approximation, we perform a numerical
integral using the approximation of nε given in (A.1) with the global values of u and vi, therefore no
local approximation is made (except for the sink and source case which is a degenerate case).

A.4 Derivation of a Hamilton-Jacobi equation in the case of model (2)

Our approach can also be used to study the more general model (2). The objective would be to
provide an approximation of the solution ni when the variance of the mutation distribution is small.
We assume indeed that the variance of the mutation distribution µε scales as ε2V0. More precisely,
we assume that µε(y)dy = µ(yε )dyε (for instance a Gaussian distribution with Variance ε2σ has such
form). Then, the stationary version of (2) may be written as

0 = p
( ∫ +∞
−∞ nε,i(z + εy)µ(y)dy − nε,i(z)

)
+ nε,i(z)

(
ri(z)− κi

∫ +∞
−∞ nε,i(t, y)dy

)
+mjnε,j(z)−minε,i(z).

Next, analogously to our work in the case of (3), we use the ansatz (8):

nε,i =
1

2πε
exp

(uε,i
ε

)
and postulate an expansion for uε,i in terms of ε:

uε,i = ui + εvi + ε2wi +O(ε3).

The computation of the above terms allows us to provide approximations of the population distri-
butions nε,i and their moments. To compute these terms, analogously to what we presented for the
diffusion case, thanks to the combination of the above equalities, we derive some equations satisfied
by ui, vi and wi. The resolution of such equations, which is less straight forward comparing to the

5
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diffusion case, allows us to compute these terms. We provide here, the equation satisfied by the zero
order term ui. To this end, we replace (8) in the above equation to obtain

−p
∫ +∞
−∞

(
euε,1(z+εy)−uε,1(z) − 1

)
µ(y)dy = rmax,1 − κ1Nε,1 +m2 exp(

uε,2−uε,1
ε )−m1,

−p
∫ +∞
−∞

(
euε,2(z+εy)−uε,2(z) − 1

)
µ(y)dy = rmax,2 − κ2Nε,2 +m1 exp(

uε,1−uε,2
ε )−m2.

Similarly to Section A.2, the exponential terms, coming from the migration terms, suggest that when
mi > 0 for i = 1, 2, as ε → 0, uε,1 and uε,2 converge to the same limit u. The limit u solves the
following Hamilton-Jacobi equation{

−
∫ +∞
−∞

(
ey

∂
∂z
u(z) − 1

)
µ(y)dy = W (z;N∗1 , N

∗
2 ),

maxz∈R u(z) = 0,
(A.8)

where (N∗1 , N
∗
2 ) is the demographic equilibrium corresponding to the ESS and W is the largest eigen-

value of matrix A (i.e. the effective fitness introduced in Section 3.1). See [Barles et al., 2009] where
the details of such computations are provided in the case of a homogeneous environment.

B Some expressions for the case studies

B.1 Local densities in the dimorphic case for general and symmetric scenarios

In this section, we provide the expressions of the local densities in the dimorphic case in the adaptive
dynamics framework and for the general non-symmetric scenario with mi > 0. The expressions of
the local densities in the symmetric case can be obtained from the same formula, using m1 = m2 =
m,κ1 = κ2 = κ, s1 = s2 = g, rmax,1 = rmax,2 = rmax.
To this end, we first recall the values of the global densities at the ESS:

ND∗
1 =

m1m2
4θ2s2

+ rmax,1 −m1

κ1
, ND∗

2 =

m1m2
4θ2s1

+ rmax,2 −m2

κ2
.

Then the local densities νk,i, for k = I, II and i = 1, 2, are given by(
νI,1
νI,2

)
=

m1ND∗
1 +(w2(zD∗;ND∗

2 )−m2)ND∗
2

m1m2−
(
w1(−zD∗;ND∗

1 )−m1

)(
w2(zD∗;ND∗

2 )−m2

) ( m2

−w1(−zD∗;ND∗
1 ) +m1

)
,(

νII,1
νII,2

)
=

m2ND∗
2 +(w1(−zD∗;ND∗

1 )−m1)ND∗
1

m1m2−
(
w1(−zD∗;ND∗

1 )−m1

)(
w2(zD∗;ND∗

2 )−m2

) ( −w2(z
D∗;ND∗

2 ) +m2

m1

)
.

B.2 Condition for dimorphism in a general nonsymmetric scenario

We provide below the expressions of the constants αi, βi and ηi which appear in the condition for
dimorphism in Section 4.2:

α1 =
2s1θ

κ1

(
θ −

√
θ2 − m1m2

4θ2s1s2

)
, α2 =

2s2θ

κ2

(
θ −

√
θ2 − m1m2

4θ2s1s2

)
,

6
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β1 =
m1

κ1
, β2 =

m2

κ2
,

η1 =
m2

2

κ2
+

2s1θ

κ1

(
θ −

√
θ2 − m1m2

4θ2s1s2

)(m1m2

4θ2s2
−m1

)
− m1m

2
2

4θ2s1κ2
,

η2 =
m2

1

κ1
+

2s2θ

κ2

(
θ −

√
θ2 − m1m2

4θ2s1s2

)(m1m2

4θ2s1
−m2

)
− m2

1m2

4θ2s2κ1
.
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