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Abstract 25 

Diversity-disturbance relationships have found widespread application in ecology, 26 

conservation and biodiversity management. In spite of their explanatory power, these 27 

conceptual frameworks have yet to be systematically applied to understanding succession in 28 

diverse microbial biofilms. Here we investigate community assembly in biofilms formed in 29 

replicate microbial bioelectrochemical systems using time-course sequencing of community 30 

16S rRNA genes, corresponding to hundreds of operational taxonomic units (OTUs). For the 31 

first time we present a statistical model showing that a simple diversity-disturbance 32 

relationship can be used to explain dynamic changes in high diversity biofilm communities. 33 

This simple model reveals that succession in these systems is guided towards either a low 34 

diversity, generalist-dominated biofilm or a high diversity, cooperative-specialist biofilm, 35 

depending on the level of endogenous disturbance measured within the community. The 36 

pattern observed shows remarkable symmetry with findings from macro-scale communities 37 

such as grasslands, forests and coral reefs.  38 

 39 

Introduction 40 

Mixed species biofilms can be comprised of thousands of bacterial taxa with a vast network 41 

of potential trophic interactions. Predicting the behaviour of these systems poses a similar 42 

challenge to that faced by ecologists studying macro-scale communities. Two of the most 43 

widely investigated ecological relationships are those between productivity and diversity as 44 

well as between disturbance and diversity. While some promising results have previously 45 

been obtained using simplified microcosms, thus far the operation of these relationships 46 

during succession within high diversity biofilm communities have not been detected 47 

(Konopka et al, 2015). The discovery of simple, familiar ecological patterns within diverse 48 

biofilms could provide a unique insight into the seemingly intractable complexity of mixed 49 

microbial community dynamics (Dini-Andreote et al, 2015).  50 

 51 

A range of previous studies have shown clear relationships between community diversity and 52 

productivity (Grime, 1973a; Grime, 1973b; Gurevitch, 1986; Tilman et al, 1996; Grime, 1997; 53 

Buckling et al, 2000; Kassen et al, 2000; Gravel et al, 2011). The best known of these 54 

productivity diversity relationships (PDRs) is the unimodal or “hump backed” distribution 55 
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(Grime, 1973). This predicts an increase in diversity with productivity which peaks at 56 

intermediate levels of productivity and then declines at high levels due to competitive 57 

exclusion. Disturbance diversity relationships (DDRs) are also mainstay conceptual 58 

frameworks in ecology (Connell, 1978; Wilkinson, 1999; Molino and Sabatier, 2001; Svensson 59 

et al, 2012). Disturbance has been shown to mitigate competitive exclusion, increasing 60 

diversity (Connell, 1978; Huston 1979) and cooperative interactions (Brockhurst et al, 2007). 61 

This is because competitive exclusion relies on the long-term exploitation of a small 62 

competitive advantage within a crowded system (Hautier et al, 2009). Disturbance damages 63 

established organisms, creating gaps which allow substitution with alternative community 64 

members. These gaps can also be exploited by less competitive organisms which may have 65 

greater rates of growth, dispersal or persistence (Tilman, 1994; Schnitzer and Carson, 2001). 66 

Disturbance can be exogenous or endogenous. Exogenous disturbance is caused by unique or 67 

external factors; in macro scale systems this includes human activity or natural disasters. On 68 

the other hand, endogenous disturbance arises from many smaller routine events within the 69 

community (Peh et al, 2011). In macro-scale communities, sources of endogenous 70 

disturbance include forest tree-falls (Attiwill, 1993), herbivory and pathogens (Ayres and 71 

Lombardero, 2000), and may be induced by exogenous events such as forest clearing or 72 

climate change (Overpeck et al, 1990). Analogous processes in microbial communities are 73 

predation, phage infection, production of bioactive molecules (e.g. antibiotics) or biofilm 74 

disaggregation. 75 

 76 

Advances in sequencing methods now permit characterisation of communities comprised of 77 

thousands of distinct bacterial taxa within a single analysis run (Caporaso et al, 2011). This is 78 

especially useful for microbial ecology, as large numbers of individual microbial taxa can be 79 

simultaneously detected based on their 16S rRNA gene. Therefore, in a time-course 80 

experiment, an entire community can be resolved into a comprehensive breakdown of 81 

operational taxonomic units and their relative abundances, as well as how these change with 82 

time. As a consequence, the fundamental rules governing community assembly should be 83 

detectable so long as other factors including inoculum, medium feed rate and biofilm 84 

substrate are kept constant. For comparison, the analysis for succession sequences in macro-85 

scale communities requires labour spanning entire careers (Silvertown, 2006; Enquist et al, 86 

2009).  87 
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Microbial fuel cells (MFCs) are bioelectrochemical systems (BES) that utilise the metabolic 88 

properties of bacterial biofilms to convert an electron donor, usually a carbon source, into 89 

carbon dioxide and hydrogen ions while transferring electrons to the anode on which they 90 

are growing, which acts as the final electron acceptor. Hydrogen ions migrate through a cation 91 

selective membrane towards the cathodic chamber, while electrons travel the external circuit 92 

to reduce an electron acceptor (e.g. molecular oxygen in air breathing systems) at the cathode 93 

(Figure 1). MFCs can be used as continuous biofilm culture systems by feeding the electron 94 

donor, usually a sugar, over extended periods of time (Logan et al, 2006; Beecroft et al, 2012; 95 

Stratford et al, 2014). In those systems, the electron transfer rate has been found to correlate 96 

strongly with CO2 production and with the decrease in chemical oxygen demand in the anode 97 

chamber (Thurston et al, 1984). Therefore, the electrical output of the system can be used as 98 

a convenient indicator of community productivity. The stoichiometry of the reactions 99 

required within the biofilm have been characterised in detail and assigned to distinct 100 

metabolic types (Freguia et al, 2008, Hodgson et al, 2016). In a carbohydrate-fed MFC (such 101 

as our system), the fuel is converted into fermentation products which are then consumed in 102 

electrogenic reactions mediated by anodophiles (Freguia et al, 2008; Kiely et al, 2011). This 103 

results in two broad types of community members, fermentative cells and anodophilic 104 

respirators, which correspond to the biochemical processes taking place within the biofilm. 105 

Organisms carrying out fermentation obtain metabolic energy by conversion of substrates 106 

into e.g. volatile fatty acids such as acetate, while anodophiles obtain their energy through 107 

the respiration of a carbon source, such as those fermentation products, using an anode as 108 

the final electron acceptor (Figure 1). Anodophiles must possess a respiratory electron 109 

transport chain in order to be electrogenic, and respiration is therefore a physiological 110 

necessity. Many bacterial species are generalists, capable of performing both respiratory and 111 

fermentative metabolism to obtain energy. These generalist species possess an electron 112 

transport chain in addition to the ability to ferment sugars. Bacteria can be identified and 113 

categorised as one or the other of these types: fermenter only (F), non-fermentative 114 

respirator (R), or respiratory fermenter (RF). Each of the alternative specialist types (R and F) 115 

requires the other to efficiently utilise the available resources, while the generalist species 116 

(RF) are potentially capable of powering the fuel cell without the need for cooperative 117 

syntrophy.  118 
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We show here that microbial electrochemical systems can be used as a model for the balance 119 

between cooperative and competitive interactions within rich bacterial communities during 120 

community succession. Using microbial fuel cells as an experimental platform, we 121 

demonstrate that endogenous disturbance is associated with increased cooperation and 122 

diversity within multispecies bacterial biofilms. This relationship can also explain why 123 

diversity is greatest at intermediate levels of biofilm productivity.      124 

 125 

Results 126 

Bacteria colonise the electrode rapidly and biofilms were established after 15 days. In spite 127 

of identical medium composition and reactor dilution rate, communities are highly dynamic 128 

and show substantial changes in composition with time. These changes occur not only 129 

through increases in sequence abundance but also sequence losses for many taxa. Some 130 

communities are more dynamic and experience larger losses whilst others are relatively 131 

stable. Community dynamics are most apparent from measurements of DNA content per area 132 

unit, with detectable DNA per cm2 increasing from a range of 48.1 - 99.7 ng µl-1 at 15 days to 133 

97.1 – 154 ng µl-1 at 91 days.  134 

 135 

Diversity values varied widely among reactors at a given time point and between different 136 

time points (Figure 2). At 15 days, diversity averaged 9.82 species equivalents while at 40 days 137 

this value was 8.08, and 9.66 at 90 days; overall, there was no significant trend across time, 138 

r= 0.09, p = 0.69. It is noteworthy that all communities had similar diversity at 15 days (8.12 - 139 

12.14 species equivalents). Productivity increased with time, from a value of 456 mW m-3 at 140 

15 days rising to 884 mW m-3 at 40 days and 1340 mW m-3 at 90 days. The relationship 141 

between productivity and diversity revealed a probability distribution in which all of the 5 142 

most diverse communities were found to occur in the centre of the productivity range around 143 

925 mW m-3 (Figure 3A).  144 

 145 

The proportion of RF bacteria increased with time, r= 0.43, p = 0.049 (Figure 2A), and RF 146 

abundance positively correlated with MFC absolute power density, r = 0.55, p = 0.01 147 

(regression not shown). This is clearly observed in the data presented in Figure 2: At later time 148 

points, higher abundance of RF is associated to a more productive community. RF abundance 149 

negatively correlated with community Shannon diversity, r = - 0.75, p < 0.001 (Figure 4). This 150 
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mutually exclusive relationship appears as a bifurcation in the pattern of succession for both 151 

diversity and RF abundance, first appearing between 20 and 40 days (Figure 2). Combining 152 

data for generalist (RF) sequence abundance with Shannon diversity measurements (units = 153 

Shannon Index) allows the construction of a multiple linear model, R = 0.75, p = 0.003 (Table 154 

1). The multiple linear model revealed positive relationships between the abundance of 155 

generalist (RF) bacteria and productivity as well as a positive relationship between diversity 156 

and productivity. This model explains 56% of all variance in power output between MFC 157 

communities. These relationships are integrated into a conceptual framework, summarised 158 

in Figure 6. Candidates for explaining this residual variation include fouling of the cathode or 159 

the ion exchange membrane (Zhuang et al, 2012), variation in the performance of different 160 

taxa, and stochastic variation. Most strikingly, the measured historical disturbance for a 161 

community predicts its succession towards either a high diversity community of specialists (R 162 

or F) or alternatively a low diversity generalist community. Disturbance (cumulative historical 163 

sequence loss) was strongly associated with community diversity, r = 0.81, p < 0.001 (Figure 164 

5B). Partial regression between Shannon diversity and disturbance, controlling for community 165 

age, reveals an even stronger relationship, R = 0.89, p < 0.001 (regression not shown). This 166 

relationship demonstrates that cumulative disturbance with time (rather than community 167 

age) is more strongly associated with the observed trend. Disturbance also predicts generalist 168 

(RF) relative abundance, r = - 0.49, p =  0.037 (Figure 5A).  169 

 170 

Discussion  171 

In our model system, communities contained bacteria that exclusively utilised fermentative 172 

or respiratory metabolism, as well as generalist organisms capable of both metabolic 173 

processes (Figure 1) (Freguia et al, 2008, Hodgson et al, 2016). We have shown that both 174 

greater diversity within specialist communities and a high relative abundance of generalists 175 

increases electrogenic activity. As our purpose in this work was to detect simple patterns 176 

corresponding to those observed in macro-scale systems, we used the least complex 177 

statistical models which were sufficient to reveal these relationships. A multiple linear model 178 

(MLM) using both metrics as independent variables, while controlling for the amount of cells 179 

present (extractable DNA), explained a majority of the variation in MFC power density (Table 180 

1). Where a generalist can function equally well within two niches, it is expected that it will 181 

have an advantage over specialists and be competitively dominant (Wilson and Yoshimura, 182 
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1994). This results in a diversity productivity relationship in which diversity is greatest at 183 

intermediate values of productivity. The operation of this principle in our system is strongly 184 

supported by the observation that all 5 of the highest diversity communities occur in the 185 

centre of the productivity range (Figure 3). This relationship is reminiscent of the hump-186 

backed distribution discovered in other ecosystems (Grime, 1973; Huston, 1979). In line with 187 

the predictions of diversity disturbance relationships, disturbance was associated with 188 

reduction of the advantage possessed by generalists; and as a consequence, was associated 189 

with increased syntrophy between fermentative and respiratory bacteria. This diversity-190 

disturbance relationship (DDR) coincided with community succession toward either a low 191 

diversity generalist or high diversity specialist community. We found in our system that the 192 

DDR has a monotonic pattern of increase in diversity with disturbance. This monotonic 193 

relationship is expected when the reproductive rates of all species exceed the maximum rate 194 

of mortality due to disturbance (Svensson et al, 2012). Under these conditions disturbance 195 

will never be high enough to reduce diversity, truncating the unimodal distribution. As most 196 

culturable bacteria have very short division times compared with our measurement intervals, 197 

the monotonic relationship would reasonably be expected for our system. 198 

  199 

Synthetic systems have been suggested as experimental tools to control environmental 200 

constraints and reduce variability in microbial ecology studies (Konopka et al, 2015). Our 201 

results clearly demonstrate the potential for microbial electrochemical systems to be used as 202 

microcosms in which to model fundamental ecological relationships existing within microbial 203 

ecosystems, as it has been previously proposed (Dolfing 2014). Thus far, the bulk of microbial 204 

electrochemistry research is directed towards extending the range of feed-stocks, improving 205 

power output, optimising cell design and finding novel electrogenic bacteria (Jia et al, 2003; 206 

Logan et al, 2006; Chaudhury and Lovley, 2003; Yong et al, 2012; Zhuang et al, 2012). 207 

Microbial fuel cells generate a direct current which gives an instantaneous and easily 208 

measured proxy for community productivity (Thurston et al, 1984). The advent of next 209 

generation sequencing methods also allows the collection of detailed community abundance 210 

data for hundreds or thousands of species across replicate systems at multiple time points. 211 

This can be combined with the ability of MFCs to support high diversity biofilm cultures across 212 

extended time horizons, rendering anode associated electrogenic biofilms a tractable model 213 
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for microbial community succession. This approach has allowed us to demonstrate the 214 

operation of a diversity disturbance relationship within electrode associated biofilms.   215 

 216 

Conclusions 217 

A large amount of evidence has previously shown that diversity improves productivity in 218 

ecosystems (Tilman et al, 1996; Loreau et al, 2001). This corresponds to one possible 219 

trajectory within our Multiple Linear Model. Dominant organisms have also been shown to 220 

contribute more to system productivity than species with subordinate rankings (Smith and 221 

Knapp, 2003). This corresponds to the second possible trajectory within our 3D MLM. Our 222 

findings suggest that both of these relationships can function in MFC biofilm communities. 223 

Increased biodiversity improves community productivity for mixtures of specialists. However, 224 

a higher abundance of competitive dominants will also increase productivity. During 225 

succession, generalists (RF) will tend to prevail over specialist organisms and disturbance will 226 

tend to mitigate their advantage. Succession can follow either path from the same starting 227 

point and the trajectory taken depends on the level of disturbance measured. The alternative 228 

trajectories of succession we have observed, when examined together, explain the 229 

approximate unimodal distribution of diversity along the dimension of biofilm productivity. 230 

This pattern contributes to explaining variation in community structure where starting abiotic 231 

conditions are otherwise identical.  232 

 233 

Materials and Methods 234 

Microorganisms and media. MFCs were inoculated with anaerobic digester sludge 235 

originated in a biosolids mesophilic digester (Cog Moors Sewage Treatment Works, Cardiff, 236 

UK). Solids were removed by sieving through a 0.6-mm mesh (Endecotts Ltd., UK), and the 237 

collected material was stored at 4°C. The culture medium contained (g l-1): NH4Cl, 0.31; 238 

NaH2PO4·H2O, 5.38; Na2HPO4, 8.66; KCl, 0.13. The pH was adjusted to 7.0, and the medium 239 

was supplemented with 12.5 ml l-1 of a trace mineral solution and 12.5 ml l-1 of a vitamin 240 

solution (Lovley et al. 1984). The medium used for the batch operation contained 5 g l-1 241 

sucrose, while the medium for the continuously operated MFCs contained 0.1 g l-1 sucrose. 242 

All media were autoclaved at 121°C for 15 min, except for the vitamins, mineral and sucrose 243 

solutions, which were sterilised by filtration through a 0.2-μm pore size membrane 244 

(Nalgene, USA).  245 
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 246 

MFC set up. MFCs consisted of 9 cm3 Perspex anode chambers and cover plates, with 247 

stainless steel metal plates serving as a contact between the air-breathing cathode and the 248 

electrical circuit. The anode (geometric area: 32 cm2) was made of carbon fibre veil (PRF 249 

Composite Materials, UK) with polyvinyl alcohol binder to improve anodic capacity. The 250 

anode was connected to the electrical circuit with an insulated Ni/Cr wire weaved across the 251 

anode. The air-breathing cathode was made of type A carbon cloth (geometric area 9 cm2; 252 

E-TEK, USA) coated with 4 mg cm-2 of Pt black catalyst and polytetrafluoroethylene binder. 253 

The Pt side of the cathode was painted with 0.5– 1.0 mg cm-2 of Nafion perfluorinated ion-254 

exchange ionomer (5% w/v in lower aliphatic alcohols and H2O). Anode and cathode 255 

chambers were separated by a Nafion-115 proton-exchange membrane (20 cm2, DuPont, 256 

USA). The membrane was pre-treated by boiling sequentially for 1 h in 6% w/v H2O2, H2O, 257 

0.5 M H2SO4 and H2O. The pre-treated PEM was stored in deionised water sheltered from 258 

light until assembling the MFC.  259 

 260 

MFC operation. Replicate MFCs were inoculated with a 10% v/v suspension of anaerobic 261 

digester sludge in sucrose-containing medium. MFCs were operated for approximately 2 262 

weeks to ensure establishment of the anodic biofilm. During that time, the anodic 263 

suspension was replaced with fresh N2-purged fresh medium until a stable biofilm was 264 

present, as assessed by constant output and repeatable cycles of voltage generation. The 265 

MFCs were then operated in continuous mode, supplying fresh medium at a flow rate of 266 

0.18 mL min-1. The MFCs were operated at room temperature (21–22°C), and anaerobic 267 

conditions were kept by maintaining a continuous flow of oxygen-free N2. Samples were 268 

taken for chemical and microbial community analysis.  269 

 270 

Chemical analyses. Total carbohydrate consumption was calculated as the difference 271 

between the concentration of carbohydrates in the influent and the effluent medium, 272 

determined by a colorimetric method (Dubois et al. 1956). Chemical oxygen demand (CODCr) 273 

was analysed according to the standard method (SFS 5504 1988). Coulombic efficiency was 274 

calculated as previously described (Logan et al. 2006). The pH of the effluent medium was 275 

monitored using a pH meter (Mettler Toledo MP220, Switzerland).  276 

 277 
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Electrochemical measurements. The electrical output was monitored using a battery tester 278 

(Arbin BT2000, Arbin Instruments, USA) controlled by dedicated software (MITS Pro, Arbin 279 

Instruments, USA) across a fixed external resistance of 40 kΩ. Polarisation curves were 280 

recorded by measuring the decrease in voltage when external resistances were varied over 281 

the range 700 kΩ to 500 Ω, for 5 min for each resistance. The volumetric power density was 282 

calculated as P=UI/V, where U is the measured voltage, I is the current and V is the volume 283 

of the anodic suspension. The ohmic internal resistance of the MFCs was measured by 284 

electrochemical impedance spectroscopy. Impedance spectra were recorded between 285 

anode and cathode in the frequency range of 0.1 Hz– 1 MHz and with a sinusoidal 286 

perturbation of 10 mV amplitude under open circuit voltage using a frequency response 287 

analyser (Solartron Analytical 1260) and a potentiostat/galvanostat (Solartron Analytical 288 

1287, Solartron Analytical, UK) (Zhao et al. 2008).  289 

 290 

Microbial community analysis. Total DNA samples were obtained from the anodic biofilm 291 

and from the anodic suspension using FastDNA Spin Kit for Soil (MP Biomedicals, UK). MFCs 292 

were temporarily disassembled in an aseptic environment, and a 1 cm2 fragment of the 293 

anode was cut out with a sterile scalpel. The MFCs were immediately reassembled and 294 

operation was restarted. For the planktonic DNA samples, anode suspension samples were 295 

centrifuged (10,000×g, 5 min), washed three times with 1 ml phosphate-buffered saline 296 

(NaCl, 8.0 g.l-1; KCl, 0.2 g.l-1; Na2HPO4, 1.15 g.l-1 ; KH2PO4, 0.2 g.l-1; pH 7.3) and 297 

resuspended in 100 μl of nuclease-free water (Promega, UK).  298 

 299 

Sequence analysis. Fifty-four samples were analysed in Mothur using the 454 SOP Pipeline 300 

(Langille et al 2013). The forward primer used was 28F-GAGTTTGATCNTGGCTCAG.  To reduce 301 

sequence error, trim.seqs() was implemented, with the parameter minlength set to 250. The 302 

kmer searching method was employed to align sequences by using a Silva bacterial database 303 

(www.arb-silva.de/), with the flip parameter set to true, allowing for the reverse complement 304 

of the sequence to be aligned for better results. The screen.seqs command was implemented 305 

to remove any sequences outside the 2.5%-tile to 97.5%-tile range of sequences.  The 306 

filter.seqs was used to remove empty columns from the alignment, which gives the length of 307 

filtered alignment to 897. To classify the sequences, we used a RDP database/reference 308 

sequence files and the Wang method (Wang et al 2007).  309 
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To minimise artefacts and maintain the same number of reads in each sample, singleton OTUs 310 

and OTUs < 10 reads in any sample were collated into OTU_singletons and OTU_rare 311 

phylotypes, respectively. The taxonomic affiliation of the partial 16S rRNA gene sequences 312 

(from Phylum to Genus) were determined using the RDP MultiClassifier script (Wang et al 313 

2007) to generate the RDP taxonomy while species level taxonomies of the OTUs were 314 

determined using the USEARCH algorithm (Edgar 2010) combined with the cultured 315 

representatives from the RDP database. Alpha and beta indices were calculated from these 316 

datasets with Mothur and R using the Vegan package (Oksanen et al 2013). 317 

PICRUSt analysis allows for phylogenetic prediction of organismal traits using the 54 samples 318 

from the Mothur analysis. The shared file (representing the number of times that an OTU is 319 

observed in multiple samples) generated by Mothur was converted into a biom file 320 

(make.biom), from where it is possible to follow the PICRUSt metagenomics pipeline (Langille 321 

et al 2013). The first step was the normalisation of the OTU table (biom), enabling the creation 322 

of a metagenomics functional prediction table (predict_metagenomes.py). Using --323 

type_of_prediction parameter, allows for KEGG Orthologs predictions and COGS analysis on 324 

the samples. We used the collapse predictions into pathways function 325 

(categorize_by_function.py) to examine KEGG results from a higher level within the pathway 326 

hierarchy.  327 

 328 

Statistical analysis and model construction. Sequencing data was used to calculate the 329 

Shannon index, a measure of the diversity of the biofilm microbial communities. This can also 330 

be expressed as a true diversity value with units of equivalent species (ES) (Hill, 1973; 331 

Stratford et al, 2014). We classified the OTUs identified in the anodic biofilms into metabolic 332 

types based on their known metabolism or that of a closely related species. The metabolic 333 

types R (non-fermentative respirator), F (fermenter) and RF (respiratory fermenter) were 334 

assigned to taxa comprising 99% of total community sequences. Abundance values used in 335 

statistical analysis represent relative abundance of sequences attributed to organisms 336 

presenting the particular metabolic type in a survey of the literature. Raw data and details of 337 

the references used for classification are provided in the supplementary material. The effect 338 

of endogenous disturbance in bacterial biofilms was estimated from changes in the biofilm 339 

population. While it is currently impossible to detect individual disturbance events or 340 

mortality on an individual cellular level in microbial communities, an estimate can be 341 
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calculated by measuring total sequences lost between measurement intervals and 342 

normalising these losses to the change in total sequences detected. Sequence losses 343 

measured in this way provide an estimate for disturbance in the time interval between 344 

measurements. The models built here are robust to the use of either the raw loss in 345 

sequences or the normalised value. Disturbance may also be interpreted as an indication of 346 

other dynamic processes within the system, e.g. cell removal from the biofilm by localised 347 

disaggregation or similar mechanisms not constituting mortality. These definitions of 348 

disturbance have previously been used interchangeably (Brockhurst et al, 2007) and are used 349 

in this context for our analysis. Here we define cumulative disturbance as the sum of all losses 350 

in the abundance of individual taxa between sampling points measured up to a given time 351 

point. In our system, all MFCs were inoculated with the same starting community and treated 352 

consistently thereafter, minimising externally induced variation in biofilm disturbance 353 

between communities. This means that losses within the microbial community should be 354 

predominantly due to endogenous disturbance rather than operator intervention. No 355 

assumptions have been made regarding the source and nature of disturbance during 356 

construction of our quantitative models. All correlations and regressions were carried out 357 

using SigmaPlot v.12.3 (Systat Software, San Jose, CA).  358 
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Legend to Figures 495 

 496 

Figure 1. Simplified summary of current understanding of the biochemistry underlying general 497 

operation and syntrophy within MFCs. 498 

 499 

Figure 2. Divergent succession in electrogenic microbial communities; communities tend towards 500 

either generalist (RF) dominated or diverse (syntrophic mixture of specialist R and F bacteria). (A) 501 

Change in the proportion of generalist (RF) with time, r= 0.43, p = 0.049. (B) Change in Shannon 502 

diversity (units = equivalent species) with time, r= 0.09, p = 0.69. Open circles identify communities 503 

rich in generalists (RF) while closed grey circles identify communities with greater diversity. Symbol 504 

coding identifies the same communities in both (A) and (B). 505 

 506 

Figure 3. Alternative community profiles, either high diversity or generalist-dominant community 507 

types. (A) 3D graph simultaneously showing power density (absolute), Shannon diversity and relative 508 

abundance of RF (generalist) microbes. Generalists are defined as those organisms with the capacity 509 

for both respiration and fermentation (RF). (B) Plot showing a comparison between values of power 510 

density predicted by a simple linear model with the values observed for all communities. See Table 1 511 

for linear model details. 512 

 513 

Figure 4. Relationship between the relative abundance of generalist and Shannon diversity in MFC 514 

communities, r = - 0.75, p < 0.001.   515 

 516 

Figure 5.  Relationship between historical disturbance in MFC communities and (A) generalist 517 

abundance, r = -0.49, p = 0.037. (B) Shannon diversity, r = 0.81, p < 0.001.  518 

 519 

Figure 6.  Schematic of alternative minimal community structures in MFCs under different 520 

disturbance regimes. Arrows indicate transfer of chemical species between biofilm cells.  521 

 522 

  523 
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Table 1. Summary for multiple linear model (MLM) predicting the productivity of MFCs. 524 

Power density per unit of detected community DNA was used as the dependent variable, 525 

while relative abundance of generalist taxa, DNA per cm2 of electrode and Shannon diversity 526 

were used as the independent variables.   527 

 528 

 529 

Multiple linear model summary    
     

 R R² R² adj p 

     

 0.75 0.56 0.48  0.003 

     
     

 530 

                                                                    Coefficient Std. Error t               P 531 
   532 

Constant                                                          - 9.422                  7.814          - 1.206           0.244533 
   534 

Shannon Index                                                            9.289           2.757            3.370                  0.004535 
  536 

Generalist abundance (%)                               0.223                 0.0526            4.236        < 0.001537 
   538 

DNA concentration (µg/cm^2)                     - 0.0688                  0.0271         - 2.539                   0.021 539 

 540 

 541 
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