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Abstract 
The replicability of findings drawn from functional magnetic resonance imaging (fMRI) data have 

increasingly been called into question. Concerns have been raised that historically, sample sizes have been 

insufficient to produce adequate power, leading to unreliable results. Recently, Turner and colleagues 

demonstrated that even with large sample sizes, the replicability of fMRI can be worryingly low. However, 

their datasets featured low amounts of data at the individual-level. Here, I demonstrate that replicability 

depends critically on sufficient individual-level sampling. I show that fMRI can have strong replicability 

even at modest sample sizes when individuals are adequately sampled, but that inadequate individual-

level sampling leads to poor replicability. These data indicate that fMRI replicability cannot be judged 

solely on sample size, and that adequate sampling at the individual-level is a critical design consideration. 
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The reproducibility of task-based functional magnetic resonance imaging (fMRI), or lack thereof, has 

become a topic of intense scrutiny1,2. Relative to other human techniques, fMRI has high costs associated 

with data collection, storage, and processing. To justify these costs, the inferences gained from fMRI need 

to be robust and meaningful. Hence, although large, sufficiently powered datasets may be costly, this is 

favorable to collecting many insufficiently powered datasets from which reliable conclusions cannot be 

drawn. However, it can be difficult to determine a priori how much data are needed. Although power 

analyses can help3, accurately calculating power itself requires an appropriate estimate of the expected 

effect size, which can be hard to obtain if previous studies had insufficient data to produce reliable effect 

size estimates. Furthermore, mechanistic basic science explores novel phenomena with innovative 

paradigms such that extrapolation of effect sizes from existing data may not be appropriate. 

In light of these issues, many studies rely on rules-of-thumb to determine the amount of data to be 

collected. For example, Thirion et al4 suggested that twenty or more participants are required for reliable 

task-based fMRI inferences. Turner et al5 recently pointed out that such recommendations are outdated, 

and set out to empirically estimate replicability using large datasets. The authors found that even datasets 

with one-hundred or more participants can produce results that do not replicate, suggesting that large 

sample sizes are necessary for task-based fMRI. 

It is typical for considerations of power in task-based fMRI to focus on sample size. This is because 

between-subject variability tends to dominate within-subject variability, such that sampling more subjects 

is often a more effective use of time than scanning individuals for longer3,4. Large task-based fMRI data 

collections such as the Human Connectome Project (HCP) have used batteries of tasks wherein each task 

is scanned on the order of ten minutes6. Such batteries operate under the assumption that within-subject 

variability, which diminishes with scan time, can reach appropriately low levels within a relative short 

period. However, using data from the HCP and other data of similar durations, Turner et al5 demonstrated 

that task-based fMRI can be unreliable. 

With the rising popularity of resting-state fMRI, investigators have examined the duration of resting-state 

data needed for reliable parameter estimates. Some have suggested that parameter estimates are stable 

after 5-10 minutes of resting-state scans7, although more recent data suggest 30-40 minutes are 

needed8,9. In either case, parameters estimated from rest use the entire (cleaned) data time-series, while 

task-based fMRI splits the time-series into composite mental events. For example, in a rapid event-related 

design, there may be approximately 4-6 seconds of peak signal attributable to a given transient event-of-

interest (e.g. a choice reaction). If twenty such events exist in a ten-minute task run, that amounts to less 

than two minutes of signal attributable to that task event. Although it is difficult to extrapolate from rest 

to task given the numerous differences between the methods, it is likely that parameter estimates in such 

short tasks would benefit from additional measurements at the individual-level. 

To examine the impact of individual-level measurements on task-based fMRI replicability, I re-analyzed 

data from a recently published pair of datasets10,11. Each dataset estimated five contrasts-of-interest 

spanning main effects and an interaction in a 2x2x2 factorial design. The resultant contrasts variously load 

on often-studied constructs of working memory, task-switching, language, and spatial attention. These 

constructs have a high degree of overlap with those examined by Turner et al5. Previously, I suggested the 

reproducibility in these data were good10,11, but given the observations of Turner et al5, the sample sizes 

employed (n=24) should produce low replicability. On the other hand, ~one-two hours of task data were 

collected for each individual, which could have facilitated reliability. To formally examine this matter, I 
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computed the replicability measures of Turner et al5 on randomly sub-sampled independent datasets for 

the five contrasts-of-interest. I varied the amount of individual-level data from ~ten minutes (one task 

run) to ~one hour (six task runs). I also varied the sample size from sixteen to twenty-three individuals 

with sixteen matching the minimum examined by Turner et al5 and twenty-three being the maximum that 

can be split into independent groups in the forty-six participants examined. All data and code are available 

at https://osf.io/b7y9n. 

Figure 1 shows the results at n=16. When only one run is included for each individual, the replicability 

estimates fall in the ranges reported by Turner et al5. However, reproducibility markedly improved with 

more data at the individual-level. While there are some indications of diminishing returns after four runs, 

there were clear benefits to more scans at the individual-level. Figure 2 reports the results at n=23, which 

again show clear benefits to reproducibility with more than one run. For example, the mean peak 

replicability with two runs (~65%) matches observations in Turner et al5 at n=64. Furthermore, no contrast 

in Turner et al5 approached perfect replicability with any combination of measure, sample size, and 

threshold, whereas multiple combinations produced near perfect replicability for the Contextual Control 

contrast with as little as six runs at n=16 (Supplemental Figure 1). In the most striking such case, I find 

nearly 90% of the peaks replicate on average with four runs at n=23 (Supplemental Figure 2), which again 

exceeded the observations of Turner et al5 even at the largest sample size (n=121). While the differences 

in tasks employed here and those in Turner et al5 qualify direct comparisons, the data here paint a much 

more reliable picture of task-based fMRI at modest sample sizes when individuals are adequately sampled. 

These observations raise the question of how much individual-level data are needed. This is not 

straightforward to determine a priori and hinges on the ratio of within- to between-subject variability and 

effect magnitude (see 12 for demonstrations of how these factors trade-off). Concrete recommendations 

are rendered difficult given that these factors will vary considerably based on experimental design 

(including how the data are modeled), brain region, population, scanner, and scanning parameters. In the 

data explored here, at n=23 with six runs, peaks from the Contextual Control contrast were nearly 

perfectly reliable, while only half of the peaks from the Verbal contrast replicated despite these contrasts 

being matched for time and number of trials, demonstrating that one size does not fit all. In general, more 

data at the individual level are beneficial when within-subject variability is high, and between-subject 

variability is low12. Furthermore, across all of the contrasts, I observed diminishing returns after 

approximately four task runs, which may owe to the duration of time participants can remain attentive 

and still (i.e. ~forty-minutes) and/or the point at which the within-subject variability is sufficiently low 

relative to the between-subject variability. Hence, forty-minutes of task may be a reasonable starting 

point for pilot data, from which the appropriate parameters can be estimated and used to determine 

proper levels of n and scan time. 

A final question is the extent to which researchers are scanning sufficiently at the individual-level. An assay 

of recent studies of basic mechanistic research indicates that modest sample sizes are the norm (mean 

N=31.7), but few studies employ less than ten-minute scanning durations (Supplemental Figure 3). The 

average per task scanning duration was ~forty-minutes, which matches the point of diminishing returns 

observed here. Hence, the observations of Turner et al5 based on short scans cannot be broadly 

generalized to basic science research that tends to scan much longer. However, those studies employing 

batteries of short tasks would do well to consider the observations of Turner et al5 and here, and collect 

more individual-level data to foster reproducibility. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/352633doi: bioRxiv preprint 

https://osf.io/b7y9n
https://doi.org/10.1101/352633
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 
Full details of the participants, task, preprocessing, and modeling can be found in my previous reports10,11. 

Briefly, the task manipulated two forms of cognitive control (contextual control, temporal control) and 

stimulus domain (verbal, spatial) in a 2x2x2 factorial design. Five contrasts from the factorial design were 

included in this report: contextual control, temporal control, temporal control x contextual control, verbal 

(> spatial), and spatial (> verbal). On each block, participants performed a sequence-matching task in a 

given stimulus domain. Then, sub-task phases orthogonally manipulated the cognitive control demands. 

In the original report, we examined stimulus domain (verbal>spatial, spatial>verbal) across all trials. But 

here, I use only the sub-task phases so that all contrasts have the same amount of data at the individual 

level. A separate contrast estimate was created for each individual and each run. I included data from 46 

participants, excluding participants in the original reports that did not complete all of the task runs. 23 

participants performed 12 scanning runs and 23 participants performed 6 scanning runs, wherein each 

scanning run took approximately 10 minutes to complete. Data and code are available at 

https://osf.io/b7y9n. 

Following the procedures of Turner et al5, replicability was determined by pairwise comparison of group-

level t-statistic maps. For each analysis, the data were randomly split into two independent groups 500 

times. Analyses varied the number of runs included at the individual level (1, 2, 4 or 6) by randomly 

selecting a subset of the data, and also the number of individuals (16 or 23). Extra-cranial voxels were 

masked out and voxels for which t-statistics could not be computed (i.e. due to insufficient signal across 

participants) were discarded prior to computations of replicability. 

The first analysis examined the voxel-wise correlation of t-statistics across all voxels. Subsequent analyses 

examined Jaccard overlap on thresholded t-statistic maps where the Jaccard overlap indicates the 

proportion of results that replicate. Although Turner et al5 utilized both positive and negative activations 

for their Jaccard overlap calculations, here I use only positive activations given that two of the contrasts 

are the inverses of one another. Following Turner et al5, Jaccard overlap was computed at the voxel-level 

by first thresholding the complete group dataset and determining the number of significant voxels, v,  at 

a voxel-wise threshold. This map represented the “ground truth.” Then, in each pair of sub-sampled 

datasets, the conjunction of the top v voxels was divided by their union to determine the proportion of 

replicated voxels. 

The voxel-level procedure does not attempt to control false-positives for each group analysis. Therefore, 

low replicability in this measure might be anticipated by the inclusion of false-positives. So, Turner et al5 

also performed family-wise error correction using cluster-level thresholding in each group map, and 

calculated the number of overlapping voxels passing correction. However, cluster-level correction allows 

for cluster-level, but not voxel-level inference. That is, the cluster is the unit of significance rather than 

the voxels within the cluster. Noting the number of overlapping voxels therefore does not capture the 

essence of whether a cluster has replicated or not. Therefore, I modified the procedure to determine the 

number of overlapping clusters rather than voxels. A cluster was deemed to have replicated if at least half 

of the voxels of that cluster were present in the replicate. Half is an arbitrary number intended to 

safeguard against trivial overlap. Finally, Turner et al5 examined peak overlap determined by whether the 

peak of a given cluster was also significant in the replicate. This is likely to be an important practical metric 

of replicability given that replication attempts will often examine a small radius around the peak of a 

previous report. 
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As in Turner et al5 each Jaccard overlap was performed at both a conservative threshold (depicted in the 

main text) and liberal threshold (depicted in the supplemental material). The liberal/conservative 

thresholds were as follows: voxel-level: p < 0.00025/0.00000025; cluster-level: p < 0.05 height, 1019 voxel 

extent/p < 0.01 height, 300 voxel extent, each achieving alpha < 0.01 according to 3dClustSim in AFNI. 

Interestingly, although it has been reported that liberal cluster-forming thresholds have inflated false 

positives13, which would be expected to harm replicability, replicability measures improved at the more 

liberal thresholds, which was also observed in Turner et al5 to some extent. 

To quantify whether short or long scanning durations per task are the norm for the basic science domain 

from which the observed study is drawn, I searched PubMed for papers published since the start of 2015 

using the terms “fMRI AND (cognitive control OR working memory)”. I excluded studies of special 

populations (e.g. patients, children) and interventional studies (e.g. drug, training) to focus on basic 

mechanistic research. The duration that each task was scanned was estimated from the reports. 

Functional localizer tasks producing regions-of-interest for a main task were excluded. The durations of 

the 244 resulting tasks are summarized in Supplemental Figure 3. The database is included at 

https://osf.io/b7y9n. 
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Figure 1. Replicability estimates at n=16. Metrics correspond to those used in Turner et al5. Jaccard 

Overlaps were calculated using conservative thresholds comparable to those reported in Turner et al5. 
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Figure 2. Replicability estimates at n=23. Other details match Figure 1. 
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Supplemental Figure 1. Details are identical to Figure 1, but Jaccard Overlap was computed using liberal 

threshold comparable to those reported in Turner et al5. 
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Supplemental Figure 2. Replicability estimates at n=23 with liberal thresholding. Other details match 

Supplemental Figure 1. 
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Supplemental Figure 3. Estimates of scanning durations and sample sizes for basic science research in 

the domains of cognitive control and working memory since 2015. A) Histograms of task durations in 

minutes (T) and sample size (N). Sample sizes tend to be modest (N=20-30), but task durations less than 

ten minutes were uncommon (<15%). Mean (standard deviation) of task duration was 39.86 (33.20) 

minutes, and sample size was 31.73 (34.88) participants. B) Cumulative percentage of task durations. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/352633doi: bioRxiv preprint 

https://doi.org/10.1101/352633
http://creativecommons.org/licenses/by-nc-nd/4.0/

