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Abstract  

 

This paper examines the extent to which empirical estimates of inbreeding 

depression and inter-population heterosis in subdivided populations, as well as the 

effects of local population size on mean fitness, can be explained in terms of 

estimates of mutation rates, and the distribution of selection coefficients against 

deleterious mutations provided by population genomics data. Using results from 

population genetics models, numerical predictions of the genetic load, inbreeding 

depression and heterosis were obtained for a broad range of selection coefficients 

and mutation rates. The models allowed for the possibility of very high mutation rates 

per nucleotide site, as is sometimes observed for epiallelic mutations. There was 

fairly good quantitative agreement between the theoretical predictions and empirical 

estimates of heterosis and the effects of population size on genetic load, on the 

assumption that the deleterious mutation rate per individual per generation is 

approximately one, but there was less good agreement for inbreeding depression. 

Weak selection, of the order of magnitude suggested by population genomic 

analyses, is required to explain the observed patterns. Possible caveats concerning 

the applicability of the models are discussed.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/352146doi: bioRxiv preprint 

https://doi.org/10.1101/352146


	 3	

1   INTRODUCTION 

 

There is now a substantial body of data on mean population fitness, inbreeding 

depression and heterosis in subdivided populations, reviewed by Byers & Waller, 

(1999), Keller & Waller (2002) and Leimu,  Mutikainen , Koricheva & Fischer 

(2006). A number of relevant theoretical investigations have also been carried out 

(Escobar, Nicot & David, 2008; García-Dorado 2007, 2008; Glémin, Ronfort & 

Bataillon, 2003; Roze, 2015; Roze & Rousset, 2004; Theodorou & Couvet, 2002; 

Whitlock, Ingvarsson & Hatfield, 2000). These have shown that the mutational load 

and inbreeding depression are generally increased by high migration rates and large 

local population sizes, whereas heterosis in between-population crosses is reduced. 

While the theoretical expectations are in qualitative agreement with the empirical 

results, no attempt has been made to determine whether the data quantitatively match 

theoretical predictions based on estimates of mutation rates and the distribution of 

fitness effects of new deleterious mutations obtained from genomic data, which have 

been reviewed by Keightley (2012) and Charlesworth (2015).   

 Furthermore, the theoretical work has assumed that mutation rates per locus or 

nucleotide site are small, relative to the strength of selection against deleterious 

alleles.  In addition, the forward mutation rate (from wild-type to mutant) is usually 

assumed to be much greater than the backward mutation rate (from mutant to wild-

type), the latter often being ignored. The first assumption is usually well-justified for 

mutations affecting protein sequences and strongly constrained functional non-coding 

sequences. The second assumption applies to the totality of mutations that affect a 

functional unit such as a coding sequence, provided that selection is sufficiently 

strong in relation to drift that mutant alleles are close to deterministic equilibrium. 

This is because there are many ways in which a wild-type sequence can mutate to a 

sequence with impaired function, but the reversion of a mutated sequence requires a 

change at the site of the original mutation. However, if we are considering individual 

nucleotide sites under weak selection, models that include drift and reverse mutation 

need to be used (Charlesworth, 2013; Kimura, Maruyama & Crow, 1963; 

Kondrashov, 1995).  
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 The importance of examining the consequences of relaxing these two 

assumptions is brought out by recent studies of variation in epigenetic marks in plants 

such as Arabidopsis thaliana, especially methylation at CG sites. These have found 

rates of gain and loss of marks at individual nucleotide sites that are about 5,000 times 

higher than the DNA sequence mutation rate, with a strong bias towards loss of 

methylation (Quadrana & Colot, 2016; Van De Graaf et al., 2015; Vidalis, Zivkovic, 

Wardenaar, Roquis, Tellier & Johannes, 2016). If fitness is affected by epiallelic 

variants at numerous sites in the genome, the above assumptions are likely to be 

violated (Charlesworth & Jain, 2014). 

 In this paper, theoretical expectations are derived for the mutational load, 

inbreeding depression and between-population heterosis in subdivided populations, 

allowing for the possibility of some level of inbreeding, as well as for potentially very 

high mutation rates per nucleotide site, using an extension of the method described by 

Charlesworth & Jain (2014). The results are related to data on the relevant parameters 

obtained from the literature, using parameters of mutation and selection derived from 

genomic studies. It is shown that there is fairly good quantitative agreement between 

the theoretical predictions and estimates of heterosis and the effects of local 

population size on genetic load, but less good agreement for inbreeding depression. 

The ground is prepared by describing the basic model of a single randomly mating 

population. 

  

2. THEORETICAL METHODS AND RESULTS 
          
2.1 Basic model of a randomly mating population of infinite size   

 

The standard population genetic model of selection and mutation at a biallelic 

autosomal locus is assumed (Charlesworth & Charlesworth, 2010, Chap. 4), The 

relative fitnesses of the genotypes A1A1, A1A2 and A2A2 are 1, 1 – hs and 1 – s ; the 

frequencies of A1 and A2 in a given generation are p and q, respectively. The forward 

and backward mutation rates (A1 to A2 and A2 to A1, respectively) are u and v. It is 

convenenient to write u = κv, where κ measures the extent of mutational bias. If κ > 1, 

mutation is biased towards the production of deleterious alleles; if κ < 1, the bias is 

toward wild-type alleles. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/352146doi: bioRxiv preprint 

https://doi.org/10.1101/352146


	 5	

 Ignoring second-order terms in s, u and v, the change in q per generation in a 

randomly mating, discrete generation population is given by: 

 

                   
Δq ≈ −sq(1− q)[h+ q(1− 2h)]− (u+ v)q+u (1)

 
 

 The mean fitness of the population is: 

 

																																																																
w =1− q[2h+ q(1− 2h)]s (2)

 
and the genetic load is: 

                             
L =1−w = q[2h+ q(1− 2h)]s (3)

 
     

   The equilibrium frequency of A2, q*, is found by equating equation (1) to 

zero. Further details are described in the Supplementary Material, section 1. The 

corresponding equilibrium load, L*, given by this procedure is always smaller than 

the low mutation rate approximation, 2u, for non-recessive autosomal mutations 

(Haldane, 1937), but approaches 2u when hs >> (u + v).  

 Table S1 and Figure S1 show some numerical examples of the dependence of  

q* and  L* on the selection and mutation parameters, which are discussed in the 

Supplementary Material, section 1. In the next section, the effects of finite population 

size are examined.  

   

2.2 Stochastic results for a randomly mating population 

 

Here, the load is measured by taking its expected value over the distribution of allele 

frequencies, following the approach used by Kimura et al. (1963) and Bataillon & 

Kirkpatrick (2000) for the low mutation rate case. Following Kimura et al. (1963), 

insertion of equation (2) into the general expression for the stationary probability 

distribution of allele frequencies at a single locus (Wright, 1937a; Charlesworth & 

Charlesworth, 2010, Chap. 5) yields an expression for the probability density of q in a 

randomly mating population with effective population size Ne: 
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φ(q) =Cw2Neqα−1(1− q)β−1

≈ C exp{−2Nesq[h+ q(1− 2h)]} q
α−1(1− q)β−1 (4) 	

 

where Ne is the effective population size, α = 4Neu, β = 4Nev, and C is a constant of 

integration that ensures that the integral of φ(q) between 0 and 1 is unity.  

 Equations (S4) – (S7) of section 2 of the Supplementary Material, show how 

this expression can be used to obtain explicit formulae for the moments about zero of 

the allele frequency at mutation-selection-drift equilibrium, using infinite series 

representations of the relevant integrals. This avoids the need to use either numerical 

integration or the linearized approximation for the effect of selection, given by 

equations (S10) and (S11) in the Supplementary Material, section 3. Both of these 

approaches have been employed in past treatments, e.g. Bataillon & Kirkpatrick 

(2000); Glémin et al. (2003), and Roze & Rousset (2004). For an alternative 

approach, see García-Dorado (2007, 2008).  

 Some results for the dependence of the expected load (equation S8) on the 

selection and mutation parameters are shown in Figure S2. The general picture is very 

similar to that described by Kimura et al. (1963). There is a critical value of the scaled 

selection parameter, γ = 2Nes, below which drift and mutation start to overcome 

selection, leading to a load that is much greater than the deterministic equilibrium 

value. While high mutation rates tend to reduce the expected load relative to its 

deterministic value, its absolute value always increases with the mutation rate. As 

shown below, the same pattern is observed in subdivided populations. 

 

2.3 Analytical results for a subdivided population with random mating 

within local populations 

It is useful to consider first some general results on subdivided populations, which do 

not assume a specific population structure. While similar results have been obtained 

before (Escobar et al., 2008; Glémin et al., 2003; Roze, 2015; Whitlock et al., 2000), 

the simple but general derivation given below does not seem to have been published. 

Here, inbreeding depression is defined as the difference between the expected mean 

fitness over all demes and the expected fitness of completely homozygous individuals 

formed from alleles sampled within a deme. Because the effect of a single locus is 
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very small, this measure is equivalent to the B coefficient of Morton, Crow & Muller  

(1956). This coefficient is equal to the regression of the natural logarithm of fitness on 

the inbreeding coefficient of an individual, and is widely used to describe empirical 

estimates of the effects of inbreeding, e.g. Charlesworth & Charlesworth (1987) and 

Charlesworth & Charlesworth (2010, Chap. 4). On the assumption of multiplicative 

fitness effects of multiple independent loci, B is given by the sum of the individual 

locus values. 

 For a single locus, whose effect on mean fitness can be assumed to be very 

small, the expected load suffered by a deme (equation S8) can be written as: 

   

                               

Ll = E{q[2h+ (1− 2h)q]}s
= q[2h+ (1− 2h)(q +Fsp)]s (5)  

 

where Fs is the inbreeding coefficient that measures population differentiation at a 

locus subject to mutation and selection, overbars indicate expectations over demes, 

and the subscript l indicates that Ll is the value for a single locus or nucleotide site. 

 This equation brings out the important fact that the mean load is affected by 

both the effects of drift on the mean of q over all demes, and on the extent of variation 

in q among demes when h ≠ ½. 

 The corresponding measure of the expected inbreeding depression is: 

 

                           

Bl = E{q}− sE{q[2h+ (1− 2h)q]}s
= p q(1− 2h)(1−Fs )s (6)  

                               

This shows that population subdivision tends to reduce the mean inbreeding 

depression when h < ½, even if the mean frequencies of mutant alleles are unchanged 

from the random mating case.  

 The value of Bl under classical mutation-selection equilibrium with u << hs is 

2u[1/(2h) – 1], provided that h > 0 (Charlesworth & Charlesworth, 1987). It is helpful 

to use the quantity Brel = Bl /2u as an estimate of the value of the sum of the Bl over 

loci relative to the diploid genome-wide deleterious mutation rate, U, which is equal 
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to the sum of the values of 2u over all loci. A relative mean load, Lrel = Ll/(2u), can be 

defined in the same way. 

 Similarly, the expected between-deme heterosis (Hl) caused by a single locus 

is given by the expected difference between the fitnesses of random matings among 

individuals from different demes and random matings within demes (Glémin et al., 

2003). This is given by: 

  

               

Hl = E{q[2h+ (1− 2h)q]}− sE{q[2h+ (1− 2h)q ]}s
=Vq (1− 2h)s = p qFs (1− 2h)s
= BFs / (1−Fs ) (7)           

                

where Vq is the variance among demes in allele frequency at the selected locus. Again, 

use of Hrel = Hl /(2u) allows the sum of Hl values over loci to be compared with U. 

 These expressions bring out clearly that the extent of population subdivision, 

as measured by Fs, has complementary effects on Bl and Hl. Fs  is expected to be 

smaller than the genealogical measure of subdivision, FST, which assumes neutral 

transmission (Glémin et al., 2003). However, since FST is relatively easy to measure 

using genetic markers, it can be used as a rough guide as what to expect from 

equations (6) and (7) (Charlesworth & Charlesworth, 2010, pp.361-362). The 

numerical examples described below for the infinite island model suggest that the 

neutral approximation works well when s << m, as is predicted by equation (S12). 

 Further results can most be easily obtained using Wright’s  island model of 

population structure with an infinite number of demes (Wright, 1937b), which 

assumes that the metapopulation is composed of a large number of randomly mating 

demes, each with effective size Ne. Each deme receives a constant fraction m of its 

gene pool from the population as a whole, with an expected frequency qt of allele A2 

among the migrants that is equal to the mean allele frequency for the whole 

metapopulation, which is assumed to be fixed. This corresponds to soft selection in 

the sense of (Whitlock et al., 2000).  

 The stationary distribution of allele frequencies among demes under the 

infinite island model (Wright, 1937b) can be found from the analogue of equation (4): 
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φ(q) ≈ C exp{−2Nesq[h+ q(1− 2h)]} q

α+Mqt−1(1− q)β+Mpt−1 (8)
	

 

where Μ is the scaled migration parameter, 4Nem, and pt= 1 – qt. 

 However, in general qt cannot be equated to the deterministic equilibrium 

value, q*.  It can be found by iteratively determining the value of qt that corresponds 

to the mean of q over the distribution given by equation (8), using a simple extension 

of the method described in the Supplementary Material, section 2. Linearized 

approximations are provided by the equivalents of equations (S10) and (S11).  

    

2.4 Numerical results for a subdivided population with random mating 

within local populations 

 

The results described here assume weak selection, with s = 2.5 x 10-3. There are two 

reasons for this; first, unless deme sizes are extremely small (≤ 100), the effects of 

drift will be minor when selection coefficients are an order of magnitude or more 

greater than this (Kimura et al., 1963). Second, recent population genomic studies of 

Drosophila suggest that there is a wide distribution of selection coefficients against 

deleterious nonsynonymous mutations and mutations in functional non-coding 

sequences, with a mean selection coefficient (hs) of the order of 10-3 for 

nonsynonymous mutations, and a much smaller value for mutations in functional non-

coding sequences (Campos, Zhao & Charlesworth, 2017; Kousathanas & Keightley, 

2013). The outcrossing flowering plant, Capsella grandiflora, has a similar estimated 

distribution of the fitness effects of nonsynonymous mutations to that in Drosophila 

(Slotte, Foxe, Hazzouri & Wright, 2010). With the highly left-skewed distributions 

suggested by these analyses, most deleterious mutations will have considerably 

smaller s values than the mean. To be conservative in the sense of underestimating the 

effects of drift, s = 2.5 x 10-3 was chosen for the numerical analyses.  

 Table 1 shows some examples of the effects of varying the deme size, 

mutation rate and scaled migration rate on the exact and approximate values of the 

expectations of the parameters of interest. As described in section 2.3, these are 

divided by the diploid mutation rate, 2u, as indicated by the subscript rel. There are 

several points of interest. First, for the smaller deme size the exact expected load is 
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considerably higher than 2u for the lower pair of values of the scaled migration rate 

M, reflecting the effect of drift in causing deleterious alleles to drift to high 

frequencies when 2Nes is of order 1 or less. This effect is not seen with the linear 

approximation, because this assumes that the mean of q is equal to the deterministic 

equilibrium value, q*.  

 With  M = 10, the load approaches the classical deterministic value, 2u, and is 

even slightly lower than this when h = 0.2, reflecting a weak effect of purging of 

partially recessive alleles from large but finite populations (Wang, Hill, Charlesworth 

& Charlesworth, 1999). As is also the case for a single population (sections 2.1 and 

2.2), the higher mutation rate is associated with smaller values of the load relative to 

2u, especially with mutational bias towards favoured alleles, but the absolute mean 

load is much higher than with the lower mutation rate, even with Ne = 100 and M = 

0.1. When h = 0.2, the linearized approximation of equation (S12) gives quite a good 

fit to Lrel, Brel and Hrel for the cases with M ≥ 1 and Ne = 100; the fit is good for all 

three values of M when Ne = 1000, reflecting the relatively small effect of drift in this 

case. For M = 0.1, there are substantial discrepancies between the approximate and 

exact values, reflecting the large departures from q*. 

 Second, as expected from equations (6) and (7), the values of Brel and Hrel for 

h = 0.2 respond in opposite directions to changes in Ne and M,  with the level of 

heterosis being similar to, or even greater than, 2u when deme size is small and M ≤ 1, 

but is much less than 2u when deme size when deme size is large or M ≥ 10. Brel for h 

= 0.2 is mostly well below its deterministic value of 1.5 for the smaller pair of values 

of M, but approaches this value when M  = 10. Fs was found to be close to the 

genealogical value, FST = 1/(1 + M), for most of the examples in Table 1, except for 

Ne = 1000 and M < 10 as well as 2Nes  >> M. 

 There could thus be a substantial expected level of heterosis in interpopulation 

crosses, even with moderately large Ne or M, when selection is of the strength 

considered here. With U = 1, the sum of the H values over all sites with the selection 

and mutation parameters in Table 1 would be approximately 0.60 with h = 0.2, Ne 

=100 and M = 1, and approximately 0.10 even with Ne =1000 and M = 10. 

 Finally, the high mutation rate cases in Table 1 all give values of Lrel, Brel and 

Hrel  that are smaller than the corresponding values with low mutation rates; the 
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differences are more marked for Lrel  than the other variables. However, the absolute 

values of all three variables are always much greater with the high mutation rate. 

Highly mutable, non-neutral epimutations could, therefore, cause high levels of 

mutational load, inbreeding depression and heterosis. 

 

2.5 Analytical and numerical results for subdivided populations with 

inbreeding 

 

 As discussed in section 3 below, much of the evidence for inbreeding depression and 

interpopulation heterosis in subdivided populations comes from populations with a 

mixture of inbreeding and outbreeding. It is therefore of interest to consider the 

implications of inbreeding for the above results. If selection is weak, the evolutionary 

dynamics of an inbreeding population can be approximated to the order of second-

order terms in s by using the neutral value of the within-population inbreeding 

coefficient, FIS (Charlesworth, Nordborg & Charlesworth, 1997). The modifications 

to the relevant equations are given in section 5 of the Supplementary Material, 

equations (S13) – (S17).  

 Only the case of a subdivided population will be considered in detail here; the 

results for large Μ provide a picture of what is expected for a single large population. 

If Bl for a single locus in a partially inbreeding population is defined as the difference 

between the mean fitness of random matings within demes and the mean fitness of 

fully homozygous individuals formed by sampling alleles within demes, and Hl as the 

difference in mean fitness between random matings between demes and random 

matings within demes, no changes to equations (6) and (7) are needed. 

 Table 2 shows results for Ne = 100 and FIS = 0.9, which can be compared with 

the results for the same values of Ne and the selection, mutation and migration 

parameters in Table 1. (Ne  with inbreeding is obtained by dividing Ne for the 

corresponding random mating case by (1 + FIS) (Laporte & Charlesworth, 2002; 

Pollak, 1987), so that this example corresponds to a larger actual deme size than in 

Table 1.) It has long been known that the greater effectiveness of selection on a single 

locus with inbreeding causes the genetic load due to selection against non-recessive 

deleterious mutations to approach u instead of 2u in a large population when mutation 
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rates are low (Charlesworth & Charlesworth, 1987; Crow 1970; Lande & Schemske. 

1985). The mean genetic load in an inbreeding metapopulation is thus expected to be 

reduced by inbreeding (Glémin et al., 2003; Roze & Rousset, 2004), as can be seen by 

comparing Tables 1 and 2. With Μ = 10, both the exact and approximate values of the 

mean load approach u, even with the high mutation rate, and are substantially less 

than the values for the corresponding random mating cases, including the examples 

with lower Μ values.  

 For Brel and Hrel, the patterns are similar to those found with random mating 

but with substantially smaller values, except that the exact value of Brel with h = 0.2 

does not change greatly with changes in M; instead, it remains quite close to the value 

given by substituting the deterministic equilibrium value of q from equation (S15) 

into equation (6) with FIS = 0 (approximately 0.33, as opposed to 1.5 with random 

mating). This appears to be due to a sharp increase in the mean of q as M decreases, 

which compensates for the decline in 1 – Fs. Consistent with this interpretation, the 

linearized approximations for Brel and Hrel perform poorly with M < 10. The 

approximate constancy of Brel with changing Μ is also found with Ne = 1000 and h = 

0.2. In this case, the mean allele frequency changes little with M, while Fs is held to a 

low level by selection, and the linearized approximation works well for all Μ values; 

Hrel is always small (approximately 0.05 for M  = 0.1, and 0.02 for M = 1). 

 

3   EMPIRICAL EVIDENCE ON INBREEDING DEPRESSION AND 

HETEROSIS IN SUBDIVIDED POPULATIONS 

  

3.1 Plant populations 

 

Table S2 of the Supplementary Material shows some empirical estimates of the mean 

inbreeding depression and heterosis for flowering plants with subdivided populations. 

The studies concerned were selected on the basis that estimates of lifetime fitness 

were available, rather than single fitness components, and that data on multiple local 

populations were collected. Overall, both B and H are usually modest in size. The 

largest B values in the table are 2.52 ± 0.60 and 3.32 ± 0.82 (where ± indicates the 

standard error), for self-incompatible populations of Arabidopsis lyrata (Oakley, 
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Spoelhof & Schemske, 2015) and predominantly outcrossing populations of Sabatia 

angularis (Spigler, Theodorou & Chang, 2017), respectively. These values are 

considerably larger than the value of 1.5 expected with h = 0.2 and U = 1 for 

deterministic equilibrium and outcrossing, but the large standard errors means that it 

is not possible to tell whether they are too large to be explained on this basis. Strongly 

selected deleterious mutations with small h values contribute substantially to 

inbreeding depression in large outcrossing populations (Charlesworth & 

Charlesworth, 1987; Simmons & Crow, 1977), although they are likely to be purged 

from highly inbred or very small populations (Lande & Schemske, 1985; Wang et al., 

1999). They will not, however, contribute much to heterosis between populations, 

since their frequencies are not greatly affected by drift (see section 4.3). 

 The largest values of H in the table are 1.20 ± 0.47 for small populations of 

Hypericum cumulicola (Oakley & Winn, 2012) and 1.43 ± 0.47 for partially selfing 

populations of Arabidopsis lyrata (Oakley, et al., 2015). FST among the small 

populations of H. cumulicola was 0.74 (from Table S1 of Oakley & Winn [2012]), 

and 0.78 among partially selfing populations of A. lyrata (Mable & Adam, 2007). 

Patterns of variability at molecular markers indicate that both sets of populations are 

partially inbred (mean FIS of 0.74 and 0.44 for small populations of H. cumulicola and 

partially selfing A. lyrata, respectively).  

  

3.2 Animal populations 

 

Relevant data where both B and H were measured for net fitness are less abundant for 

animal populations, despite the fact that studies showing heterosis in interpopulation 

crosses were pioneered in Drosophila pseudoobscura, using data on recessive lethals 

(Wright, Dobzhansky & Hovanitz, 1942) and several fitness components (Vetukhiv, 

1953, 1956, 1957). However, outbreeding depression, reflecting the accumulation of 

Dobzhansky-Muller genetic incompatibilities between local populations, is often 

observed in animals, especially in hermaphrodite species with high frequencies of 

self-fertilization (Dolgin, Charlesworth, Baird & Cutter, 2007; Escobar et al., 2008). 

This makes it hard to assess the extent of heterosis.  
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 The most informative study is probably that of Lohr & Haag (2015), on groups 

of populations of Daphnia magna inhabiting both small and large ponds. Their results 

on the net reproductive output per individual under laboratory conditions provide a 

measure of net fitness. The small ponds had B and H values of  0.13 ± 0.38 and 0.96 ± 

0.26, respectively; the corresponding values for large ponds were 1.69 ± 0.31 and – 

0.30 ± 0.30. Previous work showed that FST for molecular markers was considerably 

higher among small than large populations (0.70 versus 0.38 for microsatellites), with 

much lower within-population diversity in the small populations (Walser & Haag, 

2012). 

 

3.3 Small versus large populations 

  

Several of the plant studies also allowed groups of local populations with small 

census sizes to be contrasted with groups with larger size, or partially self-fertilizing 

populations to be contrasted with outcrossing populations. If smaller population size 

and a greater extent of selfing are both associated with reduced Ne and M, as is likely 

to be the case (Charlesworth, 2003), H should be larger for the small/partially 

inbreeding populations than the large/outcrossing ones, with the opposite pattern for 

B. A difficulty with this prediction is that increased inbreeding, with its purging 

effects, causes a reduction in H as well as B, which could dilute or even reverse the 

effect of inbreeding on Ne and Μ.  However, even the self-incompatible populations 

of A. lyrata have substantial FIS values, with a mean of 0.20 (Mable & Adam, 2007), 

so this difficulty is probably not as severe as might have been expected.  

 If the Daphnia results are included, and only the Willi (2013) study is used for 

A. lyrata (to avoid pseudoreplication), five independent contrasts are available for H 

and four for B. All five of the H differences are in the direction of a greater value for 

small/selfing populations, with a mean difference of 0.70 ± 0.23 (P = 0.031 on a sign 

test, or 0.019 on a one-tailed paired t-test, t = 3.06). But of the four contrasts for B, 

one has a greater value for small/selfing populations (A. lyrata), and the mean contrast 

between large/outcrossing and small/selfing populations is 0.70 ± 0.42, t = 1.65, P > 

0.10.  Given that several of these studies reported significant differences in their 

measures of heterosis between small/selfing and large/outcrossing populations, it 
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seems fairly clear that there is indeed a significant effect for H in this direction; the 

situation with B is less clear. This is perhaps not unexpected, since the relative effects 

of differences in M and Ne are more marked for H than B (Tables 1 and 2). 

 A similar question can be asked about the genetic load. While it is not feasible 

to estimate the absolute value of the load, because the fitness of the hypothetical 

mutation-free genotype is unknown, it is possible to compare the mean fitnesses of 

small and large populations, or selfing and outcrossing populations. The natural 

logarithm of the ratio of mean fitnesses reflects the difference in the sums of the Ll 

over all loci between the two groups, under the multiplicative fitness assumption. In 

the studies listed in Table S2, and in many other studies (Leimu et al., 2006), the 

individuals whose fitnesses are estimated were the product of random matings among 

parents sampled from natural populations, and so did not necessarily represent the 

fitnesses of individuals produced by the natural mating system. This means that the 

corresponding load for a single locus is described by equation (5), with the proviso 

that the mean q is the value expected under the natural mating system, not random 

mating. 

 The expectation that the load is lower for large than small populations holds 

true for this measure, consistent with the results of a large meta-analysis (Leimu et al., 

2006). The expectation for a comparison between selfing and outcrossing populations 

is less clear, since selfing is expected to reduce the mutational load caused by partially 

recessive mutations (Charlesworth & Charlesworth, 1987; Lande & Schemske, 1985), 

whereas increased drift due to smaller effective population size and reduced migration 

has the opposite effect. For the cases in Table S2, a significantly positive correlation  

between population size and fitness (P < 0.05) was found by Paland & Schmid 

(2003); for the data of Oakley & Winn (2012) on H. cumulicola and Lohr & Haag 

(2015) on D. magna, the differences in log mean fitness between large and small 

populations were 1.13 ± 0.51 and 1.22 ± 0.31, respectively, indicating a clear effect of 

population size in the expected direction.  

 For the outcrossing versus selfing comparisons in Table S2, the corresponding 

load differences were 0.50 ± 0.50 (Busch, 2006), 1.25 ± 0.29 (Willi, 2013), and 0.96 ± 

0.53 (Oakley et al., 2015) (the last two values are both for A. lyrata). This suggests 

that the effect of differences in levels of inbreeding between the outcrossing and 
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selfing populations, which are relatively modest in the case of A. lyrata,  are 

outweighed by difference in effective deme size and/or level of population 

subdivision. 

 

4  DISCUSSION 
 

4.1 The relation between the mutation rate and the genetic load 

 

The theoretical results described in section 2 show that, when the scaled selection 

coefficient (γ = 2Nes) is >> 1 in a single population or in an island metapopulation 

with a scaled migration rate M = 4Nem >> 1, the expected genetic load for a single 

locus at mutation-selection-drift equilibrium is close to the deterministic value, 

consistent with previous studies that assumed low mutation rates, e.g. Kimura et al. 

(1963). The load strongly depends on the mutation rate even when the classic Haldane 

(1937) formula (Ll = 2u) is not exact.  

 Dr Frank Johannes has suggested to me that a high rate of reversion from 

deleterious to beneficial alleles may result in only a weak dependence of the load on 

the mutation rate, but this does not appear to be case when the results with κ = 2 are 

compared with those with κ = 0.5 in Tables 1, 2 and S1.  Although a high rate of 

reversion from mutant to wild-type somewhat reduces the load, it does not abolish its 

dependence on the mutation rate (see the parts of the Table with γ >> 1). In this area 

of parameter space, selection to reduce the mutation rate would be expected if M or 

Ne, as well as the total genomic mutation rate, are sufficiently large (Drake, 

Charlesworth, Charlesworth & Crow 1998; Sniegowski, 2000; Lynch, Ackerman, 

Gout, Long, Sung, Thomas & Foster, 2016). This follows from the fact that, in a 

randomly mating population with free recombination, the selection coefficient on a 

modifier of the mutation rate is approximately equal to the product of the mean 

selection coefficient on the deleterious mutations themselves, and the change in the 

genome-wide deleterious mutation rate (δU) caused by the modifier. In a completely 

selfing population, the selection coefficient is approximately equal to 0.5 δU (Drake 

et al., 1998). δU will tend to be larger, the larger U, leading to stronger selection on 

the mutation rate. 
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 The picture is very different for the stochastic regime with γ = 2Nes ≤ 1, or 

M  < 1, where the fact that the deleterious allele has an appreciable probability of 

being at a high frequency means that the load is largely determined by the strength of 

selection, and is only weakly affected by U (see the parts of the tables with γ ≤ 1). 

Here, selection on modifiers that reduce the mutation rate is likely to be ineffective in 

the face of drift (Lynch et al., 2016). 

 These considerations suggest that the methylation status of CG sites in A. 

thaliana, with its high epimutation rate (Van De Graaf et al., 2015), is probably close 

to being selectively neutral with respect to purifying selection at most such sites, 

otherwise selection should have reduced the mutation rate to a much lower level. This 

is consistent with the results of  a population survey where the site frequency 

spectrum of  CG epialleles was used to estimate the intensity of selection, and no 

significant departure from neutrality was detected (Vidalis et al., 2016). It is, of 

course, possible that a subset of these sites are functionally significant, and contribute 

to genetic load and interpopulation heterosis. 

 Another possibility is that the functional consequences of these epimutations 

relate to quantitative traits under stabilizing selection; there is experimental evidence 

that quantitative trait variation in A. thaliana can be caused by epimutations 

(Quadrana & Colot, 2016). In this case, the relevant contribution to the genetic load 

would come from the epigenetic component of the genetic variance in the trait, 

multiplied by the factor S that determines the strength of selection on the trait as a 

whole –  see equations (2) of Charlesworth (2013). Under a balance between 

stabilizing selection and mutation, the magnitude of this component in a highly 

selfing species like A. thaliana depends on the mutational variance, Vm (Charlesworth 

& Charlesworth, 1995; Lande & Porcher, 2015). Empirical estimates of Vm for a range 

of quantitative traits are available from the literature (Halligan & Keightley, 2009); 

these include potential contributions from epigenetic as well as genetic variants. 

These estimates are surprisingly high compared with what might be expected from 

DNA sequence mutation rates if each trait were controlled by independent sets of 

genes (Johnson & Barton, 2005), implying either a high degree of pleiotropy across 

traits or a substantial contribution from epialleles to quantitative trait variability. 

Further empirical research is needed to discriminate among these hypotheses. 
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4.2 General patterns expected from the theoretical predictions  

Equations (6) and (7), which apply to both randomly mating and partially inbreeding 

populations, bring out the complementary relations between the measures of 

inbreeding depression and heterosis in a metapopulation. For a given mean frequency 

of deleterious alleles in the metapopulation, increased differentiation among demes as 

measured by Fs increases Hl and reduces Bl, provided that the dominance coefficient h 

is less than one-half. An increase in mean q due to drift tends to increase both Hl and 

Bl, as long as it remains less than one-half. If deme sizes or migration rates are so 

small that mean q is much greater than one-half, Hl and Bl can be reduced compared 

with large Nem values; this is more likely to affect Bl, since the associated increase in 

Fs works against Bl but in favor of Hl. With semidominance (h = ½), the mean load 

given by equation (5)  (and its modification for an inbreeding population, equation 

S17) is independent of Fs, and always increases with mean q. With h < ½, the mean 

load increases with both mean q and Fs.  

 The numerical results described in sections 2.4 and 2.5, where the load 

parameters are expressed relative to the diploid mutation rate (Tables 1 and 2), 

suggest that the main effect of Nem on these measures for weakly selected mutations 

is due to changes in Fs rather than mean q, except when M  ≤ 1, since the predictions 

from the linearized approximation for Fs (equation S12), which assumes that mean q 

is equal to the deterministic equilibrium value q*, perform quite well for M > 1 unless 

the mutation rate is very high.  

 However, unless h approaches zero,  Lrel > 1 and Brel >> 1 require an increase 

in mean q above q*, unless h and FIS are close to zero. Even with small h, it is likely 

that Hrel remains < 1 without an increase in mean q, as described in section 5 of the 

Supplementary Material. As expected from these considerations, and in line with 

previous theoretical results (Glémin et al., 2003; Roze & Rousset, 2004), Table 1 

shows that smaller Ne and M generally lead to larger Lrel and Hrel, and smaller Brel. 

Inbreeding within demes leads to lower values of Lrel, Hrel and Brel compared to the 

same Ne and M with random mating.   

  

4.3 Relations between theoretical predictions and empirical results  
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On the assumption of multiplicative fitnesses, the values of the load, inbreeding 

depression and heterosis contributed by deleterious mutations across the whole 

genome can be roughly predicted by the products U Lrel, U Brel and  U Hrel where U is 

the total diploid genomic mutation rate to deleterious mutations. For Drosophila, data 

on DNA sequence mutation rates and levels of selective constraint imply that U for 

weakly selected mutations is approximately one (Keightley, 2012; Charlesworth, 

2015). Given that the number of genes in the genomes of flowering plants such as 

Arabidopsis is approximately twice as large as in Drosophila (www.biology-

pages.info/G/GenomSizes.html) and that the mutation rates per basepair in A. thaliana 

and D. melanogaster are similar (Keightley et al., 2014; Ossowski et al., 2010), it 

seems safe to assume that U for plants like Arabidopsis is at least one, and may be 

much larger. The results in Tables 1 and 2 should thus provide a rough guide as to 

what parameter values to expect for natural populations of flowering plants, when 

contrasting populations with complete outbreeding with those with a high level of 

inbreeding. The empirical results summarised in Table S2 are broadly consistent with 

the range of parameter values in these tables for U of order 1.  

 The procedures described in sections 2 and 3 of the Supplementary Material 

can be use to assess the extent to which the data on small and large demes can be 

explained by the mutation-selection-drift model. Predictions were generated for a 

wide range of selection coefficients, from s = 2.5 x 10–5 to s = 0.05 and for h = 0.2, 

which cover the range for deleterious nonsynonymous mutations estimated from 

population genomics data. These were applied to the infinite island model, using 

estimates of FIS and FST from molecular marker data for large and small populations 

of Hypericum cumulicola (Oakley & Winn, 2012), and FST for  Daphnia magna, 

where there is no statistically significant evidence for local inbreeding (Lohr & Haag, 

2015). The scaled migration rate, M, was estimated from (1 – FST)/FST.  The Ne values 

for small and large populations were arbitrarily set to 100 and 1000, respectively. 

 Figure 1 shows the resulting plots of the predicted difference in mean relative 

load between small and large populations (ΔLrel ) against s, as well as the predicted 

Brel and Hrel values for small and large populations. Overall, the predictions are not 

very sensitive to s until it becomes very large compared with the mean value 
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suggested by population genomics analyses of Drosophila, which is approximately 

10–3 for nonsynonymous mutations (Campos et al., 2017), in which case both ΔLrel 

and Hrel start to decline rapidly. 

 In these two examples, ΔLrel with s = 5 x 10–4 was 1.07 for H. cumulicola and 

1.68 for D. magna, with empirical values of ΔL of 1.13 ± 0.51 for H. cumulicola and 

1.22 ± 0.31 for D. magna. Similar results apply to Hrel (the differences between small 

and large populations were 0.41 for H. cumulicola and 1.08 for D. magna), compared 

with observed H values of 0.50 ± 0.55 and 1.26 ± 0.39, respectively.  However, the 

magnitudes of the observed differences in B between small populations and large 

populations of H. cumulicola  (– 1.17 ± 0.55) and for D. magna  (– 1.55 ± 0.49) are 

much larger than those of the differences in Brel ( – 0.03 for H. cumulicola and – 0.19 

for D. magna). This reflects a large (but non-significantly) negative B value for the 

small populations of H. cumulicola and a near zero value for small populations of  D. 

magna, compared with Brel values of 0.32 and 0.68 for the respective small 

populations. The theoretical results may thus overestimate B for small populations, 

possibly because the island model does not capture bottleneck effects associated with 

extinction-recolonization events (see section 4.5).  

 Figure 2 shows the dependence of the results on the dominance coefficient for 

examples with weak and strong selection, using the demographic parameters for 

Daphnia, since dominance will have the greatest effect when there is no inbreeding. It 

can been see that a high degree of recessivity is necessary to obtain large Hrel values 

when selection is strong. With weak selection, there is a nearly linear dependence of 

Brel and Hrel on h, whereas ΔLrel is almost independent of h. With strong 

selection, ΔLrel is always close to zero, and in fact is slightly negative for h values 

close to 0.1, reflecting the effect of purging. 

 The high standard errors of the estimates of B and H, especially B, in many of 

the studies summarised in Table S1 makes quantitative tests for most individual cases 

unreliable, especially as estimates of FST and FIS are not always available. The 

analysis of the coefficients of variation of L, B and H in section 6 of the 

Supplementary Material suggests that variance in allele frequencies between demes is 

not a major source of the large standard errors, which must therefore arise from 

experimental error and environmental variation. This suggests that an intensive study 
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of a favourable system, resulting in more precise parameter estimates, would provide 

a rigorous test of the theory. Overall, however, it seems clear that weak selection, of 

the magnitude of that inferred from population genomics data, together with a 

substantial degree of recessivity of deleterious mutations, is required to explain the 

data on ΔL and H, on the hypothesis of purely mutational load. 

  

4.5 Caveats and complications 

 

There are several important caveats concerning attempts to interpret the data in terms 

of the simple models used here, which mean that the quantitative predictions should 

be regarded with caution. First, the assumption of statistical equilibrium for drift, 

mutation and selection under an island model of migration is questionable, since 

species with small population sizes are likely to be subject to bottlenecks and 

extinction-recolonization processes. Relatively few attempts to include such 

complications in models of inbreeding depression and heterosis have been made, with 

the recent exception of Spigler et al. (2017).  

 It should be noted, however, that a set of populations subject to recent 

bottlenecks is likely to experience effects that are similar to, but less severe than, 

making an inbred line, with effects predominantly on Fs rather than mean q (Balick, 

Do, Cassa, Reich & Sunyaev, 2015; Simons, Turchin, Pritchard & Sella, 2014). B will 

thus be greatly reduced, because of loss of variability. H will be increased, but only to 

an extent that corresponds to the inbreeding depression in the ancestral population, 

since there is no time for an accumulation of deleterious mutations at a high frequency 

that is responsible for the high values seen for the small M values in Tables 1 and 2. 

There is, therefore, no reason to expect recent bottlenecks to result in much higher H 

values than those described here. Recurrent bottlenecks associated with a long history 

of extinction and recolonization, with the associated very high FST values (Pannell & 

Charlesworth, 1999; Charlesworth & Charlesworth, 2010, Chap. 7), might have such 

an effect of H, but there is no evidence for extremely high FST values in the examples 

analysed here. 

 Second, the assumption of independence among loci used here is likely to be 

violated in finite inbreeding and subdivided populations, due to associations among 
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loci created by linkage disequilibrium and identity disequilibrium, resulting in Hill-

Robertson interference among selected loci (Felsenstein, 1974). Only modest effects 

of such interference among slightly deleterious mutations on levels of inbreeding 

depression in partially selfing populations have been found for multiplicative fitness 

models with dominance coefficients of the magnitude assumed here (Bersabé, 

Caballero, Pérez-Figuereoa, & García-Dorado, 2016; Charlesworth, Morgan & 

Charlesworth, 1992; Kamran-Disfani & Agrawal, 2014; Roze, 2015), unless the 

population size is very small. Larger effects of interference may occur for the small 

dominance coefficients (h ≤ 0.02) for severely deleterious or recessive lethal mutation 

(Kelly, 2007; Lande, 1994; Lande & Porcher, 2017; Porcher & Lande, 2016), leading 

to much higher frequencies of deleterious mutations than expected in the absence of 

interference, but the low values of B in most studies in Table S2 suggest that the 

contributions from such mutations are minor. Indeed, they are likely to be purged 

from partially inbreeding populations, unless mutation rates are very high (Lande & 

Schemske, 1985; Kelly, 2007). Lack of independence caused by synergistic epistasis 

among slightly deleterious mutations appears to somewhat reduce the effect of 

inbreeding on the level of inbreeding depression (Charlesworth, Charlesworth & 

Morgan, 1991), especially with very high rates of selfing, but its effect on heterosis 

has not been investigated. 

 The consequences of interference for B and H in subdivided populations have 

only just started to be investigated by rigorous models (Roze, 2015); in this study, 

interference appeared to have modest effects of increasing B and reducing H, mainly 

by reducing Fs. However, simulations that incorporate distributions of selection 

coefficients that are consistent with the population genomics estimates are currently 

lacking, so that it is currently unclear whether interference alone could explain the 

discrepancies between observations and theory for B that were described above.  

 Finally, the possible contributions of strongly selected deleterious mutations 

and variability maintained by heterozygote advantage have been ignored. As shown 

above, deleterious mutations with selection coefficients much greater than 10-3 are 

unlikely to contribute significantly to H and ΔL in a subdivided population, unless 

deme size is extremely small with a very high level of population subdivision. 

Heterozygote advantage can be studied by a straightforward extensions of the 
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methods employed here, and its consequences for inbreeding depression in a 

subdivided population has been investigated by Whitlock (2002).  

 His results are extended to predictions of H with random mating within demes 

in the Supplementary Material, section 8. Equation (S21) shows that loci under 

balancing selection can contribute to heterosis. With weak selection, H is 

approximately equal to the production of FST and the equilibrium genetic load under 

balancing selection. Current evidence from population genomic surveys suggest that 

loci maintained by heterozygote advantage and other forms of balancing selection are 

sparsely distributed across the genome (Charlesworth 2006; Gao, Przeworski & Sella 

2015; Siewert & Voight, 2017); the intensity and mode of selection at such loci is 

largely unknown. Indirect evidence suggests, however, that balancing selection 

contributes significantly to genetic variation in fitness in Drosophila (Charlesworth, 

2015) and to inbreeding depression (Charlesworth & Charlesworth, 1999), and so 

could be partly responsible for the observed values of B and H.    
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Table 1     Genetic loads, inbreeding depression and heterosis in a     
        subdivided population  
 
            M = 0.1, FST = 0.91        M = 1, FST = 0.5               M = 10, FST = 0.0091   
   
Ne = 100, κ = 2     

             
 
Ne = 100, κ = 0.5                 

 
Ne = 1000, κ = 2                           

 
Ne = 1000, κ = 0.5                 

 

h u 

(x108) 

Lrel Brel Hrel Lrel Brel Hrel Lrel Brel Hrel 

0.5 2.5 8.82 
1.00 

0 
0 

0 
0 

1.85 
1.00 

0 
0 

0 
0 

1.10 
0.971 

0 
0 

0 
0 

 2500 7.66 
1.00 

0 
0 

0 
0 

1.81 
1.00 

0 
0 

0 
0 

1.08 
1.971 

0 
0 

0 
0 

0.2 2.5 8.55 
2.15 

0.648 
0.346 

4.87 
1.15 

1.62 
1.68 

0.777 
0.818 

0.660 
0.682 

0.999 
1.13 

1.30 
1.37 

0.118 
0.134 

 2500 7.38 
1.96 

0.490 
0.330 

3.49 
1.00 

1.57 
1.59 

0.707 
0.734 

0.597 
0.597 

0.949 
1.114 

1.05 
1.21 

0.102 
0.118 

0.5 2.5 8.81 
1.00 

0 
0 

0 
0 

1.85 
1.00 

0 
0 

0 
0 

1.10 
1.00 

0 
0 

0 
0 

 2500 5.57 
0.943 

0 
0 

0 
0 

1.70 
0.943 

0 
0 

0 
0 

1.05 
0.943 

0 
0 

0 
0 

0.2 2.5 8.55 
2.15 

0.648 
0.346 

4.87 
1.15 

1.62 
1.68 

0.777 
0.818 

0.660 
0.683 

0.999 
1.13 

1.20 
1.37 

0.118 
0.134 

 2500 5.30 
1.84 

0.424 
0.330 

2.62 
0.917 

1.46 
1.48 

0.664 
0.696 

0.553 
0.552 

0.894 
1.04 

0.993 
1.14 

0.0966 
0.111 

0.5 2.5 1.62 
1.00 

0 
0 

0 
0 

1.24 
1.00 

0 
0 

0 
0 

1.07 
1.00 

0 
0 

0 
0 

 2500 1.52 
0.971 

0 
0 

0 
0 

1.23 
0.971 

0 
0 

0 
0 

1.06 
0.971 

0 
0 

0 
0 

0.2 2.5 1.51 
1.48 

0.900 
1.02 

0.546 
0.484 

1.12 
1.37 

0.969 
1.125 

0.286 
0.375 

0.994 
1.12 

1.24 
1.38 

0.100 
0.115 

 2500 1.36 
1.39 

0.819 
0.939 

0.433 
0.391 

1.08 
1.30 

0.879 
1.02 

0.249 
0.309 

0.941 
1.10 

1.08 
1.23 

0.0849 
0.100 

0.5 2.5 1.62 
1.00 

0 
0 

0 
0 

1.24 
1.00 

0 
0 

0 
0 

1.07 
1.00 

0 
0 

0 
0 

 2500 1.32 
0.943 

0 
0 

0 
0 

1.17 
0.943 

0 
0 

0 
0 

1.02 
0.943 

0 
0 

0 
0 

0.2 2.5 1.51 
1.48 

0.900 
1.02 

0.546 
0.494 

1.12 
1.37 

0.969 
1.12 

0.286 
0.375 

0.994 
1.13 

1.24 
1.38 

0.100 
0.115 

 2500 1.15 
1.26 

0.786 
0.910 

0.329 
0.337 

1.01 
1.20 

0.839 
0.976 

0.227 
0.271 

0.886 
1.02 

1.02 
1.16 

0.0796 
0.0917 
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All results are expressed relative to the diploid mutation rate, 2u, as indicated 

by the subscript rel.  

The expected loads are denoted by Lrel.The inbreeding depression values 

(Brel) were calculated from equation (6), and the heterosis values (Hrel) from 

equation (7). The selection coefficient s was 2.5 x 10-3. 

The upper items in the cells are the exact expectations over the probability 

distribution of local allele frequencies, using equations (S4) - (S6), where α 

and β in the latter are replaced by α + Mqt and β + Mpt, respectively.  

The lower items in the cells were calculated from the linearized approximation 

to this distribution, using equations (S11) and (S12).   
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Table 2     Genetic loads and heterosis in a subdivided population with 
        inbreeding (FIS = 0.9) 
 

        M = 0.1, FST = 0.91        M = 1, FST = 0.5             M = 10, FST = 0.0091   
 
Ne = 100, κ = 2                 
 

   

Ne = 100, κ = 0.5                 
 

 
 
All results are expressed relative to the diploid mutation rate, 2u, as indicated 

by the subscript rel.  

The expected loads are denoted by Lrel.The inbreeding depression values 

(Brel) were calculated from equation (6), and the heterosis values (Hrel) from 

equation (7). The selection coefficient s was 2.5 x 10-3. 

The upper items in the cells are the exact expectations over the probability 

distribution of local allele frequencies, using equations (S13) and (S14), where 

α and β in the latter are replaced by α + Mqt and β + Mpt, respectively.  

The lower items in the cells were calculated from the linearized approximation 

to this distribution, using equations (S11) and (S12).   

h 
   u  

(x108) 
   Lrel 

Brel Hrel Lrel 
 

Brel Hrel Lrel 
 

Brel Hrel 

0.5 2.5 3.78 
0.526 

0 
0 

0 
0 

0.911 
0.526 

0 
0 

0 
0 

0.575 
0.526 

0 
0 

0 
0 

 2500 3.50 
0.518 

0 
0 

0 
0 

0.901 
0.518 

0 
0 

0 
0 

0.572 
0.518 

0 
0 

0 
0 

0.2 2.5 3.76 
0.527 

0.317 
0.165 

1.96 
0.161 

0.891 
0.522 

0.320 
0.214 

0.234 
0.112 

0.558 
0.514 

0.324 
0.299 

0.0301 
0.0274 

 2500 3.48 
0.519 

0.284 
0.163 

1.68 
0.155 

0.882 
0.514 

0.311 
0.200 

0.227 
0.108 

0.555 
0.506 

0.319
0.291 

0.0295 
0.0266 

0.5 2.5 3.78 
0.526 

0 
0 

0 
0 

0.911 
0.526 

0 
0 

0 
0 

0.575 
0.526 

0 
0 

0 
0 

 2500 2.85 
0.510 

0 
0 

0 
0 

0.873 
0.510 

0 
0 

0 
0 

0.562 
0.526 

0 
0 

0 
0 

0.2 2.5 3.76 
0.527 

0.318 
0.165 

1.96 
0.161 

0.891 
0.522 

0.320 
0.214 

0.234
0.112 

0.558 
0.514 

0.324 
0.299 

0.0301 
0.0274 

 2500 2.83 
0.510 

0.263 
0.162 

1.35 
0.150 

0.854 
0.506 

0.303 
0.208 

0.218 
0.105 

0.545 
0.498 

0.313 
0.286 

0.0290 
0.0261 
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Figure Legends 
 

Figure 1.  Plots against s of the predicted values of Brel (red and black curves, 

for small and large populations, respectively) Hrel (blue and green curves, for 

small and large populations, respectively) and ΔLrel (grey curves) for the H. 

cumulicola (left) and D. magna (right) parameters described in the text. The 

empirical estimates of these parameters and their standard errors are shown 

as inserts inside the panels. 
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	Hrel	
large	

Brel	
small	
	

Brel	
large	

ΔL	=	1.13	±	0.51	 ΔL	=	1.22	±	0.31	

Bsmall	=	-0.51	±	0.31	
Blarge	=		0.66	±	0.45	
	
	

Hsmall	=	1.20	±	0.47	
Hlarge	=	0.07	±	0.29	

Bsmall	=	0.13	±	0.38	
Blarge		=	1.69	±	0.31	

Hsmall	=		0.96	±	0.26	
Hlarge	=	-0.30	±	0.30	

s	 s	
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Figure 2.  Plots against h of the predicted values of Brel (red and black curves, 

for small and large populations, respectively) Hrel (blue and green curves, for 

small and large populations, respectively) and ΔLrel (grey curves) for weak 

selection (left) and strong selection (right), using the D. magna demographic 

parameters described in the text.  
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Supplementary Material: 
 
Mutational load, inbreeding depression and heterosis in subdivided 
populations 
 
Brian Charlesworth 
 
Institute of Evolutionary Biology, School of Biological Sciences, University of 
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK 
 

1. Exact and approximate deterministic equations for a randomly mating 
population 
The equilibrium frequency of A2, q* satisfies the following cubic equation (Bürger, 
2000, p.100) :

 

 

																 f (q) = s(1− 2h)q
3 − s(1−3h)q2 − (hs+u+ v)q+u = 0 (S1)

  
 While a formal solution to equation (S1) can be written down, in practice it is 
simpler to solve it numerically by Newton-Raphson iteration, although it reduces to  a 
quadratic equation with an explicit solution when h = 0.5.  The exact value of the 
equilibrium genetic load, L*, can be obtained by substituting the value of q* obtained 
in this way into equation (S1).  
 If t = hs >> u, second and third-order terms in q* can be ignored and we 
obtain: 

                                                        
q* ≈ u / (t +u+ v) (S2)

  
 The corresponding approximate equilibrium genetic load is obtained by 
ignoring second-order terms in q* in equation (S1), yielding: 
 

                                                      
L* ≈ 2ut / (t +u+ v) (S3)

 	
 L* is always smaller than the classical approximate value of 2u for non-
recessive autosomal mutations (Haldane 1937), but approaches 2u when t >> (u + v). 
If we write u = κv,  where κ measures the mutational bias towards or against 
deleterious alleles, it is easily seen from equation (S3) that the derivative of L* with 
respect to v is proportional to κt, so that the equilibrium load increases with the 
mutation rate, although the dependence is weak if κ  << 1, i.e. when mutation is 
strongly biased towards the beneficial allele.   
 If u + v approaches t, this approximation breaks down, and the full solution to 
equation (S1) needs to be used. Table S1 and Figure S1 illustrate the dependence of 
the equilibrium load on the selection and mutation parameters for such cases. The 
main features of the results are as follows. The ratio of the L* to the classical value of 
2u, Lrel, decreases with the mutation rate. A high rate of reversion from the deleterious 
mutant state to wild-type, and a small dominance coefficient (h), enhances this effect. 
Nonetheless, even when u is comparable to t, L* is always several times greater than 
with u << t, although its relation to u is one of diminishing returns. For example, for 
h = 0.2 and κ = 0.5 (the situation in Figure S1 where the mutation rate has the least 
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effect on the load), Lrel = 0.983 for u/s = 0.001; with u/s = 1 (1000 times larger), Lrel =  
0.0894, representing an absolute load that is 91 times greater. Even with a much more 
extreme mutational bias towards the beneficial alleles of κ = 0.1, the ratio of L values 
for these two values of u/s is 23. 
 

2. Exact stochastic equations for a randomly mating population  
For computational purposes, it is preferable to write the relative fitnesses of A1A1, 
A1A2 and A2A2 as 1 + s´, 1 + h´s´ and 1, respectively (Charlesworth & Jain, 2014),  
where s´ = 1/(1 – s) and h´ = 1 –  h. The probability density of p = 1 – q is then an 
increasing exponential function of p and s´, provided that h > ½.  For small s, such 
that O(s2) terms can be ignored, as assumed here, s´ can be equated to s to a good 
level of approximation. From the general expression for the stationary distribution of 
allele frequencies (Wright, 1937; Charlesworth & Charlesworth, 2010, Chap. 5), the 
probability density of p is given by: 
 

	 	 																				

φ(p) = w2Neqα−1(1− q)β−1

≈ C exp{2Nes´p[1+ q(2h´−1)]} q
α−1pβ−1 (S4)  

 
Writing γ = 4Nes´,  the exponential term in equation (S4) can be expanded as: 
 

                                         

f (q) = (γ p)i[1+ q(2h´−1)]i

i!i=0

∞

∑

=
i=0

∞

∑ (γ p)i [q(2h´−1)] j

j!(i− j)!j=0

i

∑ (S5)  

 
Substituting the double series into equation (S4) and integrating between 0 and 1, we 
obtain:  

                                 

C−1 = γ ii

i=0

∞

∑ (2h´−1) j

j!(i− j)!j=0

i

∑
0

1

∫ qα+ j−1pβ+i−1dq

=
Γ(α)Γ(β)
Γ(α +β)

g(γ,h,α,β) (S6)  

 
where: 

                          
g(γ,h,α,β) = γ ii

i=0

∞

∑
(2h´−1) j (α) j

j!(i− j)!(α +β)i+ jj=0

i

∑
 

 
and (x)i+j is the Pochhammer symbol, such that (x)0 = 1, (x)1 = x, (x)k = x(x + 1)… (x + 
k –1).  
 This approach provides a compact expression for the moments (µk) about zero, 
such the expectation of qk is given by: 
 

																																									
µk = g(γ,h,α,β)

−1 γ ii

i=0

∞

∑
(2h´−1) j (α)i+ j+k
j!(i− j)!(α +β)i+ j+kj=0

i

∑ (S7)
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 The expected genetic load is given by: 
     

                               
E{L} = [2hµ1 + (1− 2h)µ2 ]s (S8)

	 
  In the case of semidominance (h = ½), equations (S6) and (S7) simplify, since 
the only term in the sum over j is for j = 0. This yields expressions involving the 
confluent hypergeometric function (Kimura,  Maruyama & Crow, 1963; Charlesworth 
& Jain, 2014). In this case, for β << 1 and γ >> 1, the expected value of q is close to 
the deterministic value 2u/s and the expected load approaches 2u. For larger values of  
β, this is no longer true and the dependence of the load on the mutation and selection 
parameters must be evaluated numerically. 
 A computer program for carrying out these evaluations has been developed. 
The powers of γ  and 2h´ – 1 in equations (S5) and (S6) are both positive when s´ > 0 
and h < ½, so that logarithms of the terms in the series and their partial sums can be 
obtained, avoiding overflow problems when γ is >> 1. If the ith term in the series is 
Xi, and the corresponding partial sum is Si, we have: 
 

	 	 	
ln(Si ) = ln(Si−1)+ ln{1+ exp[ln(Xi )− ln(Si−1)]} (S9)

 
 

 This relation enables the logarithms of the constant C and the moments of the 
distribution to be obtained without difficulty, even when γ is as large as 100, although 
convergence of the series can be slow. 
 

3. Approximate stochastic results for a randomly mating population  
An approximate analytic expression for the expected load when t > u, v can be 
obtained by linearizing Δq around the deterministic equilibrium value q* given by 
equation (S1), in which case φ(q) is a beta distribution, e.g. Malécot (1969, p.58), 
Bataillon & Kirkpatrick (2000) and Charlesworth & Charlesworth (2010, p.355).   
 The inbreeding coefficient F corresponding to the variance in q is then given 
by: 

																																																																					F ≈
1

1+ 4Ne(t +u+ v)
(S10)

 
and 
																																												E{L} ≈ [(1−F)(2h)+ (1− 2h)F]q* s (S11)

   

This approximation is valid when γ is sufficiently large that third and higher order 
values of q – q* can be neglected, or when γ is so small that φ(q) approaches the beta 
distribution for the neutral case. 
 

4. Infinite population island model 
To deal with the infinite population island model described by equation (8), the above 
equations are modified by replacing α with α + Μqt and β with β + Μpt, where qt is 
the value of q for the whole metapopulation and pt = 1 – qt.To obtain the value of qt 
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given values of the other parameters, we can iterate the values of qt in the equation for 
the first moment of the distribution, given by the equivalent of equation (S4), until qt 
and the mean value of q converge. This was done using a program for a grid search 
using the fitness representation 1+ s´, 1 + h´s´, 1, which was iterated for at least 10 
cycles with increasingly finer subdivision of the interval (0, 1), or until the 
proportional difference between successive values of qt became less than 10-5. By 
using this value of qt in the series for the second moment of the distribution, equation 
(S7) can be used to calculate the expected genetic load.  
 This can be compared to the approximate value obtained by linearization of Δq 
about the deterministic equilibrium frequency given by equation (S1), using equations 
(S10) and (S11). The only difference is that F is replaced by: 
 

                                                 
Fs ≈

1
1+M + 4Ne(t +u+ v)

(S12)
                                                   

                                      
5. Subdivided populations with inbreeding 
The mean fitness of the population with frequency p of allele A1, under weak 
selection with inbreeding coefficient FIS and relative fitnesses of A1A1, A1A2 and 
A2A2 of 1 + s´, 1 + h´s´ and 1, respectively, can be written as: 
																																																			
																																													w ≈1+{FIS + (1−FIS )p[1+ q(2h´−1]}s´ (S13) 	
	
To obtain the equivalent of equation (S4), the term in FIS  in this expression should be 
given a weighting of 2, corresponding to its contribution to the change in allele 
frequency due to selection that is obtained by differentiation of the fitness potential 
function with respect to p (Wright, 1969, p.244). The resulting expression for the 
probability density of p is:  
  
φ(p) ≈ C exp{2Nes´p(1+FIS )[1+ q(2h´−1)(1−FIS / (1+FIS )]} q

α+Mqt−1pβ+Mpt−1 (S14)  
      
 The modifications to equations (S5) – (S7) as far as the selection term is 
concerned simply require γ to be replaced by 2Ne(1 + FIS)–1s and (2h´– 1) with (2h´– 
1)(1 – FIS)/(1 + FIS). The computations of the required moments can thus be carried 
out by a simple modification of the program used for random mating.   
 Using the alternative fitness representation of 1, 1 – hs and 1 – s, the exact 
equation for the deterministic equilibrium allele frequency q* is:  
 

s(1− 2h)(1−FIS )q
3 + s[FIS − (1−FIS )(1−3h)q

2 −{s[FIS + h(1−FIS )]+u+ v}q+u = 0 (S15) 	
and the equivalent of the approximate equation (S3) is: 
 
                  q* ≈ u / {s[FIS + h(1−FIS )]+u+ v} (S16)   
 
As before, the expected deterministic and stochastic loads can be obtained by 
substituting the values of q* and the first and second moments of q into the relevant 
expressions for mean fitness. For a population with allele frequency q, the load is 
given by: 
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                       L ≈ q[FIS + 2h(1−FIS )+ (1−FIS )(1− 2h)q]s (S17) 	
	
 

6. Upper limits for Lrel, Brel and Hrel 
The value of Ll at deterministic equilibrium is approximately (1 – FIS/2), if q * << 1. 
Similarly, Brel with q * << 1 is approximately (½ – h)/[(FIS  + (1 – FIS)h], and Hrel = 
FsBrel/(1 – Fs). For an outcrossing population with the parameters of Table 1, Lrel = 1; 
with FIS = 0.9 (Table 2), Lrel =  0.550. The corresponding values of  Brel are 1.5 and 
0.326. According to equations (6) and (7), with h < ½, 0 < Fs < 1 and mean q << 1, 
both Brel and Hrel will be less than the deterministic value of Brel . If mean q is held 
constant at q*, equation (5) implies that Lrel increases linearly with Fs towards a 
maximum of 2.5 with h = 0.2 for an outcrossing population, but remains unchanged at 
0.5 for a fully inbreeding population: this is because Lrel for a given value of Fs is 
equal to the product of (1 – FIS)Fs and the deterministic equilibrium value of Brel, plus 
Lrel at Fs = 0.  
 
7. Variances of load, inbreeding depression and heterosis due to inter-
deme variation in allele frequencies 
From equations (5)-(7), it can be seen that the variances of the load, inbreeding 
depression and heterosis due to variance in allele frequencies between populations are 
determined by the 1st through 4th moments of q, µ1 to µ4.  Elementary algebra using 
these expressions yields the following expressions for these variances for a single 
locus:  
 
Vl (L) = (µ2{[FIS + 2h(1−FIS )]2 − 2µ1[FIS + 2h(1−FIS )](1−FIS )]−µ2 (1−FIS )2 (1− 2h)2}
+ 2µ3[FIS + 2h(1−FIS )](1−FIS )(1− 2h) +µ4 (1−FIS )

2 (1− 2h)2 −µ1
2[FIS + 2h(1−FIS )]

2)s2 (S18)
 

																																			Vl (B) = {µ2 (1+ 2µ1 −µ2 )−µ1
2 − 2µ3](1− 2h)

2 s2 (S19) 	
 

														
Vl (H ) = {µ2[(2h)

2 − 4µ1h(1− 2h)−µ2 (1− 2h)
2 ]+ 4µ3h(1− 2h)

+µ4 (1− 2h)
2 −µ1

2 (2h)2}2 s (S20) 	

 
 By combining these expressions with the expectations given by equations (5)-
(7), the corresponding coefficients of variation (CVs) can be obtained. Numerical 
values of the CVs can be found using the computational procedures described in 
sections 2 and 4 above; these also apply to the values of L etc when divided by 2u. 
The CVs are generally very large, reflecting the skew of the distribution of allele 
frequencies towards low frequencies of the deleterious alleles. For example, with the 
population size, selection and mutation parameters in the upper part of Table 1, the 
CVs of L with M = 0.1, 1 and 10 are 72.2, 115 and 49.7; the corresponding values for 
B are 88.4, 79.2 and 41; and those for H  are 127, 282 and 422.  
 However, if there are many independent sites that contribute to L, B and H, as 
is almost certainly the case, their CVs are of the order of the typical individual locus 
value, divided by the square root of the number of sites, n.  This can easily be seen in 
the case when each site has an equal effect, in which case the standard deviation is 
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equal to the product of √n and the single locus standard deviation, whereas the 
expectation is equal to the product of n and the single locus expectation. There are 
likely to be of the order of 20,000 genes or more in a plant genome, with a mean of 
1500 coding nucleotide sites per gene, 70% of which can generate nonsynonymous 
mutations, giving n = 2.1 x 107, and √n = 4582. Even with a single locus CV of 500, 
the CV for the trait as a whole is only 0.11 in this case.  
 
8. Heterozygote advantage 
For a model in which genotypes A1A1, A1A2 and A2A2 at a locus have fitness 1 – s 
and 1 – t, equations (6) and (7) can be replaced with: 
 

                                             
Bl = pq(1−Fs )(s+ t) (S21)

		

                               
Hl = pqFs (s+ t) (S22)

  
 These expressions shows that the general principles established for mutation-
selection balance apply to heterozygote advantage; if the effects of drift are moderate, 
so that the product of the two mean allele frequencies does not approach zero, both Bl 
and Hl  will be of order (s + t) for intermediate values of Fs.  For the infinite island 
model with random mating, linearization around the deterministic equilibrium, q* = 
s/(s + t), gives: 

                                    
Fs ≈

1
1+ 4Ne(m+ L*)

(S23)
  

 
where L* is the deterministic equilibrium genetic load with random mating, st/(s + t), 
which is also equal to the equilibrium value of B . 
 If L* > > 1/(4Ne) and m, Hl is approximately 1/(4Ne), which is the same as the 
extra genetic load caused by drift in this case (Robertson, 1970), and is independent of 
the strength of selection and extent of population subdivision. With L* << 1/(4Ne) and 
m, Hl is approximately L*FST, and is thus proportional to both the extent of 
subdivision and the strength of selection. 
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Table 1     Genetic loads in a randomly mating population with drift,    
        mutation and selection (Ne = 106) 
	
                       h = 0.5                        h = 0.2 
 
κ = 2 

 
 
    κ = 0.5 
 

 
 
The exact loads (Lexact) were calculated as expectations over the distribution of allele 
frequencies, using equations (5) and (S7). The approximate loads (Lapprox) were 
calculated from the linearized approximation, equations (S10) and (S11).  

γ    u 
(x108) 

E{q} Lexact 
(x108) 

Lapprox 
(x108) 

Lequilib 
(x108) 

E{q} Lexact 
(x108)	

Lapprox 
(x108)	

Lequilib 
(x108)	

100 0.25 0.0001 0.505 0.500 0.500 0.0002 0.496 0.518 0.500 
 2.5 0.0010 5.05 4.99 4.99 0.0025 4.94 5.18 5.00 
 25 0.0101 50.3 49.3 49.3 0.0224 47.7 51.6 49.9 
 250 0.0957 479 435 435 0.1544 386 471 463 
10 0.25 0.0012 0.611 0.499 0.499 0.0022 0.571 0.649 0.500 
 2.5 0.0099 5.68 4.93 4.93 0.0203 5.18 6.36 4.99 
 25 0.1073 53.6 43.5 43.5 0.1543 43.3 53.1 46.3 
 250 0.5107 255 200 200 0.5080 183 192 188 
1 0.25 0.4274 21.4 0.493 0.493 0.4274 21.3 0.998 0.499 
 2.5 0.4551 22.8 4.35 4.35 0.4547 21.7 7.51 4.63 
 25 0.5708 28.5 20.0 20.0 0.5661 23.9 21.4 18.8 
 250 0.6525 32.6 31.2 31.2 0.6502 26.1 26.1 25.6 
0.1 0.25 0.6444 3.22 0.435 0.435 0.6444 3.21 0.886 0.463 
 2.5 0.6471 3.24 2.00 2.00 0.6468 3.14 2.51 1.88 
 25 0.6577 3.29 3.12 3.12 0.6570 2.88 2.83 2.56 
 250 0.6653 3.33 3.31 3.31 0.6650 2.70 2.70 2.66 

100 0.25 0.0001 0.505 0.500 0.500 0.0002 0.496 0.518 0.500 
 2.5 0.0010 5.05 4.99 4.99 0.0025 0.492 5.16 4.98 
 25 0.0099 49.5 48.5 48.5 0.0217 0.462 49.7 48.1 
 250 0.0827 414 385 385 0.1273 307 352 347 
10 0.25 0.0012 0.575 0.499 0.499 0.0021 0.534 0.646 0.498 
 2.5 0.0111 5.53 4.85 4.85 0.0197 4.97 6.10 4.81 
 25 0.0889 44.4 38.5 38.5 0.1254 33.4 39.3 34.7 
 250 0.2696 135 125 125 0.2837 82.5 86.6 84.8 
1 0.25 0.1598 7.99 0.485 0.485 0.1606 7.86 0.958 0.481 
 2.5 0.1911 9.55 3.85 3.85 0.1967 8.46 5.63 3.47 
 25 0.2817 14.1 12.5 12.5 0.2891 9.70 9.89 8.48 
 250 0.3262 16.3 16.1 16.1 0.3276 9.98 10.0 9.83 
0.1 0.25 0.3121 1.56 0.385 0.385 0.3122 1.54 0.690 0.347 
 2.5 0.3165 1.58 1.25 1.25 0.3170 1.43 1.31 0.848 
 25 0.3278 1.64 1.61 1.61 0.3285 1.14 1.15 0.983 
 250 0.3326 1.66 1.66 1.66 0.3328 1.02 1.02 0.998 
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Table S2  Estimates of B and H for natural populations of flowering   
      plants 
	

	
	
Standard errors of the means are in parentheses 
	
1  Mean and standard error of B and H obtained from values for 4 and 6 different  
    crosses respectively. 
2 Mean and standard error of H obtained from values for 6 different  
    crosses. 
3 Mean and standard error of B and H obtained from values for 4 different crosses 
4 Mean and standard error of B and H obtained from values for 6 different  
    crosses. The 1996 data for the Kansas field site had much smaller H values,  
    whereas the Maryland site had similar values to those in 1995. 

Species Details B H Reference 
Phlox 
drummondii 

Self-incompatible; 
net fitness in field1 

0.31 
(0.07) 

0.23 
(0.09) 

Levin & Bulinska- 
Radomska (1988) 

Scabiosa 
columbaria 

Outcrossing; net fitness 
in greenhouse2 

1.83 
(0.84) 

0.76 
(0.35) 

Van Treuren et al. 
(1993) 

Salvia 
pratensis 

Outcrossing; survival x size in 
field3 

1.39 
(0.20) 

0.32 
(0.16) 

Ouborg & Van 
Treuren (1994) 

Lychnis flos-
cuculi 

Outcrossing; net fitness in 
common garden 

1.65 
(0.19) 

0.18 
(0.09) 

Hauser & Loeschke 
(1994) 

Chamaecrista 
fasciculata 

Outcrossing; net fitness in field; 
Maryland 1995 data4  

– 
 

0.18 
(0.06) 

Fenster & Galloway 
(2000) 

 Kansas 1995 data4 – 0.18 
(0.05) 

 

Gentianella 
germanica 

Self-compatible; net fitness in 
common garden; small 
populations 

–0.33 
(0.15) 
 

0.12 
(0.07) 
 

Paland & Schmid  
(2003) 

 Large populations 0.12 
(0.09) 

0.07 
(0.07) 

 

Ranunculus 
reptans 

Self-incompatible; seed 
production in common garden5 

  – 0.06 
(0.05) 

Willi & Fischer 
(2005) 

Leavenworthia 
alabamica 

Partially selfing populations; 
net fitness in greenhouse6 

– 0.39 
(0.48) 

Busch (2006) 

 Self-incompatible populations  0.04) 
(0.18) 

 

Hypericum 
cumulicola 

Outcrossing; net fitness in 
greenhouse; small populations 

–0.51 
(0.31) 

1.20 
(0.47) 

Oakley & Winn  
(2012) 

 Large populations 0.66 
(0.45) 

0.07 
(0.29) 

 

Arabidopsis 
lyrata 

Self-incompatible populations; 
net fitness in greenhouse 

1.02 
(0.35) 

0.25 
(0.18) 

Willi (2013) 

 Partially selfing populations 1.39 
(0.79) 

0.96 
(0.32) 

 

A. 
lyrata 

Self-incompatible populations; 
net fitness in greenhouse 

2.52 
(0.60) 

0.47 
(0.16) 

Oakley et al. (2015) 

 Partially selfing populations 1.67 
(1.85) 

1.43 
(0.75) 

 

Sabatia 
angularis 

Partially selfing; net fitness in 
common garden 

3.32 
(0.82) 

0.74 
(0.25) 

Spigler et al. (2017) 
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5 Mean and standard error obtained from values for 13 different crosses.  
6  Mean and standard error obtained from values for selfing and outcrossing 
    populations for 3 and 4 different crosses, respectively. 
 
For the other studies, the means were obtained by log-transforming the values of 
mean provided in tables or figures, and the standard errors were estimated from the 
ratios of the untransformed standard errors to the untransformed means. 
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Figure S1.  Plots of the deterministic equilibrium genetic load (green and blue curves, 
for h = 0.2 and h = 0.5, respectively), and the equilibrium frequency of the deleterious 
mutant allele (black and red curves, for h = 0.2 and h = 0.5, respectively), against the 
ratio of the mutation rate to the selection coefficient (u/s). Panel A is for the case of 
mutational bias in favour of the deleterious allele (κ = 2.0), and Panel B is for the 
case of mutational bias against it (κ = 0.5). The selection coefficient s against mutant 
homozygotes was 10-4. The genetic load was measured relative to 2u, the value 
expected for rare mutations with sufficiently strong heterozygous fitness effects that 
back mutations can be ignored.  
 
 

 

 

 

  

u/s 

A B 
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Figure S2.  Plots of the mean genetic load at mutation-selection-drift equilibrium 
against γ = 2Nes, the scaled selection coefficient, which was altered by changing the 
population size while keeping s constant at 5 x 10-6. For the smallest value of γ, Ne = 
104. The load was measured relative to the exact deterministic equilibrium value, 
obtained from equations (3) and (4).The dominance coefficient, h,  was 0.2. The blue 
and red curves are for κ = 0.2 and 0.5, respectively. Panel A is for a forward mutation 
rate of u =  2.5 x 10-9 and panel B is for u = 2.5 x 10-7. 
	
	

γ
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