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The OpenPathSampling (OPS) package provides an easy-to-use framework to apply transition path sam-
pling methodologies to complex molecular systems with a minimum of e�ort. Yet, the extensibility of OPS
allows for the exploration of new path sampling algorithms by building on a variety of basic operations. In
a companion paper [Swenson et al 2018] we introduced the basic concepts and the structure of the OPS
package, and how it can be employed to perform standard transition path sampling and (replica exchange)
transition interface sampling. In this paper, we elaborate on two theoretical developments thatwent into the
design of OPS. The first development relates to the construction of path ensembles, the what is being sam-
pled. We introduceanovel set-basednotation for thepathensemble,whichprovidesanalternativeparadigm
for constructing path ensembles, and allows building arbitrarily complex path ensembles from fundamental
ones. The second fundamental development is the structure for the customisation of Monte Carlo proce-
dures; how path ensembles are being sampled. We describe in detail the OPS objects that implement this
approach to customization, the MoveScheme and the PathMover, and provide tools to create andmanipulate
these objects. We illustrate both the path ensemble building and sampling scheme customization with sev-
eral examples. OPS thus facilitates both standard path sampling application in complex systems as well as
the development of new path sampling methodology, beyond the default.
Keywords: transition path sampling; transition interface sampling; molecular dynamics simulation; rare

events

I. INTRODUCTION

Many dynamical processes, including nucleated phase
transitions, chemical reactions, and complex conforma-
tional changes in biomolecular systems, such as proteins
and nucleic acids, occur on long timescales [1–4], primarily
due to large kinetic barriers between metastable states [5–
7]. Straightforward molecular dynamics simulations are
then highly ine�icient due to the long waiting times within
metastable basins, while the rare events of interest occur
over a short time [8]. Methods such as umbrella sam-
pling [9], blue moon sampling [10], local elevation sam-
pling [11], conformational flooding [12], hyperdynamics [13],
metadynamics [14], adaptive biasing force methods [15],
replica exchange [16], simulated tempering [17], integrated
sampling [18], orthogonal space sampling [19], and numer-
ous others enhance the occurrence of the rare event by bi-
asing the potential energy surface or the density of sampled
conformations. To be e�ective, bias potentials require (a set
of) collective variables that approximate the reaction coor-
dinate. However, a poor choicewill lead to poor sampling of
reactive pathways and hence poor estimates of the dynam-
ical bottlenecks and the related barrier heights and rates.
The transitionpathsampling (TPS)methodology [20–23])

can enhance the sampling of complex dynamical transitions
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in complex (bio)molecular systems, avoiding the exponen-
tially long timescales that the system spends in metastable
states, and, most importantly, bypassing the need for a re-
action coordinate. Notwithstanding the e�iciency of path
sampling, the complexity of implementation and lack of
standard tools have hampered widespread application.

The OpenPathSampling (OPS) framework aims at provid-
ing a toolbox to make complex transition path sampling
simulation easy accessible for users. In Paper I, we intro-
duced the basic concepts and structure of the OPS frame-
work, discussed its ingredients and gave a tutorial on how
to conduct some standard simulations using theOPS frame-
work [24]. The current work builds heavily on this compan-
ion paper and we refer the reader to Ref. [24] for full details.
The OPS framework facilitates implementation of the three
stages in any path sampling study: initialization, sampling,
and analysis. In the initialization step the user defines the
(network of) transitions that needs to be sampled. This re-
quires definition of stable states and path and/or interface
ensembles to be used in (replica exchange) transition inter-
face sampling (TIS) schemes. These definitions are based
on phase space volumes defined as a function of a priori
chosen collective variables. Since path sampling is basically
a Monte Carlo (MC) approach, the user also has to decide
on the specific details of how each type of move is imple-
mented, which OPS facilitates with the MoveStrategy ob-
jects, and the user has to create the overall (and sometimes
complex) decision tree for theMCprocedure, whichOPS im-
plements in a MoveScheme. The transition network and the
MoveScheme, together with the Molecular Dynamics Engine,
a Storage file, and a initial path sample set, enter are used
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by the PathSimulator, which performs the sampling. Anal-
ysis of the sampled paths is subsequently performed using
information obtained from the Storage object. OPS pro-
vides tools for the initialization step and for the analysis. For
more details we refer to Paper I [24] and to the online docu-
mentation at http://openpathsampling.org.
This paper is mainly aimed at method developers and

researchers interested in devising their own path sampling
methods using the OPS framework. This requires an exten-
sive treatmentof themore fundamental ideas thatwent into
the design of OPS. The paper focuses on two of those funda-
mental aspects. One is the construction of path ensembles,
which can be viewed as what is being sampled. The other
is the customisation of the Monte Carlo procedures, which
relates to how the path ensembles are being sampled. This
paper provides novel conceptional frameworks for dealing
with these two aspects.
In the first part, we focus on the path ensembles. While

the definition of path ensembles in the original TPS and
TIS papers is perfectly usable for many applications, these
definitions can be come quite cumbersome when multiple
states or multiple collective variables come in to play. This
also holds for the more complex path moves, such as the
minus interface move [25, 26] used in replica exchange TIS
(RETIS), which exchanges a trajectory in the first interface
ensemble with a trajectory exploring the stable state (the
minus interface ensemble) in order to decorrelate the (usu-
ally short) pathways in the first interface, and to provide a
direct estimate for the flux out of the stable state [25–27].
Here, we present a framework allowing one to build arbi-
trarily complex path ensembles from fundamental path en-
sembles. To facilitate this, we first introduce a novel set-
based notation for the path ensembles. For completeness,
we also provide connections to the original TPS and TIS no-
tation. This novel notationprovides analternativeparadigm
for constructing path ensembles with several major advan-
tages: (1) It allows one to easily create complex ensembles
as combinations of simpler ensembles, e.g., using set logic.
(2) It creates a systematic connectionbetween theensemble
indicator function and the stopping criteria used when gen-
erating a trajectory for the ensemble, e.g., with a shooting
move. Previously, the stopping criteriawere identified sepa-
rately for every ensemble/path generating move. (3) It facil-
itates analysis, as many analysis procedures can be framed
as searching for subtrajectories that satisfy some ensemble
indicator function. Examples of this are provided in Sec. IV.
Of particular importance herein is the sequential path en-
semble, which is directly related to the way that OPS im-
plements path sampling and testing. We explain in detail
howdi�erent ensembles are beingbuilt in termsof these se-
quential path ensembles. We end the first part with a set of
general guidelines and simple rules on how arbitrary path
ensembles could be built in OPS.
In the second part of the paper, we describe the frame-

work that creates theMonte Carlo process usedbyOPS. This
framework is designed to be extremely flexible, which en-
ables one to customize the Monte Carlo move scheme and
to build non-standard path sampling schemes with little ef-

fort. This ability to customize themove scheme is one of the
major advantages of the OPS framework. It allows experi-
ences users to design a sampling method tailored to a spe-
cific system. Here the two central concepts are (1) the move
scheme, which encodes the entire Monte Carlo procedure
as a decision tree, and (2) the path movers, which perform
the moves. We describe both concepts in detail, as well as
the tools in OPS that facilitate customization of the move
scheme.
The paper is organized as follows. In Sec. II A we briefly

review the original standard notation for TPS path ensem-
bles. Subsequently, we introduce the novel path ensemble
set notation, including the sequential ensemble. We then
describe in Sec. II E how OPS implements these ensembles,
and give some guidelines and rules on how new ensembles
could be built. In Sec. III we discuss customizing the Monte
Carlomoves in detail. Wegive illustrations of these concepts
in Sec. IV, where we discuss the application of generating
and splitting trajectories, as well as customizing the move
schemes for alternative replica exchange simulations. Fi-
nally, we end with conclusions and an outlook.

II. BUILDING BLOCKS FOR PATH ENSEMBLES AND VOLUMES

A. Standard TPS and TIS notation

In this section, we briefly recapitulate the standard nota-
tion for the path ensemble and distribution functions used
in TPS and TIS before introducing the novel set based no-
tation that is more commensurate with the way OPS imple-
ments path sampling. This section is not meant as an intro-
duction topath sampling, but rather to describe the connec-
tion between the novel set-based notation and the standard
notation found in the literature. For a review of path sam-
pling methodology we refer the reader to Refs. [20–23, 28].
In the next sections we follow the notation that was intro-
duced in Refs. [26] and [28].

1. The TPS path ensemble

A path is a discretized, time-ordered sequence of states in
phase spacex ≡ {x0, x1, x2, . . . , xL}, in which consecutive
states, or frames, are separated by a small time increment
∆τ . Each framex = {r, p} consists of the positions andmo-
menta of all particles in the entire system. The path-length
L can be chosen fixed or variable, depending on the type of
path ensemble. The path probability for a trajectory of du-
ration T ≡ L∆t is

P[x] = ρ(x0)
L−1∏
i=0

p(xi → xi+1) (1)

wherep(xi → xi+1)denotes theMarkovian transitionprob-
ability to go fromxi toxi+1 in one time step, which depends
on the underlying dynamics [22]. Further, ρ(x0) is the distri-
bution of initial conditions, in many cases the equilibrium
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distribution. TPS constrains pathways between two stable
states A and B. Such states are defined using an collective
variable or order parameter λ, for example 1

A = {x|λ(x) < λA} (2)

and likewise for B. Here, λ(x) returns the order parameter λ
for frame x, and λA defines the boundary of state A.
The standard TPS path ensemble distributionwith a fixed

lengthL constrains the path to begin inA, and end inB

PAB [x] = 1A(x0)1B(xL)P[x]/ZAB . (3)

where 1A(x0) and 1B(xL) are indicator functions that are,
respectively, unity if the trajectory starts with x0 ∈ A and
endswithxL ∈ B and zero otherwise. The formal definition
of 1A(x0) is

1A(x) =

{
1 if x ∈ A
0 otherwise.

(4)

and 1B(xL) is defined likewise. The normalization factor
ZAB =

∫
Dx1A(x0)1B(xL)P[x] is akin to a partition func-

tion, where the integral overDx takes into account paths of
length L starting at all possible initial conditions x0.
For variable path length TPS a similar path ensemble dis-

tribution can be written

Pflex
AB [x] ≡ h[x]P[x]/Zflex

AB , (5)

where the indicator function h[x] now selects the paths that
immediately leaveA, and just enterB

h[x] =


1 if 1A(x0) = 1 ∧ 1B(xL) = 1

∧ 1A,B(xi) = 0 for 0 < i < L

0 otherwise

(6)

Note that this path ensemble indicator function already
shows some complexity. The normalization factor is now
Zflex
AB ≡

∫
Dxh(x)P[x] where the integral over Dx takes

now into account paths of all length starting at all possible
initial conditions x0.

2. The TIS path ensemble

Transition Interface sampling (TIS) defines a series of suc-
cessive non-intersecting interfaces λ0, λ1, ..., λn, based on
an order parameter λ, and samples the TIS path ensemble
for each interface. Paths in the interface ensemble i start in
A (at λ0), cross the interface λi at least once, and finally ei-
ther return to A, or end in B. Defining adjacent phase space

1 Note that the term ’order parameter’ and ’collective variable’ are used
interchangeably in this work. As explained in Paper 1 [24], the term col-
lective variable refers to any function of the system’s coordinates.

regions separated by interface λi asΛ+
i ≡ {x : λ(x) > λi},

the path probability for an interface ensemble i is given by

PAΛ+
i

[x] = h̃i[x]P[x]/ZAΛ+
i

(7)

where the subscripts AΛ+
i denote the phase phase regions

connected by the paths, and the TIS indicator function

h̃i[x; T ] =


1 if x0 ∈ A ∧ xT ∈ (A ∪B)∧
∀{j|0 < j < L} : xj∆t /∈ (A ∪B)∧
∃ {j|1 ≤ j ≤ L} : xj∆t ∈ Λ+

i

0 otherwise

(8)
where the first and second line ensures that only the initial
andendpointsare inAandB, respectively,whereas the third
line requires that the path cross the interface. The normal-
ization factorZAΛ+

i
is defined by

ZAΛ+
i
≡
∫
Dx h̃i[x]P[x] (9)

where the path integral runs again over all possible paths of
all lengths. The ensembles for the reverse reactionB → A
are defined in an analogous fashion [26, 28].
The path ensemble indicator functions become rather

complex even for the basic TPS and TIS ensembles. More-
over, the indicator function as described above are not di-
rectly implementable in a path sampling code such as OPS,
as they only apply to entire paths. During a shooting move,
which is at the heart of TPS and TIS, OPS has to monitor a
newly generated path and apply a stopping criterion. Such
a criterion requires a notation that is better suited to the
way thatOPS implementsboth themonitor functionand the
path ensembles themselves.

B. Volumes as sets

As the novel notation is based on set logic, it is only natu-
ral toalso treat the stable statesas sets. InOPS, stable states,
and in fact any region in phase space, are described as “vol-
umes”. Additionally, TIS interfaces are treated as volumes.
This has several advantages, among which is the fact that it
is then easy to combine volumes using set logic.
Volumes are defined by collective variable functions. As

mentioned above, a state consists of the (infinite) set of all
configurations that obey the state definition. For instance,
using one order parameter λ(x) state A can be defined as

A = {x|λ(x) < λA} (10)

More general definitions are possible, e.g. by using an arbi-
trary number of order parameters. TIS interface volumes for
an interface i connected to stateA can be defined as

Λ−Ai = {x|λ(x) < λAi} (11)

which is the part of phase space complementary toΛ+
Ai de-

fined in the previous section. Crossing an interface now
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amounts to leavingΛ−Ai, putting it conceptually on the same
level as leaving A or entering B.
Volumes (e.g., states) canbecombinedusing set logic. For

two states A and B

S = A ∪B (12)

denotes the union of sets, while

S = A ∩B (13)

denotes the intersection. In this way volumes obeying an
arbitrary number of conditions can be constructed.
In OPS this set logic is implemented by several func-

tions. We can take unions and intersections of volumes,
and negations of volumes using the objects UnionVolume,
InteractionVolume and NegatedVolume. From these oper-
ations any logical operation can be constructed. Take as an
example the SymmetricDifference, which for two volumes
A and B would amount to all points that are either in A or in
B, but not in both. This is logically equivalent to

A⊕B = (A ∩B) ∪ (A ∩B) (14)

where the overbar denotes the complement or negation of
the volume. Other logical operations can be constructed at
will.

C. Path ensembles as sets

1. Unifying two basic tasks in OPS

As discussed in Sec. II A, path ensembles are the set of
all trajectories that satisfy the ensemble indicator function
hE [x]of theensembleE, weightedby thenaturalpathprob-
abilityP[x]. In OPS, the ensemble indicator function is part
of the Ensemble object. Paths are sampled with the correct
relative weights by using Monte Carlo moves that preserve
the distribution. Trajectories with non-zero weight form a
set of paths that satisfy the constraints imposed by the en-
semble indicator function. Indeed, these constraints define
the ensemble indicator function. For instance, a TPSensem-
ble requires the constraints that the first snapshot be in the
initial state, that the last snapshot be in the final state, and
that no other frames of the trajectory visit a stable state. An
important task inOPS is to testwhethera trajectory fits a cer-
tain ensemble. The Ensemble object takes a trajectory as in-
put and returns whether or not it belongs to that ensemble.
Take, for instance, the simple ensemble for which all frames
should be in a certain state A. The predefined ensemble
class AllInXEnsemble(state) tests exactly that, returning
Trueonly if all framesare in thegivenstate. Oneof themost
productive ways to define useful path ensembles in OPS
is the SequentialEnsemble object. SequentialEnsemble
comprise a list of path ensembles that the trajectory needs
to fulfill in the correct order. This is crucial when performing
path sampling, identifying whether a path fulfills the right
conditions for a move, e.g. an exchange move. Moreover,
they can be useful for analysis of pathways.

FIG. 1. “Building block” ensembles in OPS, with example tra-
jectories. Sequences of logical combinations of these ensembles
are used to create path ensembles used in OPS. Note that several
example trajectories could satisfy the PartInX and PartOutX en-
sembles. Either of the trajectories shown for one would satisfy
the other. In addition, the trajectory for the InX would also satisfy
PartInX , and the trajectory for OutX would also satisfy PartOutX .

When performing path sampling, and in particular during
a shooting move, another important task in OPS is to moni-
torwhether a trajectory is finished, i.e., fulfils the conditions
for stopping. At first sight, onemight think that such a test is
simply applying the same Ensemble object as above. How-
ever, this is not the case, since there are obviously many
paths that do not obey the desired path ensemble, but still
are clearly to be rejected. For instance a path that leaves
A and returns to A, without having visited B, is clearly to
be rejected. Hence, a halting criterion is needed, or rather,
a continuing criterion that tells OPS to keep integrating the
molecular dynamics trajectory, until it is clear that the tra-
jectory can no longer ever satisfy the path ensemble. The
can_appendmethod provides the test for whether the path
can be extended or not. Moreover, the can_appendmethod
is the building block fromwhich the SequentialEnsemble is
constructed.
In the following sections, we present a general set-based

approach, which connects the ensemble to its halting crite-
ria, and which allows one to build arbitrarily complex en-
sembles from simple building blocks. As we build up to
morecomplicatedensembles,wewill, at eachstage, first de-
scribe the set-based approach, introducing a new notation
for describing path ensembles. Then we will show how that
new notation maps directly onto objects in OPS.

2. The basic building blocks

As above we denote a (sub)trajectory as a dis-
cretized time-ordered sequence of phase space points

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351510doi: bioRxiv preprint 

https://doi.org/10.1101/351510
http://creativecommons.org/licenses/by/4.0/


5

x ≡ {xb, xb+1, , . . . , xe} where b and e denote the be-
ginning and end of the (sub)trajectory, respectively. For
e < b we define the trajectory of zero length x = {}.
Note that a time-reversed path also has positive time-order
{y0, y1, . . . , yL}, and can be constructed from the trajectory
{x0, x1, , . . . , xL} by setting yi = xL−i.
A path ensemble is an (infinite) set of trajectories obeying

a certain criterion, encoded by indicator functions. A basic
example is the ensemble of trajectories for which all frames
are within volume A. In OPS, indicator functions determine
whether a trajectory belongs a particular ensemble. For in-
stance, the (formal) function InA(x) returnsunity onlywhen
the entire trajectory belongs to volumeA,

InA({xb...xe}) = 1 if ∀{j|b ≤ j ≤ e} : xj ∈ A (15)

and zero otherwise. Likewise the indicator for the set of tra-
jectories entirely outside ofA requires an indicator function
OutA(x) that determines that no element belongs toA

OutA({xb...xe}) = 1 if ∀{j|b ≤ j ≤ e} : xj /∈ A (16)

As can be seen directly from these definitions,

InA = OutĀ (17)

Just as volumes can can be seen as sets allowing set-
based logic, pathensemblescanbecombinedor intersected
using set logic. An ensemble can be combined, e.g. using a
union (indicated by ∪) or an intersection (indicated by ∩). A
union of ensemblesmeans that the trajectory has to belong
any one of the ensembles; an intersection means that the
trajectory has to belong to all ensembles. Combination of
these logical operations are likewise defined.
Suppose that we are interested in the ensemble OutS ,

with S = A∪B the union of statesA andB. The ensemble
logic gives

OutS = OutA∪B = OutA ∩OutB (18)

Note that here, the notation InA andOutA refers to the en-
semble, i.e., the entire set of trajectories, whereas when we
talk about the associated indicator function we use InA(x)
andOutA(x).
To construct all possible logical statements, we need the

complement or (negation) of ensembles. We can take com-
plements of ensembles, e.g.,

InA ∪ InB(x) = [InA ∩ InB ](x) = InA(x) ∧ InB(x) (19)

where the overbar indicates the complement of the set. The
InA ∪ InB refers to the complement of the union of the set
of trajectories entirely insideAand the set of trajectories en-
tirely insideB. Indeed, a trajectory that is not entirely inside
A or entirely insideB, has to be partly outsideA and partly
outsideB.
The complement of the OutA ensemble is the PartInA en-

semble, defined by the indicator function:

PartInA({xb...xe}) = 1 if ∃{j|b ≤ j ≤ e} : xj ∈ A
(20)

Likewise, the complement of the InA ensemble, called
PartOutA, is defined by the indicator function where part of
the trajectory is outsideA.

PartOutA({xb...xe}) = 1 if ∃{j|b ≤ j ≤ e} : xj /∈ A
(21)

From these definitions it is clear that

PartInA = OutA (22)
PartOutA = InA (23)

In addition, analogously to Eq. (17), we have

PartInA = PartOutĀ (24)

Onemight expect that InS would obey logic analogous to
OutS. However, it turns out

InS = InA∪B 6= InA ∪ InB (25)

because this would state that either all frames are inA or all
frames are inB. Instead, it is possible that some frames are
inA and some frames are inB, but no frames are outside of
S. Thus the connection is

InS = PartOutS . (26)

In OPS the four basic functions InX , OutX , PartInx,
PartOutX (illustrated in Fig. 1) have their own pre-
defined objects AllInXEnsemble, AllOutXEnsemble,
PartInXEnsemble, PartOutXEnsemble, which act as build-
ing blocks from which ensembles can be constructed.
Indeed, as the names suggest, these ensembles only return
True if, respectively all frames are in X, all frames are out
of X, at least one frame is in X, at least one frame is out of X
(see Table I).
While PartInXEnsemble and PartOutXEnsemble at first

sight seem to be identical ensembles, they are in fact dif-
ferent since PartInXEnsemble also yields True for a trajec-
tory that is all in X, whereas PartOutXEnsemble does not.
Also, contrary to what one might naively think, the com-
plement of AllInXEnsemble is not the AllOutXEnsemble.
As discussed above, the complement of the InX implemen-
tation AllInXEnsemble is the PartOutX implementation
PartOutXEnsemble. Indeed, PartOutXEnsemble gives True
always if one frame is out of X., and only returns False if all
frames are in X, the very definition of AllInXEnsemble. In
Table I the complements of the basic building block ensem-
bles are given.

3. The length ensemble

The length ensemble consists of all paths of a specific
length n. Formally, it can be defined by the indicator func-
tion

n({xb...xe}) = 1 if e− b = n− 1 (27)
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Notation OPS object Returns True if Complement
InX AllInXEnsemble all frames are in volumeX PartOutX
OutX AllOutXEnsemble all frames are in volumeX PartInX
PartInX PartInXEnsemble at least one frame is in volumeX OutX
PartOutX PartOutXEnsemble at least one frame is in volumeX InX
n LengthEnsemble trajectory consists of n frames Any length but n
[E1 → · · · → En] SequentialEnsemble subtrajectories are in subensembles

E1, . . . ,En in the correct order Failing any subensemble

TABLE I.Basic buildingblock ensembles. For each ensemble, the table gives themathematical notation used in Sec. II, the associated
OPS class name, a description of the constraint it represents, and the logical complement ensemble.

where the n symbol can take any positive integer number
n > 0. An additional definition is needed for the zero length
n = 0 ensemble

0(x) = 1 if x = {} (28)

which is the case for e < b. The indicator function n(x) thus
returns unity only if the trajectory consists of n frames. To
test whether a trajectory is entirely in state A with a length
n = 7 thus becomes

[InA ∩ 7](x) = InA(x) ∧ 7(x) (29)

OPS implements this ensemble with the
LengthEnsemble(n) which, as one might expect, re-
quires the (sub) trajectory to be of a specified length
n.

D. The can-append criterion

In practice, path sampling uses methods like the shoot-
ingmove to generate new trajectories by running dynamics.
The shooting move must have some criterion to determine
when to stop the trajectories it generates. In early versions
of path sampling, this was based only on trajectory length,
but more advanced variants gain e�iciency by stopping the
simulation based on information from the coordinates/mo-
menta of snapshots in the trajectory; for example, stopping
upon entering a stable state. As such, each path ensemble
must be associated with a halting criterion.
In the formalismpresented here, the halting condition (or

more correctly, the not-yet-halt condition) is called the can-
append criterion. The can-append criterion is associated
with and determined by a specific ensemble E and denoted
CanApp+

E . It takes a trajectory x as input and answers the
question, “Is the trajectory x a subtrajectory of any trajec-
tory xE ∈ E?” More formally, it is defined as an indica-
tor function on the set of all trajectories for which an addi-
tional slice in the forward time direction would not fail the
specified criterion for ensemble E. For each ensemble ob-
ject inOPS, there is amethodcalledcan_append that returns
True for trajectories that satisfy the can-append criterion,
and False for trajectories that do not. For the negative time
direction, there is an analogous criterion CanApp−E and a
can_prepend method, which tests the addition of an extra
frame at the beginning of the trajectory. The discussion that

follows refers to the forward-time can_appendmethod, but
also applies to the backward-time can_prepend.
The indicator function for these ensembles act on a

(sub)trajectory x. Perhaps the simplest example is the can-
append criterion for a length ensemble:

CanApp+
n (x) =

n−1∑
i=0

i(x) (30)

As long as the length of the trajectory is less
that n, the can-append criterion is satisfied, and
LengthEnsemble.can_append returns True.
Another example is the InA ensemble. The indicator func-

tion for CanApp+
InA is given by

CanApp+
InA

(x) = [InA ∪ 0](x) = InA(x) ∨ 0(x) (31)

because adding an additional frame that is not inAwill im-
mediately fail the ensemble. The additional logical or with
the zero-length trajectory signifies that for an empty trajec-
tory CanApp should return True, as adding a frame to an
empty trajectory is always possible. An analogous formula
can be written for CanApp+

OutA .
In contrast, for the ensembles CanApp+

PartInA
and

CanApp+
PartOutA

, the indicator functions always return
True since there is no reason to stop if the additional frame
is not in (or out) the state. If a frame of the trajectory is al-
ready outside the volume, there is still no reason to stop the
trajectory: all extensions will then lead to trajectories that
still satisfy the ensemble.
More complex can-append criteria can be constructed us-

ing set logic involving intersections and unions [29], or us-
ing sequential ensembles, as described below. One impor-
tant, but somewhat subtle, point is that the logical negation
of the result of can_append for an ensembleE is not neces-
sarily equal to the result of can_append for the complement
of ensemble E. For example, the can_append method for
AllInXEnsemble returns True if and only if all frames of the
input trajectory are in the volume associated with the en-
semble. However, as discussed above, the complement of
an AllInXEnsemble is a PartOutXEnsemble, for which the
can_append method always returns True. Taking the com-
plement applies to the ensemble; determining the result of
the can_append for the complement depends on the com-
plement ensemble, not on the result of can_append in the
original ensemble.
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OPS also implements two other related meth-
ods for each ensemble: strict_can_append and
strict_can_prepend. Whereas the normal can_append
(respectively can_prepend) returns True for any subtra-
jectory of a trajectory in the ensemble, the strict variant
only returns True is the input trajectory is the beginning
(respectively end) of a trajectory in the ensemble. This
is useful when looking for a trajectory that satisfies the
ensemble, such as when identifying a subtrajectories of
a long trajectory that satisfy the ensemble. For the basic
ensembles above, there is no distinction between these
(in fact, there is also no distinction between can_append
and can_prepend, since any trajectory that satisfies one
must satisfy the other). However, for sequential ensembles,
described in Sec. II E, there are significant di�erences, both
for can_append vs can_prepend and for their strict and
normal variants.
We stress that the basic formalism introduced here, con-

necting each path ensemble to a can-append criterion, is
general andapplicablebeyond theensembles implemented
by OPS. For example, one could imagine an ensemble of all
trajectories with an even number of frames, for which the
corresponding can_append method would always returns
True. OPSdoesnot try to implementall possibleensembles;
while the ensemble of all even-length trajectories could be
implemented, it it not part of OPSdue to its limited practical
scientific use.
Note that the can-append criterion, as used by the shoot-

ingmove (and similar trajectory generationapproaches), re-
sults in what are called candidate trajectories. A candidate
trajectory comes from the first trajectory that fails the can-
append criterion. For some can-append criteria, such of
that of the InX ensemble, the can-append test ’overshoots’,
and only fails a�er the input trajectory could not possibly
be in the desired ensemble. For others, such as that of the
LengthEnsemble, can-append failure can be predicted be-
fore overshooting. To maximize e�iciency, OPS trims the
overshot frame to make candidate trajectories for ensem-
bles where necessary, while not overshooting if not neces-
sary.

E. The sequential ensemble

1. Definition of the sequential ensemble

One of the most productive ways to define useful en-
sembles in OPS is the SequentialEnsemble, which com-
prises a list of path ensembles that the trajectory must ful-
fill in the correct order. To understand this, consider a sim-
ple situation with a single state. Suppose we are inter-
ested in a path ensemble defined by a trajectory that be-
gins in the state, then exits the state, then again returns
to the state X. This ensemble can be summarized by the
sequence [InX ,OutX , InX ]. Trajectories in this sequential
ensemble can be split into subtrajectories that fulfill these
three subensembles in the correct order.
Conceptually, a sequential ensemble consists of an or-

dered list of subensembles and an assignment algorithm to
assign frames of a candidate trajectory to those subensem-
bles. A trajectory satisfies the sequential ensemble if the
assignment algorithm decomposes the trajectory into sub-
trajectories that satisfy each subensemble in the correct or-
der. The can-append criterion for the sequential ensemble
can be defined based on the can-append criterion of the
subensembles (and the assignment algorithm). While no
unique choice for assignment algorithm exists, here we de-
scribe the approach used in OpenPathSampling.
A sequential ensemble is defined as an ordered set of

(e.g., three) ensembles E1 → E2 → E3 for which the in-
dicator function is

[E1 → E2 → E3](x) = (32)
E1({x0...xe1}) ∧ E2({xe1+1...xe2}) ∧ (E3({xe2+1...xL})

with frame indices e1 and e2 given by the assignment algo-
rithm. For the assignment algorithm used in OPS, they are,
respectively,

e1 = max[{k ∈ [−1;L] |CanApp+
E1

({x0...xk})} (33)

and

e2 = max[{k ∈ [e1;L] |CanApp+
E2

({xe1+1...xk})} (34)

where the first equation Eq. 33 selects the maximum index
e1 which still could fulfill the E1({x0...xe}) condition, and
the second Eq. 34 likewise for e2. Note that here we make
use of the fact that CanAppend returns True for an empty
zero length trajectory to ensure that the index ei always has
a value. Naturally, the number of ensembles in the sequen-
tial ensemble can be arbitrary large:

[E1 → · · · → Ei → · · · → En](x) =
n∏

i=1

Ei({xbi ...xei})

(35)

with bi = ei−1 + 1, e0 = −1, and

ei = max[{k ∈ [ei−1;L] |CanApp+
E1

({xbi ...xk})} (36)

Note that if the first condition in Eq. 32 or Eq. 35 fails, all
next conditions are not computed. The sequential ensem-
ble thus is the set of trajectories that sequentially fulfill a set
of ensembles.
The can-append criterion for the sequential ensemble is

to use the frame assignment algorithm (the can-append of
the subensembles) to assign all frames of the input trajec-
tory to a subsequenceof the subensembles. If all frames can
be assigned to a subensemble, and if either (1) the subtra-
jectory assigned to the last subensemble satisfies the can-
appendcriterion for that subensemble, or (2) there aremore
subensembles later in the sequence, then the sequential en-
semble’s can-append criterion is satisfied.
As an example of a sequential ensemble, consider the sit-

uation with just two states A and B defined, and its union
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S = A ∪ B. The TPS ensemble connecting A and B can
then be written as the sequential ensemble

SeqEnsTPS = [InA ∩ 1]→ OutS → [InB ∩ 1] (37)

The indicator function for this ensemble SeqEnsTPS(x) re-
turns True only if the first frame is in A, the last frame is in
B, and no snapshot is in A norB during the rest of the tra-
jectory. Note that this function is identical to the h[x] in Eq.
5. A very similar expression is used for the fixed length TPS:

SeqEnsTPSFixed = [InA∩1]→ [L− 1]→ [InB∩1] (38)

where the criterion is that the first and last slice are in A, and
B, respectively, and the L − 1 slices are allowed to go any-
where.
The sequential ensemble for the TIS ensemble is defined

as

SeqEnsTIS = ([InA ∩ 1]→ OutS → [InS ∩ 1])∩PartOutΛi

(39)
The corresponding indicator function SeqEnsTIS(x) re-
turns 1 only if the first slice is inA, the last one ends inA or
B, and no slice not in A nor B during the rest of the trajec-
tory, but there is at least one slice that is not in the interface i
volume. Note that this indicator function is identical to h̃i[x]
in Eq. 7.
As a final example, the minus interface ensemble [25, 31]

is

SeqEnsMinA = [InA ∩ 1]→ OutA →
(InA → OutA)n → [InA ∩ 1] (40)

The indicator function for this ensemble SeqEnsMinA(x)
returns unity if the first and last slice is in A and the tra-
jectory leaves A at least once. Note that this definition al-
lows multiple (n) entries intoA. Here, we assumed that the
boundary of A and the first interface are identical. Below,we
discuss the OPS implementation of the minus ensemble for
the more general case.

2. Use of Sequential Ensembles for Path Sampling in OPS

The sequential ensemble is implemented in OPS by
the SequentialEnsemble object. The test for whether
a given trajectory satisfies the SequentialEnsemble
uses the strict_can_append method of the underlying
subensembles. It starts by making a candidate subtrajec-
tory for the first subensemble, using that subensemble’s
strict_can_append method until it returns False. The
“strict” version is used because the subtrajectory that is as-
signed to the subensemble must satisfy the subensemble.
If the resulting subtrajectory satisfies the first subensemble,
then the process in continued with the next subensemble.
This continues until nomore frames can be assigned, either
because all have been assigned or because there are no
more subensembles. If all frames are assigned and all
subensembles have been assigned a subtrajectory, then
the given trajectory is in the SequentialEnsemble.

For most TPS/TIS purposes, one would like to stop
integrating trajectories as soon as they enter the state.
This is done by combining a volume ensemble, such as
AllInXEnsemble(state), with a LengthEnsemble(1), re-
quiring an ensemble of length 1. This results in exactly one
frame in the desired state. Hence, the SeqEnsTPS ensemble,
Eq. 37, for which the initial and the final trajectory frame
are in the initial and final states, respectively, but all other
frames (at least one) are outside both states, is given by

1 paths.SequentialEnsemble([
2 paths.AllInXEnsemble(A) & paths.LengthEnsemble(1),
3 paths.AllOutXEnsemble(A | B),
4 paths.AllInXEnsemble(B) & paths.LengthEnsemble(1)
5 ])

where we have made use of the set logic of the ensembles
(see Eq. 29). The path should start with one frame in the ini-
tial state, then an arbitrary number outside either state, fol-
lowed by precisely one frame inside the final state.
The slightly more complex sequential TIS ensemble

SeqEnsTIS, Eq. 39, can be defined as

1 paths.SequentialEnsemble([
2 paths.AllInXEnsemble(A) & paths.LengthEnsemble(1),
3 paths.AllOutXEnsemble(A | B)
4 paths.AllInXEnsemble(A | B) & paths.LengthEnsemble(1)
5 ]) & PartOutXEnsemble(I),

whereA,B, and I are the volume-based definitions of state
A,B and interface I respectively. Note thatwehaveusedset
logic to define the union of A and B as a final state. More-
over, we require themiddle part of the path to be outside of
this union. Finally, the TIS ensemble requires at least a part
of the entire trajectory to be outside the interface volume.
Fig. 2 provides an example, based on the TIS ensemble,

of how frame assignment works for a sequential ensemble.
For simplicitywe le�out the interface crossing requirement.
Two trajectories are shown, both of which fulfill the ensem-
ble conditions. Each trajectory starts inA, which assigns the
first frame in the (blue) InA∩1 subensemble. Then there are
a number of frames which are outside of the union ofA and
B, andwhichareassigned to the (black)OutA∪B subensem-
ble. The first frame that does not satisfy that criterion is also
the last frame of each trajectory. For the top trajectory, the
last frame is inB. For the bottom trajectory, the last from is
inA. In both cases, the last frame satisfies the subensemble
InA∪B .
In some cases, there is a need for an "optional" step in

the sequence, which uses the so-called OptionalEnsemble.
This means that a subtrajectory of a path can be in that en-
semble, but does not have to be. InOPS this is implemented
by forming the union of the ensemble E with a zero-length
ensemble:

Opt[E] ≡ E ∪ 0 (41)

If no sub-trajectory fits the OptionalEnsemble a zero-length
trajectory still allows the Sequential Ensemble to continue,
thus e�ectively skipping the OptionalEnsemble.
One example where we need to use the

OptionalEnsemble class is when there is an interstitial
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[InA \ 1]
<latexit sha1_base64="ju05xOm/VvwWvSDYYhwe7fLYm3w=">AAACF3icbVDJSsRAEK247456FKFRBEEYkgG3m8tFbwqOCpMwdPf0aGOnE7or4hBy8i88efWqP+BJvHr07ofYmVFwe1DweK+KqnosVdKi7795ff0Dg0PDI6Nj4xOTU9OVmdkTm2SGizpPVGLOGLVCSS3qKFGJs9QIGjMlTtnlXumfXgljZaKPsZOKKKbnWrYlp+ikZmWhEaK4xvxAF80dEnKakjCmeMFYHhRRs7LkV/0uSElqa7V1EnwpX2RpezFcvQOAw2blPWwlPIuFRq6otY3ATzHKqUHJlSjGwsyKlPJLei4ajmoaCxvl3TcKsuyUFmknxpVG0lW/T+Q0trYTM9dZnmh/e6X4n9fIsL0Z5VKnGQrNe4vamSKYkDIT0pJGcFQdRyg30t1K+AU1lKNL7scWxhLVKlwsf0L4S+q16lY1OHLx7EIPIzAPi7ACAWzANuzDIdSBww3cwwM8erfek/fsvfRa+7zPmTn4Ae/1AwlQof0=</latexit><latexit sha1_base64="JIIz+yTq42NUDEKKpGuCqfBIH7c="></latexit><latexit sha1_base64="JIIz+yTq42NUDEKKpGuCqfBIH7c="></latexit><latexit sha1_base64="RUDy8MB0zxaOSfNs26zUWCoU2Jo=">AAACF3icbVDJSsRAEO24O26jHkVoHARPQzLgdhv1ojcFxxEmIXR3erSx0wndFXEIOfkX/oFX/QFP4tWjdz/Ezizg9qDg8V4VVfVoKoUB1/1wxsYnJqemZ2Yrc/MLi0vV5ZULk2Sa8RZLZKIvKTFcCsVbIEDyy1RzElPJ2/TmqPTbt1wbkahz6KU8iMmVEl3BCFgprK53fOB3kJ+oIjzAPiMp9mMC15TmXhGE1Zpbd/vAJWlsN3awN1JGpIaGOA2rn36UsCzmCpgkxnQ8N4UgJxoEk7yo+JnhKWE35Ip3LFUk5ibI+28UeNMqEe4m2pYC3Fe/T+QkNqYXU9tZnmh+e6X4n9fJoLsX5EKlGXDFBou6mcSQ4DITHAnNGcieJYRpYW/F7JpowsAm92MLpYmMChvLnxD+klajvl/3ztxa83CYzwxaQxtoC3loFzXRMTpFLcTQPXpET+jZeXBenFfnbdA65gxnVtEPOO9f3KmgdA==</latexit>

! [OutA[B ] !
<latexit sha1_base64="7rwM+jewPH8YuMAJHaV6HWgM2/g=">AAACGHicbVA9SwNBEJ3z+9tTS0GWBEEQwp2N2vnR2KngmUDuOPY2m2TJ3ge7c2I4rvNf2Fjb6h+wEls7e3+Im8RCow8GHu/NMDMvyqTQ6Dgf1sTk1PTM7Nz8wuLS8sqqvbZ+rdNcMe6xVKaqEVHNpUi4hwIlb2SK0ziSvB71Tgd+/YYrLdLkCvsZD2LaSURbMIpGCu0tH1PS9JHfYnGeYxkWxz7LM3JSBsRYoV11as4Q5C9xv0n1qOLvPgDARWh/+q2U5TFPkEmqddN1MgwKqlAwycsFP9c8o6xHO7xpaEJjroNi+EdJto3SIu1UmUqQDNWfEwWNte7HkemMKXb1uDcQ//OaObYPgkIkWY48YaNF7VwS8/sgFNISijOUfUMoU8LcSliXKsrQRPdrSxSlslWaWNzxEP4Sb692WHMvTTwnMMIcbEIFdsCFfTiCM7gADxjcwSM8wbN1b71Yr9bbqHXC+p7ZgF+w3r8A5VCicQ==</latexit><latexit sha1_base64="4SGQIcOiLkOQ8lAZLcLBfHYoPxo=">AAACGHicbVC7SgNBFJ2NrxhfUUtBhgRBEMKujdrF2NgZwZhAdllmJ5NkyOyDmbvismznJ9j5B7b6A1Zia5feD3HyKEzigQuHc+7l3nu8SHAFpjk0ckvLK6tr+fXCxubW9k5xd+9ehbGkrEFDEcqWRxQTPGAN4CBYK5KM+J5gTW9wNfKbD0wqHgZ3kETM8Ukv4F1OCWjJLR7aEOK2DewR0psYMje9tGkc4VrmYG25xbJZMcfAi8SaknK1ZJ88D6tJ3S3+2J2Qxj4LgAqiVNsyI3BSIoFTwbKCHSsWETogPdbWNCA+U046/iPDR1rp4G4odQWAx+rfiZT4SiW+pzt9An01743E/7x2DN1zJ+VBFAML6GRRNxZY/z4KBXe4ZBREogmhkutbMe0TSSjo6Ga2eF4oOpmOxZoPYZE0TisXFetWx1NDE+TRASqhY2ShM1RF16iOGoiiJ/SK3tC78WJ8GJ/G16Q1Z0xn9tEMjO9fCK+j9w==</latexit><latexit sha1_base64="4SGQIcOiLkOQ8lAZLcLBfHYoPxo=">AAACGHicbVC7SgNBFJ2NrxhfUUtBhgRBEMKujdrF2NgZwZhAdllmJ5NkyOyDmbvismznJ9j5B7b6A1Zia5feD3HyKEzigQuHc+7l3nu8SHAFpjk0ckvLK6tr+fXCxubW9k5xd+9ehbGkrEFDEcqWRxQTPGAN4CBYK5KM+J5gTW9wNfKbD0wqHgZ3kETM8Ukv4F1OCWjJLR7aEOK2DewR0psYMje9tGkc4VrmYG25xbJZMcfAi8SaknK1ZJ88D6tJ3S3+2J2Qxj4LgAqiVNsyI3BSIoFTwbKCHSsWETogPdbWNCA+U046/iPDR1rp4G4odQWAx+rfiZT4SiW+pzt9An01743E/7x2DN1zJ+VBFAML6GRRNxZY/z4KBXe4ZBREogmhkutbMe0TSSjo6Ga2eF4oOpmOxZoPYZE0TisXFetWx1NDE+TRASqhY2ShM1RF16iOGoiiJ/SK3tC78WJ8GJ/G16Q1Z0xn9tEMjO9fCK+j9w==</latexit><latexit sha1_base64="TBYdY7XQ2ZN8MvqBhY+U2hwx8L8=">AAACGHicbVC7SgNBFJ2NrxhfUUtBBoNgFXZt1C7Gxs4IxgSyS5idnU2GzD6YuSOGZTv/wj+w1R+wEls7ez/EyaMwiQcuHM65l3vv8VPBFdj2t1VYWl5ZXSuulzY2t7Z3yrt79yrRkrImTUQi2z5RTPCYNYGDYO1UMhL5grX8wdXIbz0wqXgS38EwZV5EejEPOSVgpG750IUEd1xgj5DdaMi72aVLdYrruYeN1S1X7Ko9Bl4kzpRU0BSNbvnHDRKqIxYDFUSpjmOn4GVEAqeC5SVXK5YSOiA91jE0JhFTXjb+I8fHRglwmEhTMeCx+nciI5FSw8g3nRGBvpr3RuJ/XkdDeO5lPE41sJhOFoVaYPP7KBQccMkoiKEhhEpubsW0TyShYKKb2eL7iQhyE4szH8IiaZ5WL6rOrV2p1af5FNEBOkInyEFnqIauUQM1EUVP6AW9ojfr2Xq3PqzPSWvBms7soxlYX7+4uKDo</latexit>

[InA[B \ 1]
<latexit sha1_base64="uZ7r8GBH6yKxPYS8Czr0WGUBF0M=">AAACH3icdVDLSgNBEOz1bXxFPXoZFEEQwq4X9RbjRW8KxgSyS5iZTHRwdnaZ6RXDsl/gT4h/4FV/wJN49e6HOEkUjI+ChqKqm+4ulipp0fffvLHxicmp6ZnZ0tz8wuJSeXnl3CaZ4aLOE5WYJqNWKKlFHSUq0UyNoDFTosGuDvt+41oYKxN9hr1URDG90LIrOUUntcubrRDFDebHumjnByHPUlIrSMhpSsKY4iVjeVBE7fJGUPEHIP4v8mVtVNfD7TsAOGmX38NOwrNYaOSKWtsK/BSjnBqUXImiFGZWpJRf0QvRclTTWNgoH7xTkE2ndEg3Ma40koH6fSKnsbW9mLnO/on2p9cX//JaGXb3olzqNEOh+XBRN1MEE9LPhnSkERxVzxHKjXS3En5JDeXoEhzZwliiOsX3WP4n9Z3KfiU4dfHUYIgZWIN12IIAdqEKR3ACdeBwCw/wCE/evffsvXivw9Yx73NmFUbgvX0APhOlPA==</latexit><latexit sha1_base64="keZ91f+jkWOKd7D8hiAAgKQ8z3g=">AAACH3icdVDLSgNBEJz1bXxFPXoZEgKCEHa9qLeoF71FMCaQXcLMZJIMmZ1dZnrFsOwXePUL/AOv+gOexGvufoiTRCHxUdBQVHXT3UVjKQy47tCZm19YXFpeWc2trW9sbuW3d25MlGjGayySkW5QYrgUitdAgOSNWHMSUsnrtH8+8uu3XBsRqWsYxDwISVeJjmAErNTKl5o+8DtIL1XWSk99lsT4LMM+IzH2QwI9SlMvC1r5old2x8DuL/JtFSsF/+BhWBlUW/kPvx2xJOQKmCTGND03hiAlGgSTPMv5ieExYX3S5U1LFQm5CdLxOxkuWaWNO5G2pQCP1emJlITGDEJqO0cnmp/eSPzLaybQOQ5SoeIEuGKTRZ1EYojwKBvcFpozkANLCNPC3opZj2jCwCY4s4XSSLaz6Vj+J7XD8knZu7LxnKEJVtAeKqB95KEjVEEXqIpqiKF79ISe0Yvz6Lw6b877pHXO+ZrZRTNwhp9hY6bC</latexit><latexit sha1_base64="keZ91f+jkWOKd7D8hiAAgKQ8z3g=">AAACH3icdVDLSgNBEJz1bXxFPXoZEgKCEHa9qLeoF71FMCaQXcLMZJIMmZ1dZnrFsOwXePUL/AOv+gOexGvufoiTRCHxUdBQVHXT3UVjKQy47tCZm19YXFpeWc2trW9sbuW3d25MlGjGayySkW5QYrgUitdAgOSNWHMSUsnrtH8+8uu3XBsRqWsYxDwISVeJjmAErNTKl5o+8DtIL1XWSk99lsT4LMM+IzH2QwI9SlMvC1r5old2x8DuL/JtFSsF/+BhWBlUW/kPvx2xJOQKmCTGND03hiAlGgSTPMv5ieExYX3S5U1LFQm5CdLxOxkuWaWNO5G2pQCP1emJlITGDEJqO0cnmp/eSPzLaybQOQ5SoeIEuGKTRZ1EYojwKBvcFpozkANLCNPC3opZj2jCwCY4s4XSSLaz6Vj+J7XD8knZu7LxnKEJVtAeKqB95KEjVEEXqIpqiKF79ISe0Yvz6Lw6b877pHXO+ZrZRTNwhp9hY6bC</latexit><latexit sha1_base64="78YKU4kE+GyCbaaVabB+8m0FQco=">AAACH3icdVDLSsNAFJ34rPUVdelmsBRclcSNuqt1o7sK1haaEGam03boZBJmbsQS8gX+hX/gVn/Albjt3g8xfQitjwMXDufcy7330FgKA44zspaWV1bX1gsbxc2t7Z1de2//zkSJZrzBIhnpFiWGS6F4AwRI3oo1JyGVvEkHl2O/ec+1EZG6hWHM/ZD0lOgKRiCXArvc9oA/QHqtsiC98FgS41qGPUZi7IUE+pSmbuYHdsmtOBNg5xf5tkpohnpgf3qdiCUhV8AkMabtOjH4KdEgmORZ0UsMjwkbkB5v51SRkBs/nbyT4XKudHA30nkpwBN1fiIloTHDkOad4xPNT28s/uW1E+ie+alQcQJcsemibiIxRHicDe4IzRnIYU4I0yK/FbM+0YRBnuDCFkoj2cnmY/mfNE4q5xX3xilVa7N8CugQHaFj5KJTVEVXqI4aiKFH9Ixe0Kv1ZL1Z79bHtHXJms0coAVYoy8Re6Oz</latexit>

A B

FIG. 2. Frameassignment inanensemblebasedon theTISen-
semble, for two trajectories. The points, which indicate individ-
ual frames in the trajectories, are colored to match the subensem-
bles of the sequential ensemble, as given below the illustration.
This ensemble di�ers from a real TIS ensemble because there is no
interface.

1 inA = paths.AllInXEnsemble(A)
2 outA = paths.AllOutXEnsemble(A)
3 inI = paths.AllInXEnsemble(I)
4 in_inter = paths.AllInXEnsemble(I - A)
5 paths.SequentialEnsemble([
6 inA & paths.LengthEnsemble(1),
7 paths.OptionalEnsemble(in_inter),
8 outA,
9 InI,

10 outA,
11 paths.OptionalEnsemble(in_inter),
12 inA & paths.LengthEnsemble(1)
13 ])

Listing 1. Implementation of the minus interface ensemble,
assuming existing definitions of the state volume A and the inner-
most interface volume I. This implements the minus interface en-
semblewithn = 1 re-entries into the state between the endpoints
(i.e., with 2 interface crossings.)

space between the edge of the state and the innermost
interface [30]. In simple cases, the innermost TIS interface
λ1 is usually set to be exactly the boundary of the state
λ0, but this is not required. A trajectory therefore can
leave a state, visit the interstitial space and then cross
the first interface, or it can skip this interstitial space in
one frame and go directly from the state to the cross the
interface. Both situations should be dealt with. The above
TIS ensemble definition as already given works in this case.
However, the minus interface ensemble needs special care.
This ensemble is one of the more complicated ensembles
in the TIS framework. As explained in Paper I [24], the
minus interface ensemble is used (as part of the minus
move) in RETIS to perform dynamics within the stable
state, and return a new trajectory to one of the innermost
TIS ensembles. This can be used to calculate the flux, to
connect di�erent interface sets in MISTIS, or to enhance
decorrelation of trajectories [25, 31]. The code for theminus
ensemble in Eq. 40 with n = 1 entries into A is given in
Listing 1. Note the use of the OptionalEnsemble for the
interstitial regions. This listing will also be discussed in
more detail in following subsections.

3. The reverse check and can-prepend for sequential ensembles

Up to this point, we have focused on sequential ensem-
bles where the volumes associated with successive ensem-
bles cannot overlap. That is, there can be no ambiguity as
to which sub-ensemble a given frame of a trajectory is as-
signed to, regardless of the assignment algorithm used for
the sequential ensemble. However, it is possible to define
sequential ensembleswhere such overlaps are allowed, but
thesewill becomemuchmorecomplicatedandmoresubtle.
In particular, special attention need to be paid to whether
one can sample the same ensemble using the can_append
and can_prependmethods.
OPS implements twomain assignment rules. The normal

OPS assignment algorithm is based on dynamics propagat-
ing forward in time (using CanApp+

E ) and, for clarity, can
be called “forward assignment.” In the code, the forward
assignment can be tested using ensemble(trajectory).
The alternative approach is based on dynamics propa-
gating backward in time (using CanApp−E ), and will be
called “reverse assignment”. The code to use it in OPS is
ensemble.check_reverse(trajectory).
The reverse assignment algorithm is used to sim-

plify the can_prepend (CanApp−E ) approach as imple-
mented in OPS. The can_prepend algorithm for the OPS
SequentialEnsemble is implemented analogously to the
can_append algorithm. Both are “greedy” algorithms, in
the sense that they try to assign the largest subtrajectory
possible to the current subensemble. Since the forward
assignment is greedy starting with the first subensemble
of the sequential ensemble, and the reverse assignment is
greedy starting with the last subensemble, the two algo-
rithms might not yield equivalent results. Any ensemble
that will be sampled with both forward and backward
dynamics (as is done in the standard shooting moves in
path sampling) must result in identical ensembles for both
the forward assignment and the reverse assignment. Note
that there are many cases in which the reverse assignment
will not matter. For instance, generating initial trajectories
(illustrated in Sec. IV A) or analyzing existing trajectories
(see Sec. IV B) only require forward assignment. Moreover,
many rare events methods (e.g. forward flux sampling [? ])
involve propagating forward in time only.
Since the forward and reverse assignment algorithms are

not equivalent, certain sequential ensembles could accept
a trajectory when checked with the forward propagation,
but not when checked with backward propagation (or vice-
versa). For example, imagine volumesA, I1, I2 as illustrated
in Fig. 3, where I1 ⊂ I2, and A ∩ I2 = ∅. Consider the en-
semble InA ∩ 1→ InI1 → InI2 → InA ∩ 1. As shown in the
top panel of Fig. 3, for the illustrated trajectory, the forward
assignment starts by assigning the first frame to the first en-
semble InA (shaded blue in the figure). Then the frame as-
signment algorithm will look for a subtrajectory that satis-
fies the InI1 ensemble. In the example trajectory shown,
it finds a two-frame subtrajectory that satisfies the InI1 en-
semble. The next frame is the first one that can be assigned
to the InI2 ensemble. Since frames that are in the volume I1
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[InA \ 1] ! InI1 ! InI2 ! [InA \ 1]

A I1 I2

A I1 I2
⨯

A I1 I2

Forward
Assignment

Reverse
Assignment

Reversed Trajectory;
Forward Assignment

FIG. 3. Applying di�erent assignment approaches to a given
trajectory. Points represent frames in the trajectory and are col-
ored to show assignment, as with Fig. 2. The forward assignment
algorithm (top) assigns frames in forward time order of the trajec-
tory, with the forward order of the subensembles of the sequen-
tial ensemble. The reverse assignment algorithm (middle) assigns
frames in the reverse order of the subensembles in the sequential
ensemble, in reverse time order of the trajectory. Finally, the for-
ward assignment of the reversed trajectory (bottom) is shown to il-
lustrate that this is distinct from the reverse assignment. Note that
a trajectorymay be accepted by one assignment algorithm and re-
jected by the other (as shown here by the red X for an unassigned
frame in the reverse assignment).

are also in the volume I2, the trajectory continues to assign
frames to InI2 until it exits that volume and enters A. The
last frame, in A, is assigned to the final InA ∩ 1 ensemble,
shaded purple in the figure. Frames have been assigned to
all ensembles, in the correct order, and no frames are unas-
signed. Therefore, this trajectory satisfies the ensemble.
Next consider the reverse assignment algorithm, as illus-

trated in the middle panel of Fig. 3. Assignment starts at
the last frame of the trajectory, and at the final subensem-
ble in the sequential ensemble. This frame is assigned to
the final subensemble InA ∩ 1 (shaded purple), as would
also happen in case of forward assignment. Stepping back-
ward along the trajectory, the assignment algorithm is look-
ing for frames in the volume I2, following the penultimate
subensemble. Since I1 ⊂ I2, it finds such frames, and it con-
tinues to find frames in I2 until the last frame to be assigned
(the first frame of the trajectory), which is in A. Reaching
that frame, the algorithm first checks whether it can be as-
signed to the InI2 ensemble, aswith the framebefore. As this
is not the case, the algorithm checks whether the frame can
be assigned to the InI1 ensemble, the next subensemble in
the reverse order. Since this is also not the case, the reverse
check algorithm deems this trajectory to fail the sequential
ensemble, as it does not contain subtrajectories assigned to
all the correct ensembles in the correct order. In the figure,
we signify this with the red x.
Note that the reverse assignment is not the same as using

[InA \ 1] ! Opt[InI�A] ! [OutA] ! [InI ]

! [OutA] ! Opt[InI�A] ! [InA \ 1]
<latexit sha1_base64="ZBgDa+houHhYgntW3l4J4rtUc+w=">AAAFWnichVPLbtNAFB03DbQpj4ayYzOiArEoweO3dy3dkFWLRGilOIrGk0lq1S/ZY0Sw/C9s4Y9Y8C+M7TTxOBRGsnR175lzz7m+48a+lzJZ/iXtdHa7Dx7u7fcOHj1+8vSw/+xzGmUJoSMS+VFy7eKU+l5IR8xjPr2OE4oD16dX7u15Wb/6QpPUi8JPbBnTSYAXoTf3CGY8Ne1LR7lTseTnqBg7jH5l+TAspmfQITiGToDZjevmqJgUvdcOi3pruFLU6IuYNS/mw7dnJVjAqneIi4xx7kkBxbrWZBjysuO0uultBpHA+KeYVjfzf0anh8fyQDYtTUWwDGTdsniAdMXWEEQDuTrHYHUup/3OO2cWkSygISM+TtMxkmM2yXHCPOJTLjZLaYzJLV7QMQ9DHNB0kld6CviKZ2ZwHiX8Cxmsss0bOQ7SdBm4HFmqTNu1Mvm32jhjc2uSe2GcMRqSutE88yGLYLkLcOYllDB/yQNMEo9rheQGJ5gwvjFCF9eN/JlgYyW+58zonO/eeofyZOEWOR+WgnTDMhRT02XbklX7hE9QM4RjlrlquopazRaZht6mVFaUfOwVRUW2IS9zsq7ZMrKN+pepprJFom508aqALgkaMkvmSusWsM2prTmtpiBOc7JeFm5Iqw3qdVIYidKm1NeUuugSVda3U2azhapvaTQ2hOKIKtuqKnrUyqQoW9W1Nqe58d2a+r2/uIHh7bjt8ondvSN4fzBSBvYAfdSOT9+v3toeeAFegjcAAROcgg/gEowAkb5J36Uf0s/d391Od797UEN3pNWdIyCc7vM/3hyTvA==</latexit><latexit sha1_base64="ZBgDa+houHhYgntW3l4J4rtUc+w="></latexit><latexit sha1_base64="ZBgDa+houHhYgntW3l4J4rtUc+w="></latexit><latexit sha1_base64="ZBgDa+houHhYgntW3l4J4rtUc+w=">AAAFWnichVPLbtNAFB03DbQpj4ayYzOiArEoweO3dy3dkFWLRGilOIrGk0lq1S/ZY0Sw/C9s4Y9Y8C+M7TTxOBRGsnR175lzz7m+48a+lzJZ/iXtdHa7Dx7u7fcOHj1+8vSw/+xzGmUJoSMS+VFy7eKU+l5IR8xjPr2OE4oD16dX7u15Wb/6QpPUi8JPbBnTSYAXoTf3CGY8Ne1LR7lTseTnqBg7jH5l+TAspmfQITiGToDZjevmqJgUvdcOi3pruFLU6IuYNS/mw7dnJVjAqneIi4xx7kkBxbrWZBjysuO0uultBpHA+KeYVjfzf0anh8fyQDYtTUWwDGTdsniAdMXWEEQDuTrHYHUup/3OO2cWkSygISM+TtMxkmM2yXHCPOJTLjZLaYzJLV7QMQ9DHNB0kld6CviKZ2ZwHiX8Cxmsss0bOQ7SdBm4HFmqTNu1Mvm32jhjc2uSe2GcMRqSutE88yGLYLkLcOYllDB/yQNMEo9rheQGJ5gwvjFCF9eN/JlgYyW+58zonO/eeofyZOEWOR+WgnTDMhRT02XbklX7hE9QM4RjlrlquopazRaZht6mVFaUfOwVRUW2IS9zsq7ZMrKN+pepprJFom508aqALgkaMkvmSusWsM2prTmtpiBOc7JeFm5Iqw3qdVIYidKm1NeUuugSVda3U2azhapvaTQ2hOKIKtuqKnrUyqQoW9W1Nqe58d2a+r2/uIHh7bjt8ondvSN4fzBSBvYAfdSOT9+v3toeeAFegjcAAROcgg/gEowAkb5J36Uf0s/d391Od797UEN3pNWdIyCc7vM/3hyTvA==</latexit>
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Reverse
Assignment

FIG. 4. Frameassignment for an example trajectory in themi-
nus ensemble. Points represent frames in the trajectory and are
colored to show assignment, as with Fig. 2. The solid line repre-
sents the boundary of the state volumeA and the dashed line rep-
resents theboundaryof the interfacevolume I , witheverythingbe-
low the lines in the respective volume. The forward assignment al-
gorithm (top) and reverse assignment algorithm (bottom) give the
same result (the trajectory satisfies the ensemble), although the
specific assignment of frames di�ers.

the forward assignment algorithm to assign frames from the
time-reversed trajectory, as is shown in the bottom panel in
Fig. 3. For this trajectory, the process of first reversing the
trajectory and then assigning in the forward order leads to
an assignment analogous to the forward assignment of the
non-reversed trajectory. The trial trajectorywill be accepted
in this case.
The requirement for a trajectory to be sampled correctly

with both forward and backward dynamics is that the for-
ward and reverse assignment algorithms accept the same
trajectories. For some sequential ensembles, such as the
TPS and TIS ensembles, this means that the frame assign-
ment is identical in both directions. However, this does not
need to be the case, as can be seen from the minus ensem-
ble implemented in Listing 1 and the trajectory assignments
illustrated in Fig. 4.
The minus ensemble includes trajectories that start with

one frame in the state, go on to cross the interface, then re-
turn to the state, then cross the interface again, and finally
endwithone frame in the state. When the interfaceandstate
are not equivalent, there is an interstitial volume between
them. This means that there could be recrossings of the in-
terface or of the state boundary, as illustrated by the trajec-
tory in Fig. 4, which also shows how this is handled by the
careful implementation of the minus ensemble in Listing 1.
Recrossings are handled by using the fact that the crite-

rion for failing a subensemble is to enter the next volume
X. The not-yet-halt criterion for the subensemble is then
the requirement to be in the complement volume X , thus
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InX = OutX . For instance, the green OutA subensem-
ble handles the condition that the trajectory should reen-
ter state A, while allowing many crossings of the I interface.
Likewise, the red InI = OutI subensemble handles the sec-
ond first exit of I, allowingmany recrossings of the A bound-
ary.
Note that some successive subensembles involve vol-

umes that have overlap. For example, consider part of the
minus ensemble OutA → InI → OutA. Because the asso-
ciated volumes are not disjoint (i.e., I ∩ Ā 6= ∅), frames in
that intersection can be assigned to either ensemble, and
will be assigned di�erently for the forward and reverse as-
signment algorithms. Additionally, the assignment of the
optional ensembles depends on the assignment algorithm,
again because of this volume overlap. The di�erence in the
two assignment algorithms is shown for an example trajec-
tory in Fig. 4.
Unlike the example in Fig. 3, any trajectory that satisfies

the forward assignment for the minus ensemble will also
satisfy the reverse assignment. Specific frames may be as-
signed to di�erent subensembles, but the overall trajectory
will either satisfy both assignment criteria or fail both.
In addition, because the minus move is one of the most

computationally expensive moves in path sampling, we
want to design the ensemble so that candidate trajectories
are almost certain to be accepted. Without that require-
ment, the optional ensembles could be removed from the
sequence and the OutA ensembles in the sequence would
becomeOutA∩PartOutI . Here still, the forward and reverse
frame assignments would di�er. However, this would have
the disadvantage that candidate trajectories could return to
A immediately a�er the first frame in the interstitial, without
crossing the interface. Such trajectorieswould be expensive
togenerateandwouldnotbeaccepted. The samplingwould
be correct, but ine�icient.
Because of the possible di�erence between frame assign-

ment in the forwardand reversedirections, it is important to
knowthat thecodedefaults to forwardpropagation tocheck
whether a trajectory is in an ensemble. We emphasize that
an ensemble which does not give the same results in both
directions can still be suitable for situations where only for-
warddynamicswill beused (e.g., generatingan initial trajec-
tory), but will not suitable for approaches such as the shoot-
ingmove inpath sampling,which involves both forwardand
backward dynamics.

F. Performance considerations

The previous sections provide a mathematically com-
plete description of a new, set-based approach to describ-
ing path ensembles and their halting criteria in a consis-
tent and unified manner. However, this approach, naively
implemented, is not always computationally e�icient. The
functions described (such as the can-append criterion) take
an entire trajectory as input, and therefore must iterate
over all previously visited frames a�er each new frame is
added. This leads to algorithms that scale as O(L2) in-

stead ofO(L) in L, the number of frames. In OPS, this scal-
ing problem is managed by using caches for the sequen-
tial ensemble, combinedwith aBooleanparameter trusted
that can be passed to the can_append and can_prepend
functions (as well as their strict variants). The trusted
parameter for can_append indicates that, as of the previ-
ous frame, the trajectory satisfied the can_append crite-
rion (and similarly for can_prepend and the strict vari-
ants). Additionally, the ensemble indicator function, given
by ensemble(trajectory), takes an optional Boolean pa-
rameter called candidate. If candidate=True, then the
code assumes that the trajectory was generated by the
can_append or can_prepend method, and therefore only
certain parts of the trajectory need to be tested.
For example, consider a flexible-length TPS ensemble as

in Eq. 37 and a trajectory (x0, . . . , xi). If (x0, . . . , xi−1) sat-
isfied the can-append criteria, then we know that the last
trajectory with frames assigned was OutS , and we should
first check whether xi /∈ S, which would allow us to as-
sign it to that subensemble as well. The trusted parameter
tells us thatwecan trust that theprevious framepassed can-
append, enabling a faster path for checking the can-append
criterion. In addition, the SequentialEnsemble keeps a
cache of the frame assignment, so the algorithm knows im-
mediately to which ensemble the frame should be assigned
(with safety checks that this frame is still part of the same
trajectory.)
As an example of the use of the candidate parameter,

again consider the flexible-length TPS ensemble, with some
trajectory (x0, . . . , xL). If that trajectory was generated us-
ing the can_append or can_prepend rules, no frames ex-
cept the first and last can be in any state. In this case, we
can checkwhether the trajectory satisfies the ensemble just
by checking if the first and last frames are in the appro-
priate states. The methods built into OPS for arbitrary en-
sembles are general, but might not be the most e�icient.
Customized ensembles can make use of the trusted and
candidate parameters to provide faster calculations for tra-
jectories known to be generated by dynamics, while still
benefitting from the general approaches for trajectories of
unknown origin.

G. Guidelines for designing custom ensembles

The above sections introduced the set-based notation for
path ensembles, illustrated the connectionbetween this no-
tation and the inner workings of OPS, and showed howOPS
uses this conceptual framework to implement ensembles
used in path sampling simulations. In Sec. IV, we will pro-
vide severalmore examples of useful path ensembles. How-
ever, defining new ensembles might not seem completely
straightforward. To help bridge the gap between under-
standing the ensembles we present, and creating new en-
sembles, in this sectionwe provide some general guidelines
and tricks that could be seen as rules of thumb for ensemble
building.

• Use anchors. In many path ensembles, trajectories
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start and end with a frame in a specific volume (or
union of volumes). It can be useful to think of these
as anchors to start designing the ensemble. Typically,
the building block is a single frame in some volumeA,
i.e., the ensemble InA ∩ 1.

• Use complement ensembles and volumes. If we
want a trajectory to end with the first frame in some
volumeA, we might think of this as a PartInA ensem-
ble. But, as discussed in Sec. II D, the PartInA ensem-
ble never halts. However, the first trajectory that will
satisfy it can come from the first trajectory that does
not satisfy its complementary ensemble, OutA. This
can, of course, also be written as InĀ. In some cases,
the complement volumemay be the one that is more
naturally defined. For example, if part of a sequen-
tial ensemble is supposed to lead to a first frame in
A, we can use the OutA ensemble, as is done in the
minus ensemble, which also uses this to create a first
frame outside of the interface I using InI (where it is
more natural to refer to a frame outside the interface
volume than a frame inside the complement of the in-
terface volume). A more elaborate example using this
reasoning is given in Sec. IV for the ensemble used to
get the initial trajectory that visits all states.

• Think in terms of halting criteria. First, it is im-
portant to make sure that every ensemble (and ev-
ery subensemble of a sequential ensemble) will even-
tually halt. Second, the halting criteria can be use-
ful when designing sequential ensembles. Because
the sequential ensemble uses a greedy algorithm, it
is important to think in terms of the stopping crite-
ria of the previous ensemble and where that leaves
you. The previous guideline explained how to get a
crossing out of some volume (call it I), but typically
we speak of crossing from starting in one volume (call
it A) and then exiting the volume I . To know which
volume the subensemble will start in, look at the pre-
vious subensemble and apply the rules in the guide-
line about complement ensembles and volumes.

• Prefer set logic on volumes, not ensembles. When
creating ensembles, set logic on ensembles and on
volumes might seem very similar. For instance, one
might be tempted to code the ensemble OutA∪B as
OutA ∪ OutB However, this is incorrect, as explained
in Section II C. Also, the logical complement of ensem-
bles in general is not what one naively would expect.
The set logic for volumes is usually more familiar, and
therefore, whenever possible, should be used.

• Beware of unions with PartIn or PartOut. This re-
lates to both the suggestion of thinking in terms of
halting criteria and preferring set logic on volumes.
The danger here is that, while an ensemble such as
InI ∪ PartOutA may seem reasonable, the stopping
criterion of PartOutA is to never stop, and therefore
a union with it leads to infinite trajectories.

• Check the reverse assignment. If using path sam-
pling, or any other algorithm that requires generat-
ing dynamics in the backward time direction, check
that the reverse assignment gives the same results as
the forward assignment. The ideas behind this are
described in Sec. II E 3. Developing a symmetric se-
quence for the sequential ensemble can helpwith the
reverse assignment. Not all methods require that the
reverse assignment be used; only those that involve
propagating backward in time.

• Use optional ensembles for flexibility. The optional
ensemble allows a particular subensemble of a se-
quential ensemble to be skipped. This is useful when
the ensemble will be employed in many variants, and
when it is uncertain whether the subensemble will al-
ways be satisfied (as with the minus ensemble). In-
cluding optional ensemble can also ensure that both
the forward and reverse assignment work properly.

• Use unions of complex ensembles. Sometime a
union of complex ensembles, such as sequential en-
sembles, is the best way to achieve a desired ensem-
ble. For example, consider sampling A → B transi-
tions andB → A transitions in one ensemble. A TPS
ensemble fromA ∪B toA ∪B will not work, since it
will allowA→ A andB → B transitions. Instead use
a union of sequential ensembles, SeqEnsTPSA→B ∪
SeqEnsTPSB→A.

Finally, there is o�en more than one way to implement a
givenpath ensemble. These guidelines should provide tools
both for the design of new ensembles, as well as to under-
stand ensembles we have provided as examples in Sec. IV.

III. GENERAL FRAMEWORK FOR CUSTOMMONTE CARLO
APPROACHES

Transition path sampling amounts to Monte Carlo of tra-
jectory space. In standard TPS, the Monte Carlo procedure
samples trajectories from a single path ensemble. In TIS,
and particularly in RETIS, the Monte Carlo procedure simul-
taneously samples trajectories from an expanded ensem-
ble, combiningmultiple interface ensembles. Standard TPS
can be seen as a special case of this expanded ensemble,
where only a single path ensemble is sampled. The ex-
panded ensemble gives rise to the SampleSet object in OPS,
as described in Paper I.
Monte Carlo moves in OPS, based on this expanded

ensemble, are performed by the PathMover object.
PathMovers can change trajectories within the ensemble
being sampled (as with the shooting move), or they can
alter the ensembles associated with trajectories without
changing the trajectories (as with path replica exchange),
or they can alter both the trajectory and its associated
ensemble (as with the minus move).
The PathMovers are organized in an overall move deci-

sion tree. This tree includes, besides the movers that per-
form the Monte Carlo steps, several so-called structural

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351510doi: bioRxiv preprint 

https://doi.org/10.1101/351510
http://creativecommons.org/licenses/by/4.0/


13

movers, e.g., the RandomChoiceMover that randomly selects
one of several submovers (these structural movers are de-
scribed in Sec. III A). In principle, a manually assembled
move decision tree is all that is necessary for a path sam-
pling simulation. However, for complicated move decision
trees, this becomes tedious and di�icult. The PathMovers,
including the structural movers, constitute a low-level in-
terface that is su�icient, but not particularly user-friendly.
Therefore, we have developed a higher-level layer, using the
MoveStrategy and MoveScheme objects, which automates
the repetitive lower-level operations, and enables the user
to customize the move decision tree easily.
The MoveScheme is an overall container that builds the

move decision tree, while each MoveStrategy deals with a
part of that tree: providing, for example, details on how the
shooting move will be performed, or which pairs of ensem-
bles are involved in replica exchange. A path sampling sim-
ulation will have one MoveScheme, and that MoveSchemewill
include multiple MoveStrategy objects.
The following subsections describe how the structural

path movers allow combining existing movers into a more
complicated move, and how to use the MoveStrategy
and MoveScheme. Subclassing existing objects can create
more complicated path movers; details are available in the
online documentation for OpenPathSampling at http://
openpathsampling.org.

A. Structural Movers

PathMover objects such as the OneWayShootingMover
and ReplicaExchangeMover generate new trial paths. How-
ever, they need to be organized into the overall move de-
cision tree. This organization is done by other subclasses
of PathMover, which we call structural movers. Important
structural movers include:

• A RandomChoiceMover, one of the main struc-
tural elements in most move decision trees,
randomly selects one of its submovers. For ex-
ample, a first RandomChoiceMover selects the
type of move (shooting, replica exchange, etc.),
followed by a second RandomChoiceMover that
selects a mover for the specific ensemble(s) in-
volved in the move. The RandomChoiceMover is
also an important element in many PathMovers.
For example, the OneWayShootingMover con-
sists of a RandomChoiceMover that selects
between a ForwardShootingMover and a
BackwardShootingMover. By default, the sub-
movers within a RandomChoiceMover have identical
probability of being selected; this can be changed
with the weights parameter at initialization.

• A SequentialMover employs several submovers in a
specific order, where each submover is accepted inde-
pendently. This mover is not a combined trial move,
but a bundle of several moves together in a specific
order.

• The ConditionalSequentialMover is similar to a
SequentialMover, but provides an early-rejection
scheme, which is important for moves where a fail-
ure in an early step can guarantee that the whole
move fails, especially if later steps are very expen-
sive. Belowwewill discuss how this plays a role in the
MinusMover.

• An EnsembleFilterMover removes resulting Samples
associated with intermediate ensembles from the
results. In complicated movers, extra, internally-
defined Ensemble objects can create intermediate
steps in themover, which would end up in the results.
The EnsembleFilterMover filters those (o�en unin-
formative data) out of the results.

The move decision tree can take many forms. To obtain
information about the path mover most likely of interest
(e.g., ReplicaExchangeMover or ForwardShootingMover)
regardless of the specific structure of the move deci-
sion tree, we implemented a property canonical in the
MoveChange. As discussed in Paper I[24], a PathMover
takes a SampleSet as input, and returns a MoveChange ob-
ject. This MoveChange can contain other MoveChanges from
submovers; in this way the whole path taken through the
move decision tree is preserved. However, the nested
structure of MoveChanges can make it cumbersome to ac-
cess attributes from the MoveChange of the specific sub-
mover of interest (e.g., shooting point from the MoveChange
associated with the shooting mover). Therefore, the
MoveChange.canonical property directly accesses the first
nested MoveChange associated with a mover that identi-
fies itself as “canonical.” Subclasses of PathMover can de-
clare themselves canonical by setting the class attribute
_is_canonical to True. Examples using the canonical
property can be found in Paper I, Sec. VI.A 6.
The MinusMover provides a useful example of how sev-

eral structural movers can be put together to generate a
new Monte Carlo move. As described in paper I, the OPS
MinusMover is, in a way, a combination of replica exchange
and shooting moves. In MSTIS, each state typically has one
MinusMover, which takes trajectories from two ensembles
as input: the TIS innermost interface ensemble and the mi-
nus ensemble. In the discussion that follows, the state is de-
noted A and the innermost interface volume X . In many
cases the state definition A will be identical to X , but this
is not required.
Both the TIS ensemble and theminus interface ensemble

are described in Sec. II E. In the minus move, both use the
same interface volume,X . In addition, there is an ensemble
which is used internally in the minus move. This ensemble
is nearly the same as the TIS ensemble used as input, except
that instead of allowing paths to end in either A or make a
transition to another state B, all paths in this internal en-
semble must start in A, cross the interface, and also end in
A, i.e., this is the ensemble [InA ∩1→ OutA ∩PartOutX →
InA ∩ 1]. In the context of the minus move, we refer to this
as the “segment ensemble.” Trajectories in the minus inter-
face ensemble begin and end with subtrajectories that also
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satisfy the segment ensemble and therefore satisfy the in-
nermost interface ensemble.
The minus move consists of three steps: (1) randomly se-

lecting one of the subtrajectories that satisfies the segment
ensemble from theminus ensemble trajectory; (2) perform-
ing a replica exchangemove between the selected segment
and the path in the innermost interface; (3) extending that
path in a random time direction until it satisfies the minus
interface ensemble.
The first step is performed by a RandomChoiceMover that

selects between either a FirstSubtrajectorySelectMover
oraFinalSubtrajectorySelectMover, where inbothcases
the subtrajectory satisfies the segment ensemble This step
should always be accepted as the initial path satisfies the
minus ensemble.
When there is only one innermost ensemble, the second

step is just a replica exchange. This replica exchange can
only fail if the innermost interface path happens to cross to
another stable state. In the case of a multiple interface sets
(as in MISTIS), however, there are multiple innermost inter-
faces [31]. The interface to exchange with is selected with a
RandomChoiceMover that includes ReplicaExchangeMovers
for each innermost interface. The segment might not over-
lap with the selected interface, and therefore this step very
well might fail for MISTIS.
In the final step, the trajectory that was initially in the in-

nermost interface ensemble is extended until it satisfies the
minus ensemble, using a RandomChoiceMover to choose ei-
ther a ForwardExtendMover or a BackwardExtendMover.
No part of the move can be accepted unless all parts suc-

ceed. Therefore, we use a ConditionalSequentialMover
for this. In addition, we used the intermediate “segment”
ensemble. To remove this from the results, we wrap the
mover in a EnsembleFilterMover.
Fig. 5 shows the internal structure of this mover. Nor-

mally, this structure is not shown in the move decision tree
visualization because the MinusMover ismarked as a canon-
ical mover, and the visualizer does not show internal struc-
ture of canonical movers. This setting can be overridden
by changing the options.analysis dictionary of the visu-
alizer.

B. MoveScheme and MoveStrategy objects

TheMoveSchemecontainsmultipleMoveStrategyobjects,
used to automatically build the (o�en elaborate) move de-
cision tree. It also is possible to build move decision trees
manually. To make these manually-built trees compatible
withotherparts ofOPS, the rootmoverneeds tobewrapped
in a in a LockedMoveScheme. However, many of the tools for
MoveSchemes are not available for LockedMoveSchemes, and
much of what is discussed in the remainder of this section is
not applicable to LockedMoveSchemes.
In addition to containing the move decision tree, a

MoveScheme organizes information about the sampling
process, and provides access to tools for analyzing the
sampling procedure a�er the simulation. In particu-
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FIG. 5. Internal structure of a MinusMover. At the le�, the hi-
erarchical structure of mover. Each layer (moving le�) is encap-
sulated in the objects to the right. During a minus move, sub-
movers are visited from top to bottom (but not all submovers are
visited). The MinusMover, labelled “Minus,” is the outermost con-
tainer. Inside it is the EnsembleFilterMover that filters out results
in the internally-used segment ensemble. The primary sequence
of the minus move is in the ConditionalSequentialMover, each
of which involves a RandomChoiceMover, which select the specific
movers to do at each stage. On the right are the three ensembles
involved in the minus move, labelled with A, B, and C. Ensemble A
is the innermost TIS ensemble, ensemble B is theminus ensemble,
and ensemble C is the segment ensemble. The input and output
ensembles for eachmoverare shown inblueand red (respectively).
Movers like replica exchange have the same input and output en-
sembles (even if the replicas have changed), whereas movers like
the subtrajectory selectors move a replica from one ensemble to
another.

lar, the MoveScheme organizes the movers into labeled
or named groups. For the default TIS scheme, the
group names are ’shooting’ (shooting movers), ’repex’
(replica exchange), ’pathreversal’ (path reversal), and
’minus’ (minus move). These can be accessed with
scheme.movers[group_name]. Each group consists of mul-
tiple PathMovers. Each PathMover in turn has specific in-
put and output ensembles. For shooting, a single ensemble
is used for both input and output. For EnsembleHopMovers
(the single-replica version of replica exchange, whichmoves
a single replica from one ensemble to a di�erent ensem-
ble), the input mover is di�erent from the output mover.
ReplicaExchangeMovershave two inputand twooutputen-
sembles (the samepair for both). We refer to this set of input
and output ensembles as the mover’s ensemble signature.
To build the move decision tree, one must decide (1)
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which ensemble signatures will be part of each type of
move (e.g., which ensembles to shoot from), (2) how the
movers will be implemented (e.g., what kind of shoot-
ing move to use), and (3) how all movers are organized
into the overall decision tree (e.g., select type of mover
first, then specific ensembles to include). MoveScheme
builds the move decision tree by applying multiple
MoveStrategy objects. Each MoveStrategy is associ-
ated with a specific priority level. When building the
move decision tree, the strategies are applied in order
of priority level, and within a priority level, in order of
addition to the MoveScheme. The default priority levels are
in openpathsampling.strategies.levels.LEVELNAME,
where LEVELNAME can be, in order of ascending priority,
SIGNATURE, MOVER, GROUP, or GLOBAL. Internally, these
priority levels are represented by integers between 0 and
100, but these specific levels are named for convenience.
The recommended use for these levels is as follows:

• Strategies at the SIGNATURE level modify the set of
ensemble signatures to be used; for example, the
default NearestNeighborRepExStrategy which exe-
cutes replica swaps among neighboring interfaces,
versus the AllSetRepExStrategy, which implements
replica swaps among all interfaces within the same
Transition (interface set).

• Strategies at the MOVER level customize the be-
havior of the created path movers; for example,
the OneWayShootingStrategy provides the ability to
choose a shooting point selector for the shooting
group.

• Strategies at the GROUP level can take the already-
built movers and rearrange them, or convert
them to a di�erent approach. For example,
the single-replica EnsembleHop movers can be
converted to normal replica exchange using the
ReplicaExchangeStrategy, which is a GROUP-level
strategy. In Sec. IV, we show another GROUP-level
strategy, which will take the already-created shooting
and replica exchange movers, and reorganize them
into a single sequential move.

• Strategies at the GLOBAL level organize the overall
movedecision tree. The twoGLOBAL-level strategies in
OPS are the OrganizeByMoveGroupStrategy, which
first selects a move type, and then selects which spe-
cific mover (which signature, i.e., which ensembles),
and the OrganizeByEnsembleStrategy, which starts
with the selection of the ensemble tomove (as neces-
sary with single-replica approaches) and then selects
which type of move to do.

By using this priority-level system, themove decision tree
can be built correctly, regardless of the order in which the
specificmove strategies are added to the scheme. Parts that
must be built later are built later because of the priority lev-
els. In addition, the details of what has already been built
(e.g., specific choices of parameters for movers, such as the

shootingpoint selection ina shootingmove) canbe retained
by latermoves that reorganize theentiremovedecision tree.

MoveStrategy objects deal with the details of the imple-
mentation, when building the move decision tree. For ex-
ample, two-way shooting could be used instead of one-way
shooting by starting with the default scheme applying a
TwoWayShootingStrategy to the scheme:

1 scheme = paths.DefaultScheme(network, engine)
2 modifier = paths.NoModification()
3 scheme.append(paths.strategies.TwoWayShootingStrategy(
4 modifier=modifier, engine=engine)

where engine and network were already appropriately de-
fined (see Paper I for details[24]). This implements a
two-way shooting move decision tree where the shooting
point is not modified, and the decorrelation depends on
the stochastic dynamics. Alternatively, for NVT dynamics,
one could choose the momenta randomly from a Maxwell-
Boltzmann distribution, as is, for instance, done in the aim-
less shooting [32] approach. The scheme then becomes

1 scheme = paths.DefaultScheme(network, engine)
2 modifier = paths.RandomVelocities(beta=1.0/temperature,
3 engine=engine)
4 scheme.append(paths.strategies.TwoWayShootingStrategy(
5 modifier=modifier, engine=engine)

where temperature, engine, and networkwere already ap-
propriately defined. This implements a two-sway shooting
move decision tree where the shooting point obtains ran-
dom velocities taken from a Maxwell-Boltzmann distribu-
tion at the desired temperature. If the engine supports con-
straints, the RandomVelocities modifier will project that
distribution into the space of constraints.
As another example, a modified shooting point selector

could be used, instead of the default (uniform selector). For
instance, the GaussianBiasSelector selects the shooting
point according to a Gaussian probability in a specified col-
lective variable [33]. A�er setting up the scheme as above,
and creating a collective variable cv, the following code will
implement this selector:

1 sel = paths.GaussianBiasSelector(cv, alpha=1.0, l_0=0.0)
2 scheme.append(paths.strategies.OneWayShootingStrategy(
3 selector=sel, engine=engine))

where theGaussianbias is definedby exp(−α(cv(x)−l0)2),
withx a snapshot, and l0 andα, respectively, control thepo-
sition and width of the Gaussian.
A third example of a MoveStrategy is to add a specific en-

semble pair to the list of possible replica exchange moves.
To do this, one would first select the ensembles (call them
ens1 and ens2). Then, a�er creating the scheme as before,
the new replica exchange pairs can be added with:

1 scheme.append(paths.strategies.SelectedPairsRepExStrategy(
2 ensembles=[ens1, ens2]))

Note that this last example was a signature-level strategy,
whereas the other examples weremover-level. The priority-
level system used in OPSmeans that the user does not have
to consider the order in which the strategies are built when
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appending them to a custom move scheme. For exam-
ple, the signature-level strategy that changes the ensembles
used in replica exchange can be appended a�er the mover-
level strategy that provides details of how to perform the
shooting move, even though the order they are used in the
opposite order when building the move decision tree.

IV. ILLUSTRATIVE EXAMPLES

A. Creating new ensembles

One of the significant features of OpenPathSampling is
the ability to generate valid paths for arbitrary path ensem-
bles. This capability facilitates the development of new
methodologies, which o�en require the creation of new
path ensembles. In addition, this feature has practical ad-
vantages for users as well. In the Appendix of Paper I, we
briefly mentioned one such practical use[24]. To obtain the
initial conditions for a path sampling simulation, we can use
a high temperature trajectory. For multiple state TIS simu-
lations, we also need initial trajectories that satisfy all the
ensembles in the MSTIS network: there must be trajecto-
ries that begin in each state, and which exit each interface
volume. For most MSTIS simulation setups, a path that un-
dergoes a transition to another state, crosses all the inter-
faces associated with the starting state. Therefore, we can
use such a transition path as an initial path for all interfaces.
And since we can reverse paths, a long trajectory that visits
all states will contain, for each of the defined MSTIS ensem-
ble in the network, a (possibly reversed) subtrajectory that
satisfies that ensemble.
Thus, our high temperature target trajectory is one that

has visited all states. To define an ensemble that will gen-
erate such a trajectory, we use complement ensembles and
think in terms of halting criteria, as suggested in the guide-
lines in Sec. II G. We need a condition that remains true un-
til the trajectory has visited all states — in other words, the
opposite of the condition that the trajectory has visited all
states. This means that we should continue as long as the
trajectory has not visited at least one state. We can express
this idea as a path ensemble

Init = OutA ∪OutB ∪OutC ∪ ... ∪OutM (42)

which is only true if none of theM Out conditions are ful-
filled. The continuation condition is now thenegationof this
ensemble

InitTrajEns =
⋃

I∈{A...M}
OutI (43)

This condition translates in OPS to the python code

1 initial_trajectory_ensemble = paths.join_ensembles(
2 paths.AllOutXEnsemble(state) for state in states)

where states is a list of the state volumes. We can then cre-
ate the goal trajectory using the engine.generatemethod
by

1 trajectory = engine.generate(initial_snapshot,
2 [initial_trajectory_ensemble])

The resulting trajectory will have visited every state, and
the last frame will be in the last state visited. Since it vis-
its every state, then it has, for every state, a subtrajectory
that starts in that state and ends in another (in some cases
requiring time reversal). This means that subtrajectories of
this long trajectory can be found to satisfy all the ensembles
in the MSTIS network. Note that we use the ensemble itself
as a condition, not its CanApp function. In this case, because
theseare In/OutA-typeensembles, theCanApp is equivalent
to the ensemble check (this is not necessarily the case for
other ensembles). Conceptually, we are a�er the first trajec-
tory that does not satisfy the ensemble, so we use the en-
semble check itself.
We can also define another (arbitrary) ensemble to obtain

a first trajectory suitable for the TIS bootstrapping proce-
dure. This procedure takes a trajectory satisfying the inner-
most interface ensemble of a TIS transition, and performs
shooting moves until the resulting paths satisfy the ensem-
ble(s) for the subsequent interface(s). To get that initial tra-
jectory, wewant to start fromany arbitrary frame, then have
at least one frame in state A, then have at least one frame
that crosses the interface, and end with exactly one frame
in either state A or state B (where state B can be general-
ized to the union of multiple other states). The sequential
ensemble to do this is

SeqEnsInit = Opt[InA]→ InA → Opt[OutA ∩ InΛi
]→

→ Opt[InΛi
]→ OutΛi

→ Opt[OutA]→ [InA∪B ∩ 1]

Following Sec. II G, this ensemble uses an anchor that com-
bines the optional ensemble outside of A with a required
ensemble insideA. As also suggested in the guidelines, the
OptionalEnsembles in this ensemble are designed to en-
sure that any possible trajectory that satisfies the overall
goalwill still be accepted. This ensemble translates intoOPS
code as

1 bootstrap_initial_ensemble = paths.SequentialEnsemble([
2 paths.OptionalEnsemble(paths.AllOutXEnsemble(A)),
3 paths.AllInXEnsemble(A),
4 paths.OptionalEnsemble(paths.AllOutXEnsemble(A)
5 & paths.AllInXEnsemble(interface)),
6 paths.OptionalEnsemble(
7 paths.AllInXEnsemble(interface)),
8 paths.AllOutXEnsemble(interface),
9 paths.OptionalEnsemble(paths.AllOutXEnsemble(A)),

10 paths.LengthEnsemble(1) & paths.AllInXEnsemble(A | B)
11 ])

A similar ensemble is part of the FullBootstrapping calcu-
lation, which fills TIS ensembles starting from a single snap-
shot.

B. Using Ensemble.split for trajectory analysis

The Ensemble object in OpenPathSampling provides a
convenient way of analyzing trajectories in terms of sub-
trajectories. The ensemble.split(trajectory, overlap)
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FIG. 6. Accepted TPS trajectorywith recrossing taken from the
fixed-lengthTPSsimulationofalaninedipeptide inPaper 1[24]. The
angleψ is plotted as a function of time. Frames inC7eq aremarked
in red; frames in αR are marked in blue.

method takes a long trajectory and returns a list of subtra-
jectories that satisfy the ensemble. Successive subtrajecto-
rieswill have atmost overlap frames in common (with a de-
fault of 1 shared frame). For example, we can checkwhether
any trajectories in a fixed-lengthTPS simulation included re-
crossings. Given state volumes A and B, we first create the
B → A transition ensemble:

SeqEnsBtoA = InB → Opt[OutA∪B ]→ InA

which in OPS code translates to

1 B_to_A = SequentialEnsemble([AllInXEnsemble(B),
2 OptionalEnsemble(AllOutXEnsemble(A | B)),
3 AllInXEnsemble(A)])

Making frames outside of both A and B optional captures
trajectories where the transition occurs without any inter-
mediate frames (this is unlikely in our examples, but could
be common in long paths with (too) infrequent saving of
frames). WecanapplyB_to_A.split(trajectory) toevery
trajectory accepted by the fixed-length TPS ensemble. If the
resulting list is not empty, a recrossing in theB → A direc-
tion took place. Since the first frame of every accepted tra-
jectory has to be inA and the last frameof every trajectory is
necessarily inB, the existence of aB → A transition guar-
antees a recrossing. For the fixed path length alanine dipep-
tideexample fromPaper I[24], Sec. VI A,we find 109accepted
trials with recrossings, including 5 with 2 recrossing events.
For accepted paths with a single recrossing, there are two
α → β transitions in the path — one before recrossing, and
one a�er. With two recrossings, there would be three tran-
sitions. An example of an accepted recrossing trajectory is
shown in Fig. 6.
This approach also allows distinguishing between multi-

ple channels for a given reaction. For instance, we can com-
pare the behavior of fixed path length TPS and flexible path
length TPS for alanine dipeptide. By taking ensemble as the
flexible path length TPS ensemble, application of the split
function identifies subtrajectories of the fixed path length
TPS that match the flexible path length ensemble.
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FIG. 7. Transition path length distributions. Top: Without
distinguishing between increasing and decreasing transition types
from the fixed length TPS. Bottom: Distinguishing the increasing
anddecreasing transitions. The di�erence in the path length distri-
butions can be attributed to the fixed-length simulation sampling
both increasing and decreasing transitions.

Fig. 7a shows path-length histograms for the transitions
in the flexible path length TPS ensemble and in the fixed
path length ensemble (selected using the split function),
from our TPS simulations of alanine dipeptide reported in
Paper I. These histograms di�er because the fixed length
ensemble in fact sampled two di�erent transition mecha-
nisms. To show this, we can define custom path ensem-
bles that distinguish between the two mechanisms. First,
we define additional volumes, based on the ψ collective
variable: an A volume for 100 < ψ < 200 (where the
CVPeriodicRangeVolume automatically wraps into the cor-
rect bounds), and a B volume for −100 < ψ < 200. These
twovolumesarebasedon theoriginal states, buthaveno re-
strictions in φ. Two additional volumes account for the “no-
man’s land” region outside the states: nml_increasing for
−160 < ψ < −100, and nml_decreasing for 0 < ψ < 100.
Next, we identify a transition as“increasing” if the trajectory
crosses the nml_increasing volume (i.e., the value of ψ in-
creases while going from one state to the next), and “de-
creasing” if it crosses the nml_decreasing volume. The se-
quential ensemble for the increasing transitions can be de-
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fined by

SeqEnsIncr = InA → Innml_increasing → InB (44)

which is in OPS code

1 increasing = SequentialEnsemble([
2 AllInXEnsemble(A),
3 AllInXEnsemble(nml_increasing),
4 AllInXEnsemble(B)])

The ensemble for decreasing transitions is defined similarly,
but using nml_decreasing in place of nml_increasing. Tra-
jectories that satisfy the original TPS ensemble will have
subtrajectories that satisfy one of these ensembles. By us-
ing the ensemble.split() method, we can identify which
mechanism each trajectory represents.
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FIG. 8. Volumes and example trajectories for the di�erentways a
“decreasing” transition can occur. The shaded areas represent the
extended state definitions used in the analysis of the transitions,
while the darker shaded areas are the actual states of the system.
(a) A typical decreasing path. (b) and (c) Paths which visit the “in-
creasing” noman’s land, but only transition across the decreasing.
(d) Path with both increasing and decreasing transitions.

Fig 8 shows several trajectories (blue and purple) con-
necting the original two stable states (dark red). The states
are defined in terms of periodic variables, and can wrap
around the periodic boundary. The “extended” versions of
the states that were defined above are shown in light red,
and the two di�erent “no man’s land” volumes are labelled
nml_decreasing and nml_increasing. Several hypothetical
trajectories are shown, all of which would count as a de-
creasing transition. Trajectory (a) would be easy to analyze
by a volume-based approach (and is also a realistic trajec-
tory for this system). Trajectories (b) and (c) would count
as decreasing transitions, but an analysis based only on vol-
umes (without consideration of ordering) might miss them.
Trajectory (d) includes both an increasing and a decreasing
transition (and would be extraordinarily unlikely in this sys-
tem).
The fixed length alanine dipeptide example shows 3570

trajectories in the decreasing channel and 6670 trajecto-
ries in the increasing channel (weighted by the Monte Carlo

weights from the TPS simulation). All transition trajectories
satisfy exactly one of the two channels, although some TPS
trajectories, due to recrossings, have more than one transi-
tion trajectory. The flexible length example has all its trajec-
tories in the decreasing channel. The existence of recross-
ings in the fixed length TPS ensemble demonstrates that
these transitions in alanine dipeptide are not that rare, so
it is not surprising that we would also observe switching
between the two mechanisms. The bottom panel of Fig. 7
shows the path length histograms when the increasing and
decreasing transitions are distinguished. The decreasing
subtrajectories from the fixed-length sampling and the tra-
jectories from the flexible-length sampling (which are all de-
creasing) show much closer agreement, and the increasing
transition shows a very di�erent distribution.
Wecanalso replaceother commonanalyseswith versions

based on Ensemble.split. For example, consider the life-
time in a given state, which is definedby the time fromwhen
a trajectory first enters the state (having previously been in
another state) until it enters another state. We refer to the
desired state asA and the combination of all other states as
B.
To think of this in terms of path ensembles, we describe it

in twostages. First,weneed to find thepathensemblewhich
goes from another state, enters the desired state, and then
enters another state. We denote this the “BAB” ensemble.
The trajectories which are relevant to the lifetime calcula-
tion are subtrajectories of trajectories in the BAB ensemble.
These go from the first entrance in A to the first entrance in
B. We’ll call this the “AB” ensemble. We obtain trajectories
in the AB ensemble by first getting all the segments that sat-
isfy the BAB ensemble, and then selecting the relevant sub-
trajectories. Defining the BAB ensemble as

SeqEnsBAB = [InB ∩ 1]→ [PartInA ∩OutB ]→ [InB ∩ 1],

the corresponding OPS code is given by:

1 BAB = SequentialEnsemble([
2 LengthEnsemble(1) & AllInXEnsemble(B),
3 PartInXEnsemble(A) & AllOutXEnsemble(B),
4 LengthEnsemble(1) & AllInXEnsemble(B)
5 ])

The AB ensemble is defined as

SeqEnsAB = [InA ∩ 1]→ Opt[OutB ]→ [InB ∩ 1]

with the OPS code given by:

1 AB = SequentialEnsemble([
2 LengthEnsemble(1) & AllInXEnsemble(A),
3 OptionalEnsemble(AllOutXEnsemble(B),
4 LengthEnsemble(1) & AllInXEnsemble(B)
5 ])

Both ensembles make use of the guideline on thinking
about the halting criteria (from Sec. II G) by using OutB as
part of the middle subensemble. This guarantees that the
middle subensemble stops, and the first frame a�erward
must be the first frame in state B (thus satisfying the final
subsensemble). Additionally both of these ensembles use
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A

B

FIG. 9. Trajectory segments for lifetimes. A trajectory for a toy
model is shownwith a light grey line. The red area represents state
B, and the blue area represents stateA. The segment that satisfies
the BAB ensemble is shown in dark grey line, and the segment that
satisfies the AB ensemble is shown in blue (and overlaps the BAB
segment).

anchors requiring one frame in a state. Formally, the inter-
section with 1 is not necessary, as we might as well have
selected the last subtrajectory of frames in B/the first sub-
trajectory of frames inA, instead of the last frame inB/first
frame inA.
To use these, we just run:

1 BAB_trajs = BAB.split(trajectory)
2 AB_trajs = [AB.split(traj)[0] for traj in BAB_trajs]

In Fig. 9, we visualize the trajectory segments associated
with each of these ensembles for a sample trajectory from
a toy model.
In the above example, the average time of the result-

ing trajectories gives the average lifetime in a state. In
a two-state system, the reciprocal of the average lifetime
is the rate. This could be modified to get the transition
rate constants for a multiple state system by replacing the
AllInXEnsemble(B) in the BAB sequential ensemble with
an ensemble that would allow any state other than A, while
the last one allows a specific state B. Thiswould give the life-
time associated with the rate ofA→ B.
A similar procedure can be used to obtain the flux from a

state through a given interface in TIS. In that case, wedo two
lifetime analyses: the lifetime outside the interface (where
A everything outside the interface, and B is the state) and
the lifetime inside the state (where A is the state, and B is
everything outside the interface). The reciprocal of the sum
of the average lifetimes from these gives us the flux [25].
Since this example involves two loopsover the snapshots,

it may not be as fast as code custom-designed to this pur-
pose. (Although, in fact, the caching of OPS collective vari-
ables renders the vast majority of the total computational
e�ort done in the first pass.) However, our primary intent
here is to highlight how simple it is to prototype a trajec-
tory analysis based on using the Ensemble.split method.
It may be possible to write faster code, but it is hard to write
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FIG. 10. Model systemfor the custommoveschemeexample.
Potential energy surface with states in blue and interface bound-
aries in red.

code faster.
The specific implementations of flux and

lifetime discussed here are included in the
SingleTrajectoryAnalysis object.

C. Custom PathMovers

OpenPathSampling also facilitates the creation of custom
move schemes. In this section, we present an example of
how that can be done, and compare the sampling behavior
of this custommove scheme to the default move scheme.
The default RETIS move scheme selects a type of move

at random (shooting, replica exchange, etc.) and then at-
tempts one move of that type (shooting in a single ensem-
ble, replica exchange for a specific pair, etc.). But perhaps
a move which does all the replica exchanges in sequential
order, then does shooting moves on all the ensembles, and
then does the replica exchange in the reverse order, would
be more e�icient. This move will satisfy detailed balance —
the question is whether it is more e�icient.
For themost part, this simulation is set up as in the exam-

ples in Paper I[24]. The specific potential energy surface is
given by

V (x, y) = x6 + y6− (45)

0.7 exp(−0.5y2)
(

exp(−12(x+ 0.5)2)+

exp(−12(x− 0.5)2)
)

States are defined such that state A is x < −0.5 and
state B is x > 0.5. Only the A → B transition is stud-
ied, with interface volumes from xmin = −∞ to xmax,i =
{−0.4,−0.3,−0.2,−0.1}. The potential energy surface,
with states and interface boundaries, is shown in Fig. 10.
The main di�erence with the examples in Paper I[24]. is

that here, we define a custom MoveStrategy object, which
creates a custom sequential mover. The code for this mover
and amove strategy to manage it is in Listing 2.
To use this strategy, we first create a default scheme, and

then append the new strategy:
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1 import openpathsampling.analysis.move_strategy as strategies
2 # example: custom subclass of `MoveStrategy`
3 class RepExShootRepExStrategy(strategies.MoveStrategy):
4 _level = strategies.levels.GROUP
5 # we define an init function mainly to set defaults
6 # for `replace` and `group`
7 def __init__(self, ensembles=None,
8 group="repex_shoot_repex", replace=True,
9 network=None):

10 super(RepExShootRepExStrategy, self).__init__(
11 ensembles=ensembles, group=group,
12 replace=replace)
13

14 def make_movers(self, scheme):
15 # if we replace, we remove these groups from the
16 # scheme.movers dictionary
17 if self.replace:
18 repex_movers = scheme.movers.pop('repex')
19 shoot_movers = scheme.movers.pop('shooting')
20 else:
21 repex_movers = scheme.movers['repex']
22 shoot_movers = scheme.movers['shooting']
23 # combine into a list for the SequentialMover
24 mover_list = (repex_movers + shoot_movers
25 + list(reversed(repex_movers)))
26 combo_mover = paths.SequentialMover(mover_list)
27 return [combo_mover]

Listing 2. Custom path mover and move strategy for repex-
shoot-repexmove. The make_moversmethod is the primary point:
first, the replica exchange movers and shooting movers are ex-
tracted from the existingmove scheme, removing them if replace
is true. Then these movers are combined into a sequence in
the mover_list, representing the sequential order in which they
should run doing the combinedmove. That list is then input to cre-
ate the sequential mover.

1 custom_scheme = paths.DefaultScheme(network)
2 custom_scheme.append(RepexShootRepexStrategy())

The visualization of this move scheme in is Fig. 11.
There is still a random choice of type of move, but the
types available are now minus move, path reversal, and
the sequential mover, which is the only choice under the
“Repex_shoot_repexChooser” in the illustrationof themove
decision tree. The relative probabilities for each move type
are determined as ratios. By default, a new move type has
the same (relative) probability as a shooting move, which
is twice that of a replica exchange or path reversal, and
five times that of a minus move. This means that when
the repex-shoot-repex move replaces shooting and replica
exchange in the move scheme, the ratio of per-ensemble
shooting attempts to path reversals or tominusmoves stays
the same.
On the other hand, the number of total MC steps

per ensemble shooting attempts will, of course,
be very di�erent between the custom and default
schemes. To compare these fairly, we use the function
scheme.n_steps_for_trials, which takes a mover and
the number of desired attempts of that mover as argu-
ments. We can ensure the two simulations do about the
same amount of work by aiming for the same number of
per-ensemble shooting moves. For the default scheme, this
is
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FIG. 11. Move scheme including the repex-shoot-repex
mover.

1 n_steps_default = default_scheme.n_steps_for_trials(
2 mover=default_scheme.movers['shooting'][0],
3 n_attempts=n_tries_per_shooting)

and for the custom scheme, it is

1 n_steps_custom = custom_scheme.n_steps_for_trials(
2 mover=custom_scheme.movers['repex_shoot_repex'],
3 n_attempts=n_tries_per_shooting)

where n_tries_per_shooting is a number we have chosen
(50000 in the example). We arbitrarily select the first shoot-
ing mover in the default scheme, since all have the same
probability. We take the total probability of selecting the
’repex_shoot_repex’group, because there is onemover in
that group, and every time it occurs, it creates one shooting
attempt for each ensemble.
To ensure that this is a fair comparison, there are a

few comparisons that should be made. First, we use the
scheme.move_summary function (described in Paper I[24]) to
show that we have the same number of path reversal and
minus moves in each scheme. We can also use the move
summary to see that we have the same number of shoot-
ing moves per ensemble, by comparing the per-ensemble
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shooting count obtained by adding ’shooting’ as a sec-
ond argument to default_scheme.move_summary with the
number of repex-shoot-repex moves in the custom_scheme.
Since both schemes are sampling the same number of
shooting moves in the same ensembles, they should create
roughly the same number of total snapshots. We can check
this with len(storage.snapshots) for each storage.
To analyze these results, we consider replica round trip

times and replica flow [34], concepts thatmonitor the pres-
ence of bottlenecks during the replica exchange. Both con-
cepts require defining ensembles as “top” and “bottom.” We
put the minus ensemble as the bottom ensemble, and the
outermost TIS ensemble as the top ensemble. A round trip
can start from either the first entry to the “top” ensemble
or the first entry to the “bottom” ensemble, and will use
whichever the given replica visits first. If the replica visits
the “top” ensemble first, the round trip duration is the num-
ber of Monte Carlo steps from the first entry into “top” until
the replica returns to “top” a�er visiting “bottom,” with the
case starting in “bottom” defined analogously.
Replica flow is defined by labelling each replica as either

travelling “up” or “down,” depending onwhether itmore re-
cently visited the “bottom” or “top” ensemble, respectively.
For each ensemble i, the count of visits by “up” replicas is
given by n↑i , with the number of visits by “down” replicas
given by n↓i . The flow for a given ensemble is defined as
fi = n↑i /(n

↑
i + n↓i ). Formally, flow is 1 at the “bottom” en-

semble and 0 at the “top” ensemble. The ideal flow is linear
with the replica index. [34]
Round trip times and flow are both calculated as part of

the ReplicaNetwork analysis tool. The code to analyze the
default scheme is

1 bottom_ensemble = network.minus_ensemble[0]
2 top_ensemble = network.sampling_ensembles[-1]
3 default_repex_net = paths.ReplicaNetwork(
4 default_scheme, default_storage.steps)
5 default_trips = default_repex_net.trips(
6 bottom=bottom_ensemble, top=top_ensemble)
7 default_flow = default_repex_net.flow_pd(
8 bottom=bottom_ensemble, top=top_ensemble)

Then default_trips[’round’] returns a list of the dura-
tion (in Monte Carlo steps) of each round trip that occurred.
Analysis for the custom scheme is analogous.
For this simple example, we find the custom move

scheme does not yield significant improvement. The de-
fault schemegenerates 345 round trips, whereas the custom
schemegenerates311. Theremaybeasmall di�erence in the
distribution of the round trip times (see Fig. 12). The distri-
bution of round trip times is skewed toward slightly longer
round trips for the custom scheme. The replica flow, shown
in Fig. 13, are very similar for both approaches. Overall, the
default scheme is probably a slightly better choice.

V. CONCLUSION

In this paper we have described some advanced topics
relevant to theOpenPathSampling framework [24]. Wehave
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FIG. 12. Histogram of round trip times for the default RETIS
scheme and the custom scheme with the “repex-shoot-repex”
move, with duration normalized to the total number of MC steps.
Although both give about the same number of round trips, the dis-
tributions may di�er somewhat.
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FIG. 13. Replica flow for the default TIS scheme and the custom
scheme with the “repex-shoot-repex” move. This example shows
little di�erence, with the suggestion that the default scheme may
be slightly better.

introduced a novel set-based approach to constructing path
ensemble, along with a new notation suitable to this ap-
proach. This allows the application of set logic to path en-
sembles, and fits seamlessly with the way that OPS is writ-
ten. Another advantage of this new notation is that it uni-
fies the description of the monitor function of OPS with the
path ensemble indicator function. Of particular importance
herein is the sequential path ensemble, which is directly re-
lated to the way that OPS implements the path sampling
monitoring and testing. Using this newnotation it is remark-
ably simple to create newpath ensembles, and immediately
implement these in OPS.
Inaddition,weprovided insight inhowonecancustomize

the path sampling Monte Carlo movers within OPS in order
to build non standard sampling schemes. These customiza-
tions are required if one wants to develop new path sam-
pling schemes, or adapt existing ones.
In short, in this paper we have illustrated the power and
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flexibility of the OPS package. Users can now develop their
own advanced sampling protocol entirely in OPS, and apply
it to compute kinetic and thermodynamic observables.
In futureworkwewill further elaborate on the foundation

of the ensemble set-logic. Another direction is to parallelize
theOPScode. While runningmultiple simulations inparallel
is alreadypossible, trueparallelization requires the loadbal-
ancing of multiple ensembles, where trajectories can have
di�erent and unpredictable path lengths, over the available
computational resources.
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