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Abstract

Individual differences in delay-discounting correlate with important real world outcomes, e.g. education,
income, drug use, & criminality. As such, delay-discounting has been extensively studied by economists,
psychologists and neuroscientists to reveal its behavioral and biological mechanisms in both human and
non-human animal models. However, two major methodological differences hinder comparing results across
species. Human studies present long time-horizon options verbally, whereas animal studies employ experiential
cues and short delays. To bridge these divides, we developed a novel language-free experiential task inspired by
animal decision-making studies. We find that subjects’ time-preferences are reliable across both
verbal/experiential differences and also second/day differences. When we examined whether discount factors
shifted or scaled across the tasks, we found a surprisingly strong effect of temporal context. Taken together,
this indicates that subjects have a stable, but context-dependent, time-preference that can be reliably assessed
using different methods; thereby, providing a foundation to bridge studies of time-preferences across species.

Introduction 1

Intertemporal choices involve a trade-off between a larger outcome received later and a smaller outcome 2

received sooner. Many individual decisions have this temporal structure, such as whether to purchase a 3

cheaper refrigerator, but forgo the ongoing energy savings. Since research has found that intertemporal 4

preferences are predictive of a wide variety of important life outcomes, ranging from SAT scores, graduating 5

from college, and income to anti-social behaviors, e.g. gambling or drug abuse [1, 13,24,28,45], they are 6

frequently studied in both humans and animals across multiple disciplines, including marketing, economics, 7

psychology, and neuroscience. 8

A potential obstacle to understanding the biological basis of intertemporal decision-making is that human 9

studies differ from non-human animal studies in two important ways: long versus short time-horizons and 10

choices that are made based on verbal versus non-verbal (i.e. ”experiential”) stimuli. In animal studies, the 11

subjects experience the delay between their choice and the reward (sometimes cued with a ramping sound or a 12

diminishing visual stimulus) before they can proceed to the next trial [8, 11, 73]. Generally, there is nothing for 13

the subject to do during this waiting period. In human studies, subjects usually make a series of choices 14

(either via computer or a survey) between smaller sooner offers and larger offers delayed by months or 15

years [2, 49]. (We are aware of only a handful of studies that have used delays of minutes [48] or 16

seconds [25,31,40,60,72]). During the delay (e.g. if the payout is in 6 months) the human subjects go about 17
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their lives, likely forgetting about the delayed payment, just as individuals do not actively think about their 18

retirement savings account each moment until their retirement. 19

Animal studies of delay-discounting take several forms [11,18,62,79], but all require experiential learning 20

that some non-verbal cue is associated with waiting. Subjects experience the cues, delays and rewards, and 21

slowly build an internal map from the cues to the delays and magnitudes. Subjects may only have implicit 22

knowledge of the map, which likely engage distinct neural substrates to the explicit processes engaged by 23

humans when considering a verbal offer [59,61]. 24

Whether animal studies can inform human studies depends on answers to the following questions. Do 25

decisions that involve actively waiting for seconds invoke the same cognitive and neural processes as decisions 26

requiring passively waiting for months? Do decisions made based on experience and perceptual decisions invoke 27

the same cognitive and neural processes as decisions that are made based on explicitly written information? 28

The animal neuroscience literature on delay-discounting mostly accepts as a given that the behavior of 29

animals will give insight into the biological basis for human impulsivity [23,34,65,70] and rarely [8, 66] 30

addresses the methodological gaps considered here. This view is not unfounded. Neural recordings from 31

animals [11] and brain imaging studies in humans [37,49] both find that the prefrontal cortex and basal 32

ganglia are involved in delay-discounting decisions, suggesting common neural mechanisms. Animal models of 33

attention-deficit hyperactive disorder (ADHD) have reasonable construct validity: drugs that shift animal 34

behavior in delay-discounting tasks can also improve the symptoms of ADHD in humans [23,56]. Thus, most 35

neuroscientists would likely predict that our experiments would find high within-subject reliability across both 36

time-horizons and verbal/experiential dimensions. 37

Reading the literature from economics, a different picture emerges. Traditional economic models dating 38

back to Samuelson [68] posit that agents make consistent intertemporal decisions, thereby implying a constant 39

discount rate regardless of context. In contrast, growing evidence from behavioral economics provides support 40

for the view that discounting over a given time delay changes with the time-horizon [3,7]. Yet, there remains 41

debate in the empirical economics literature about how well discounting measures elicited in human studies 42

truly reflect the rates of time-preference used in real-world decisions since they have been found to vary by the 43

type of task (hypothetical, potentially real, and real), stakes being compared, age of participants and across 44

different domains [15]. Thus, most economists surveying the empirical evidence would be surprised if a design 45

that varied both type of tasks and horizons would generate results with high within-subject reliability. 46

Here, we have addressed these questions by measuring the discount factors of human subjects in three ways. 47

First, we used a novel language-free task involving experiential learning with short delays [20, 42, 43, 46]. Then, 48

we measured discount factors more traditionally, with verbal offers over both short and long delays. This 49

design allowed us to test whether, for each subject, a single process is used for intertemporal choice regardless 50

of time-horizon or verbal vs. experiential stimuli, or whether the choices in different tasks could be better 51

explained by distinct underlying mechanisms. 52

Results 53

In our main experiment, 63 undergraduate students from NYU Shanghai participated in 5 experimental 54

sessions. In each session, subjects completed a series of intertemporal choices. Across sessions, 160 trials were 55

conducted involving each of the following 3 tasks, i) non-verbal short delay (NV, 3 - 64 seconds), ii) verbal 56

short delay (SV, 3 - 64 seconds), and iii) verbal long delay (LV, 3 - 64 days). In each trial, irrespective of the 57

task, subjects made a decision between the sooner (blue circle) and the later (yellow circle) options. In the 58

non-verbal task (Fig. 1A) the parameters of the later option were mapped to an amplitude modulated pure 59

tone. The reward magnitude was mapped to frequency of the tone (larger reward ∝ higher frequency). The 60

delay was mapped to amplitude modulation rate (longer delay ∝ slower modulation). Across trials, the delay 61

and the magnitude of the sooner option were fixed (4 coins, immediately). For the short delay tasks, when 62

subjects chose the later option, a clock appeared on the screen, and only when the clock image disappeared, 63

could they collect their reward by clicking in the reward port. The rewards were accumulated for the duration 64

of the task and used for subject’s payment. In the verbal tasks, the verbal description of the offers appeared 65

within the blue & yellow circles in place of the amplitude modulated sound (Fig. 1B). In the verbal long delay 66

task, after each choice, subjects were given feedback confirming their choice and then proceeded to the next 67
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Figure 1. A: A novel language-free intertemporal choice task. This is an example sequence of screens
that subjects viewed in one trial of the non-verbal task. First, the subject initiates the trial by pressing on
the white-bordered circle. During fixation the subject must keep the cursor inside the white circle. The
subject hears an amplitude modulated pure tone (the tone frequency is mapped to reward magnitude and the
modulation rate is mapped to the delay of the later option). The subject next makes a decision between the
sooner (blue circle) and later (yellow circle) options. If the later option is chosen, the subject waits until the
delay time finishes - which is indicated by the colored portion of the clock image. Finally, the subject clicks
in the middle bottom circle (”reward port”) to retrieve their reward. The reward is presented as a stack of
coins of a specific size and a coin drop sound accompanies the presentation. B: Stimuli examples in the verbal
experiment during decision stage (the bottom row of circles is cropped). C: Timeline of experimental sessions.

trial. At the end of the session, a single long-verbal trial was selected randomly to determine the payment. If 68

the selected trial corresponded to a subject having chosen the later option, she received her reward via an 69

electronic transfer after the delay. 70

Subjects’ time-preferences are reliable across both verbal/experiential and 71

second/day differences 72

Subjects’ impulsivity was estimated by fitting their choices with a hierarchical Bayesian model of hyperbolic 73

discounting with decision noise (Materials and Methods). The model (M6p,4s) had 6 population level 74

parameters (discount factor, k, and decision noise, τ , for each of the three tasks) and 4 parameters per subject: 75

kNV ,kSV ,kLV and τ . The subject level effects are drawn from a normal distribution with mean zero. Subjects’ 76

choices were well-fit by the model (Fig. 2 & Fig. S1). Since we did not ex ante have a strong hypothesis about 77

how the subjects’ impulsivity measures in one task would translate across tasks, we first examined ranks of 78

impulsivity and found significant correlations across experimental tasks (Table 1). In other words, the most 79

impulsive subject in one task is likely to be the most impulsive subject in another task. This result is robust to 80

different functional forms of discounting and estimation methods (Fig. S2 & Table S3). For example, if we 81

ranked the subjects by the fraction of trials they chose the later option in each task, we obtain a similar result 82

(Spearman r: SV vs. NV r = 0.71; SV vs. LV r = 0.49; NV vs. LV r = 0.30, all p < 0.05) (See SI Results for 83

additional confirmations). The correlations of discount factors across tasks extended to Pearson correlation of 84

log(k) (Fig. 3 & Table 1). We found that k, for all tasks, had a log-normal distribution across our subjects (as 85
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Table 1. Correlations of subjects’ discount factors

Spearman Pearson
Rank Correlation Correlation

SV vs. NV 0.76 0.79
SV vs. LV 0.54 0.61
NV vs. LV 0.36 0.40

all p < 0.01

in [69]) and shown in Fig. 3C), hence we present our results in log(k). 86

Consistent with existing research, we find that time-preferences are stable in the same task within subjects 87

between the first half of the block and the second half of the block within sessions and also across experimental 88

sessions that take place every two weeks (SI Results) [4, 50]. In our verbal experimental sessions the short and 89

long tasks were alternated and the order was counter-balanced across subjects. We did not find any order 90

effects (Materials and Methods) in both main (bootstrapped mean test, SV-LV-SV-LV vs. LV-SV-LV-SV order 91

for SV and LV log(k), respectively, all p ¿ 0.4) and control experiments (SI Results). 92
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Figure 2. A 50% median split (± 1 standard deviation) of the softmax-hyperbolic fits for more patient
(A-C) and less patient (D-F) subjects. The values of k and τ are the means within each group (decision
noise τ decreases significantly from non-verbal to verbal tasks, bootstrapped mean test, p < 10−4). Average
psychometric curves obtained from the model fits (lines) versus actual data (circles with error bars) for NV, SV
and LV tasks for each delay value, where the x-axis is the reward magnitude and the y-axis is the probability
(or proportion for actual choices) of later choice. Error bars are binomial 95% confidence intervals. We excluded
the error in the model for visualization.

In our experimental design, the SV task has shared features with both the NV and LV task. First, the SV 93

shares time-horizon with the NV task. Second, the SV and LV are both verbal and were undertaken at the 94

same time. The NV and LV tasks differ in both time-horizon and verbal/non-verbal. The only potential 95

feature that is shared between all tasks is delay-discounting. To test whether the correlation between NV and 96

LV might be accounted for by their shared correlation with the SV task, we performed linear regressions of the 97

discount factors in each task as a function of the other tasks (e.g. 98

log(kNV ) = βSV log(kSV ) + βLV log(kLV ) + β0 + ε)). For NV the two predictors explained 63% of the variance 99

(F (60, 2) = 50.63, p < 10−9). It was found that log(kSV ) significantly predicted log(kNV ) (βSV = 1.28± 0.15, 100
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Figure 3. A, B: Each circle is one subject (N=63). The logs of delay-discounting coefficients in SV task
(x-axis) plotted against the logs of delay-discounting coefficients in NV (A) and LV (B) tasks (y-axis). The
color of the circles and the colorbar identify the ranks in NV task. Pearson’s r is reported on the figure. The
error bars are the SD of the estimated coefficients (posterior means). Solid line is the linear fit. Shaded
area is the 95% CI of the linear fit. Dashed line is unity. C: Distribution of posterior parameter estimates
(log(k)) from the model fit for the three tasks in control experiment 1. Probability density estimates were
obtained (Materials and Methods)) for posteriors of log(k) for experimental tasks (kNV ∼ 1/sec, kSV ∼ 1/sec,
kLV ∼ 1/day). Comparisons between tasks are reported in Table 4. Note, the units for kSV & kNV (1/sec)
would need to be scaled by (86400secs/day) to be directly compared to kLV .

Table 2. Comparison of 1 vs. 2 predictor linear models of log(k)

AIC2 AIC1 ∆df LR test p
NV 215.12 215.01 1 0.169
SV 146.94 165.78 1 ¡10−5

LV 256.19 256.03 1 0.169

p < 10−9) but log(kLV ) did not (βLV = −0.12± 0.09, p = 0.181). For LV we were able to predict 40% of the 101

variance (F (60, 2) = 19.64, p < 10−6) and found that log(kSV ) significantly predicted log(kLV ) 102

(βSV = 1.26± 0.26, p < 10−5) but log(kNV ) did not (βNV = −0.24± 0.18, p = 0.181). For SV the two 103

predictors explained 72% of the variance (F (60, 2) = 78.93, p < 10−9). Coefficients for both predictors were 104

significant (βNV = 0.435± 0.050, p < 10−9; βLV = −0.223± 0.046, p < 10−5); where β = mean± std.error. 105

We further verified these results by generating 1-predictor reduced models based on the stronger of the 106

2-predictors for each task and comparing the nested models using Akaike Information Criteria (AIC) and 107

likelihood ratio tests (LR test) (Table 2). 108

In order to test whether the verbal/non-verbal gap or the time-horizons gap accounted for more variation 109

in discounting we used a linear mixed-effects model where we estimated log(k) as a function of the two gaps 110

(as fixed effects) with subject as a random effect (using the lme4 R package [5, 6]). We created two predictors: 111

days was false in NV and SV tasks for offers in seconds and was true in the LV task for offers in days; verbal 112

was true for the SV and LV tasks and false for the NV task. We found that time-horizon 113

(βdays = −0.524± 0.235, p = 0.026) but not verbal/non-verbal (βverbal = −0.317± 0.235, p = 0.178) 114

contributed significantly to the variance in log(k). This result was further supported by comparing the 2-factor 115

model with reduced 1-factor models (i.e. that only contained either time or verbal fixed effects). Dropping the 116

days factor significantly decreased the likelihood, but dropping the verbal factor did not (Table 3). 117

Table 3. Relative contributions of two gaps to variance in log(k)

Dropped Factor ∆df AIC LR test p
none 743.06
verbal 1 742.88 0.177
days 1 745.99 0.026

We found that subject’s time-preferences were highly correlated across tasks. However, correlation is 118

invariant to shifts or scales across tasks. Our hierarchical model allows us to directly estimate the posterior 119

distributions of log(k) (Fig. 3C) and report posterior means and credible intervals (NV posterior mean = -3.2, 120
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95% credible interval [-3.77, -2.64], SV mean = -3.49, 95% credible interval [-3.86, -3.11], LV mean = -3.95, 121

95% credible interval [-4.55, -3.34]). Similarly, we can use the posterior probability to test if log(k) shifted 122

and/or scaled between tasks (Materials and Methods). We find that subjects in both SV and NV are more 123

impatient than LV, but not different from each other (i.e. significant shifts between SV and LV, NV and LV, 124

Table 4). There is significant scaling between SV and the other two tasks (Table 4). This is likely driven by 125

subgroups that were exceptionally patient in the LV task (Fig. 3B) or impulsive in the NV task (Fig. 3A). 126

Table 4. Shift and scale of log(k) between tasks

Comparison log2(Ev. Ratio)
µ log(kSV ) > µ log(kLV ) 4.97 *
µ log(kNV ) > µ log(kLV ) 6.43 *
µ log(kNV ) > µ log(kSV ) 3.76
σ log(kLV ) > σ log(kSV ) 7.19 *
σ log(kNV ) > σ log(kLV ) 1.36
σ log(kNV ) > σ log(kSV ) 12.29 *

* denotes p < 0.05 one-sided test

Controlling for visuo-motor confounds 127

In the main experiment, we held the following features constant across three tasks: the visual display and the 128

use of a mouse to perform the task. However, after observing the strong correlations between the tasks (Fig. 3) 129

we were concerned that the effects could have been driven by the superficial (i.e. visuo-motor) aspects of the 130

tasks. In other words, the visual and response features of the SV and LV tasks may have reminded subjects of 131

the NV task context and nudged them to use a similar strategy across tasks. While this may be interesting in 132

its own right, it would limit the generality of our results. To address this, we ran a control experiment (n=25 133

subjects) where the NV task was identical to the original NV task, but the SV and LV tasks were run in a 134

more traditional way, with a text display and keypress response (control experiment 1, SI Method & Fig. S6). 135

We replicated the main findings of our original experiment for ranks of log(k) (Table S5) and correlation 136

between log(k) in SV and LV tasks (Fig. 4B). The Pearson correlation between NV and SV tasks (Fig. 4A) 137

was lower than expected given the 95% confidence intervals of the resampled correlations of the main 138

experiment and assuming 25 subjects (SI Results). This suggests that some of the correlation between SV and 139

NV tasks in the main experiment may be driven by visuo-motor similarity in experimental designs. We did not 140

find shifts or scaling between the posterior distributions of log(k) across tasks in this control experiment (Fig. 141

4C, NV posterior mean = -3.98, 95% credible interval [-5.44, -2.67], SV mean = -3.8, 95% credible interval 142

[-4.94, -2.75], LV mean = -3.76, 95% credible interval [-4.79, -2.76]). 143
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Figure 4. A,B: Control experiment 1 (n=25). The logs of delay-discounting coefficients in SV task (x-axis)
plotted against the logs of delay-discounting coefficients in NV (A) and LV (B) tasks (y-axis). The color of the
circles and the colorbar identify the ranks in NV task. Each circle is one subject. Pearson’s r is reported on
the figure. The error bars are the SD of the estimated coefficients. Solid line is the linear fit. Shaded area is
the 95% CI of the linear fit. Dashed line is unity. C: Distribution of posterior parameter estimates (log(k))
from the model fit for the three tasks in control experiment 1. Probability density estimates were obtained for
posteriors of log(k) for experimental tasks (kNV ∼ 1/sec, kSV ∼ 1/sec, kLV ∼ 1/day).
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Strong effect of temporal context 144

We described above that the discount factors in the LV task, kLV , were almost equivalent (ignoring 145

unexplained variance) to those in the SV task kSV (Fig. 3B). However, the units of kLV are in 1/day and the 146

units of kSV are in 1/seconds. This finding implies that for a specific reward value, if a subject would decrease 147

their subjective utility of that reward by 50% for an increase from 5 to 10 seconds in the SV task, they would 148

also decrease their subjective utility of that reward by 50% for an increase from 5 to 10 days in the LV task. 149

This seems implausible, particularly from a neoclassical economics perspective. However, reward units also 150

change when moving from SV to LV task. In our sessions, the exchange rate in SV was 0.05 CNY per coin 151

(since all coins are accumulated and subjects are paid the total profit), whereas in LV, subjects were paid on 152

the basis of a single trial chosen at random using an exchange rate of 4 CNY for each coin. These exchange 153

rates were set to, on average, equalize the possible total profit between short and long delays tasks. However, 154

even accounting for both the magnitude effect [29,30] and unit conversion (calculations presented in SI Results) 155

the discount rates are still scaled by 4 orders of magnitude from the short to the long time-horizon tasks [53]. 156

One interpretation of this result is that subjects are simply ignoring the units and only focusing on the 157

number. This would be consistent with an emerging body of evidence that numerical value, rather than 158

conversion rate or units matter to human subjects [17,26]. A second possible interpretation is that subjects 159

normalize the subjective delay of the offers based on context, just as they normalize subjective value based on 160

current context and recent history [39,41,76,78]. A third possibility is that in the short delay tasks (NV and 161

SV) subjects experience the wait for the reward on each trial as quite costly, in comparison to the delayed 162

gratification experienced in the LV task. This ”cost of waiting” may share some intersubject variability with 163

delay-discounting but may effectively scale the discount factor in tasks with this feature [55]. 164

In an attempt to disentangle these possibilities, we ran a control experiment (n=16 subjects) using two 165

verbal discounting tasks (control experiment 2, SI Method). In one task, the offers were in days (DV). In the 166

other, the offers were in weeks (WV). This way, we could directly test whether subjects would discount the 167

same for 1 day as 1 week (i.e. ignore units) or 7 days as 1 week (i.e. convert units). We found strong evidence 168

for the latter (Fig. 5A). Subjects did not ignore the units: their choices were consistent with rational agents 169

that converted all offers into a common time unit. There is almost perfect correlation (Pearson r = 0.97, 170

p < 0.01) across estimated log(k) (k ∼ 1/day) within subjects between verbal task with delays in days and 171

delays in weeks (see control experiment 2 results in SI Results). 172-4 -2 0 2 4 6
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Figure 5. A: Control experiment 2 (n=16). The logs of delay-discounting coefficients in WV task (x-axis)
plotted against the logs of delay-discounting coefficients in DV task (y-axis), kDV ∼ 1/day, kWV ∼ 1/day. The
color of the circles identifies the order of task appearance. Each circle is one subject. Pearson’s r is reported on
the figure. The error bars are the SD of the estimated coefficients. Solid line is the linear fit. Shaded area is
the 95% CI of the linear fit. Dashed line is unity. B,C: Early trials adaptation effect. Psychometric curves for
SV and LV averaged across all subjects comparing all trials (B) to first 4 trials (C).

Having ruled out the possibility that subjects ignore units of time, we test our second potential explanation: 173

that subjects make decisions based on a subjective delay that is context dependent. We reasoned that if 174

choices are context dependent then it may take some number of trials in each task before the context is set. 175

Consistent with this reasoning, we found a small but significant adaptation effect in early trials: subjects are 176

more likely to choose the later option in the first trials of SV task (Fig. 5B,C). It seems that, at first, seconds 177

in the current task are interpreted as being smaller than days in the preceding task, but within several trials 178

days are forgotten and time preferences adapt to a new time-horizon of seconds. 179
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Discussion 180

Using three tasks, we set out to test whether the same delay-discounting process is employed regardless of the 181

verbal/non-verbal nature of the task and the time-horizon. We found significant correlations between subjects’ 182

discount factors in the three tasks, providing evidence that there are common cognitive (and presumably 183

underlying neural) mechanisms driving the decisions in the three tasks. In particular, the strong correlation 184

between the short time-horizon non-verbal and verbal tasks (r = 0.79, Fig. 3A) provides the first evidence for 185

generalizability of the non-verbal task; suggesting that this task can be applied to both human and animal 186

research for direct comparison of cognitive and neural mechanisms underlying delay-discounting. However, the 187

correlation between the short-delay/non-verbal task and the long-delay/verbal task is lower (r = 0.36). Taken 188

together, our results suggests animal models of delay-discounting may have more in common with short 189

time-scale consumer behavior such as impulse purchases and ”paying-not-to-wait” in mobile gaming [22] and 190

caution is warranted when reaching conclusions from the broader applicability of these models to long-time 191

horizon real-world decisions, such as buying insurance or saving for retirement. 192

Stability of preferences 193

The question of stability is of central importance to applying in-lab studies to real-world behavior. There are 194

several concepts of stability that our study addresses. First, is test/re-test stability; second, stability across the 195

verbal/non-verbal gap; third, stability across the second/day gap. Consistent with previous studies [4, 40,50], 196

we found high within-task reliability. Choices in the same task did not differ when made at the beginning or the 197

end of the session nor when they were made in sessions held on different days even 2 weeks apart (SI Results). 198

To our knowledge, there are no studies comparing stability across the verbal/non-verbal gap for 199

delay-discounting. The closest literature that we are aware finds that value encoding (the convexity of the 200

utility function) but not probability weighting is similar across the verbal/non-verbal gap in sessions that 201

compare responses to a classic verbal risky economic choice task with an equivalent task in the motor 202

domain [81]. It may be that unlike time or value, probability is processed differently in verbal vs. non-verbal 203

settings [33]. 204

There are two aspects to the time-horizon gap that may contribute independently to differences in subjects’ 205

preferences between our short and long tasks. First, there is the difference in order of magnitudes of the delays. 206

Second, there is a difference in the experience of the delay, in that all delays are experienced in the short tasks, 207

but only one delay is experienced in the long task. 208

Our control study comparing discounting of days vs. weeks eliminated the second factor since only one 209

delay was experienced for both days and weeks tasks. We found almost perfect correspondence between the 210

choices in the two tasks (Fig. 5A): subjects discounted 7 days as much as they discounted one week. However, 211

days and weeks are only separated by one order of magnitude, while seconds vs. days are five orders of 212

magnitude apart. So while the days/weeks experiment provides some evidence that the magnitude of the 213

delays does not contribute substantially to variance in choice, it may be that larger differences (e.g. comparing 214

hours vs. weeks) may produce an effect. The evidence from the literature on this issue is mixed. On the one 215

hand, some have found that measures of discount factors on month long delays are not predictive of discount 216

factors for year-long horizons (a difference of one order of magnitude) [44, 74] but others have found consistent 217

discounting for the same ranges [36]. Other studies that compared the population distributions of discount 218

factors for short (up to 28 days) to long (years) delays (2 orders of magnitude) found no differences in subjects’ 219

discount factors [2, 21]. Some of these discrepancies can be attributed to the framing of choice options: 220

standard larger later vs. smaller sooner compared to negative framework [44], where subjects want to be paid 221

more if they have to worry longer about some negative events in the future. 222

Several previous studies have compared discounting in experienced delay tasks (as in our short tasks) with 223

tasks where delays were hypothetical or just one was experienced [36,40, 53,64]. For example, Lane et al [40], 224

also used a within-subject design to examine short vs. long delays (e.g. similar to our short-verbal and 225

long-verbal tasks) and found similar correlations (r ∼ 0.5± 0.1) with a smaller sample size (n=16). Consistent 226

with our findings, they found (but did not discuss) a 5 order of magnitude scaling factor between subjects 227

discounting of seconds and days suggesting that this scaling is a general phenomenon. 228
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Cost of waiting vs. discounting future gains 229

It may seem surprising that human subjects would discount later rewards, i.e. choosing immediate rewards, in 230

a task where delays are in seconds. After all, subjects cannot consume earnings immediately. Yet, this result is 231

consistent with earlier work that suggests individuals derive utility from receiving money irrespective of when 232

it is consumed [48,49,63]. In our design, a pleasing (as reported by subjects) ‘slot machine’ sound 233

accompanied the presentation of the coins in the short-delay tasks. This sound can be interpreted as an 234

instantaneous secondary reinforcer [38]. Further, this result is consistent with studies which find that humans 235

exhibit discount rates comparable to other species when consuming liquid rewards [35]. On the other hand, 236

this would not be surprising for those who develop (or study) ”pay-not-to-wait” video games [22], which 237

exploit player’s impulsivity to acquire virtual goods with no actual economic value. 238

Using a seconds time-horizon may lead one to question if we can measure delay-discounting or if we are 239

capturing the cost of waiting [52]. Waiting or doing nothing, ”builds up anxiety and stress in an individual due 240

both to the sense of waste and the uncertainty involved in a waiting situation” [54]. These different 241

interpretations (Paglieri [55] described the delayed option being framed as ‘waiting’ in seconds compared to 242

‘postponing’ in days time-horizon) may lead one to question what we can learn from comparing within-subject 243

behavior across tasks. Although it is not known how time is perceived, e.g. subjects could overestimate the 244

duration of the short delay, which will lead to greater discounting, we argue that the significant correlations 245

observed indicate there are some shared biological mechanisms underlying each of the three delay-discounting 246

tasks, which could explain why our inability to resist a candy in a seconds time-horizon self-control task 247

predicts our ability to complete college and other long time-horizon behaviors [13,19,28,51] (but see [77]). 248

Subjective scaling of time 249

The range of rates of discounting we observed in the long-verbal task was consistent with that observed in 250

other studies. For example, in a population of more than 23,000 subjects the log of the discount factors ranged 251

from -8.75 to 1.4 ( [69], compare with Fig. 3B). This implies that, in our short tasks, subjects are discounting 252

extremely steeply. i.e. they are discounting the rewards per second about the same amount that they 253

discounted the reward per day. This discrepancy has been reported before [40,53]. We consider three 254

(non-mutually exclusive) explanations for this scaling. First, subjects may ignore units. However, by testing 255

overlapping time-horizons of days and weeks we confirmed that subjects can pay attention to units. Second, it 256

may be that the costs of waiting [14,53,55] (discussed above) compared to the cost of postponing is, 257

coincidentally, the same as the number of seconds in a day. 258

We feel this coincidence is unlikely, and thus favor the third explanation: temporal context. When making 259

decisions about seconds, subjects ‘wait’ for seconds and when making decisions about days subjects ‘postpone 260

reward’ for days [55]. Although our experiments were not designed to test whether the strong effect of 261

temporal context was due to normalizing, existence of extra costs for waiting in real time, or both, we did find 262

some evidence for the former (Fig. 5C). Consistent with this idea, several studies have found that there are 263

both systematic and individual level biases that influence how objective time is mapped to subjective time for 264

both short and long delays [80,83]. Thus, subjects may both normalize delays to a reference point and 265

introduce a waiting cost at the individual level that will lead short delays to seem as costly as the long ones. 266

Materials and Methods 267

Participants 268

For the main experiment, participants were recruited from the NYU Shanghai undergraduate student 269

population on two occasions leading to a total sample of 67 (45 female, 22 male) NYU Shanghai students. 270

Using posted flyers, we initially recruited 35 students but added 32 more to increase statistical power (the 271

power analysis indicates that the total of 63 participants is adequate to detect a medium to strong correlation 272

across subjects, SI Results). 273

The study was approved by the IRB of NYU Shanghai. The subjects were between 18-23 years old, 34 274

subjects were Chinese Nationals (out of 67). They received a 30 CNY (∼$5 USD) per hour participation fee as 275
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well as up to an additional 50 CNY (∼$8 USD) per session based on their individual performance in the task 276

(either in NV task, or total in SV and LV tasks, considering the delay of payment in the LV task). The 277

experiment involved five sessions per subject (3 non-verbal sessions followed by 2 verbal sessions), permitting 278

us to perform within-subject analyses. The sessions were scheduled bi-weekly and took place in the NYU 279

Shanghai Behavioral and Experimental Economics Laboratory. In each session, all decisions involved a choice 280

between a later (delay in seconds and days) option and an immediate (now) option. Three subjects did not 281

pass the learning stages of the NV task. One subject did not participate in all of the sessions. These four 282

subjects were excluded from all analyses. 283

Experimental Design 284

The experiments were constructed to match the design of tasks used for rodent behavior in Prof. Erlich’s lab. 285

For the temporal discounting task, the value of the later option is mapped to the frequency of pure tone 286

(frequency ∝ reward magnitude) and the delay is mapped to the amplitude modulation (modulation period ∝ 287

delay). The immediate option was the same on all trials for a session and was unrelated to the sound. 288

Through experiential learning, subjects learned the map from visual and sound attributes to values and 289

delays. This was accomplished via 6 learning stages (0, 1, 2, 3, 4, 5) that build up to the final non-verbal task 290

(NV) that was used to estimate subjects’ discount-factors. Briefly, the first four stages were designed to (0) 291

learn that a mouse-click in the middle bottom ‘reward-port’ produced coins (that subjects knew would be 292

exchanged for money), (1) learn to initiate a trial by a mouse-click in a highlighted port, (2) learn ‘fixation’: to 293

keep the mouse-cursor in the highlighted port, (3) associate a mouse-click in the blue port with the sooner 294

option (a reward of a fixed 4 coin magnitude that is received instantly) (4) associate varying tone frequencies 295

with varying reward at the yellow port (5) associate varying amplitude modulation frequencies with varying 296

delays at the yellow port. On each trial of the stage 3,4 & 5 there was either a blue port or a yellow port (but 297

not both). The exact values for reward and delay parameters experienced in the learning stages correspond to 298

values that are used throughout the experiment. After selecting the yellow-port (i.e. the delayed option), a 299

countdown clock appeared on the screen and the subject had to wait for the delay which had been indicated by 300

the amplitude modulation of the sound for that trial. Any violation (i.e. a mouse-click in an incorrect port or 301

moving the mouse-cursor during fixation) was indicated by flashing black circles over the entire ”poke” wall 302

accompanied by an unpleasant sound (for further demonstration of the experimental time flow, please see the 303

videos in SI Movies). 304

When a subject passed the learning stages (i.e., four successive trials without a violation in each stage, SI 305

Results and Fig. S5), they progressed to the decision stages of the non-verbal task (NV). Progressing from the 306

learning stages, a two-choice decision is present where the subject can choose between an amount now (blue 307

choice) versus a different amount in some number of seconds (yellow choice). During the decision stages the 308

position of blue and yellow circles on the poke wall was randomized between left and right and was always 309

symmetrical (Fig. 1). Each of the 3 non-verbal sessions began with learning stages and continued to the 310

decision stages. In the 2nd and the 3rd non-verbal sessions, the learning stages were shorter in duration. 311

The final two sessions involved verbal stimuli. During each session, subjects experience an alternating set of 312

tasks: short delay (SV) - long delay (LV) - SV - LV (or LV-SV-LV-SV, counter-balanced per subject). An 313

example of a trial from the short time-horizon task (SV) is shown in the sequence of screens presented in Fig. 314

1. The verbal task in the long time-horizon (LV) includes Initiation, Decision (as in Fig. 1) and the screen that 315

confirms the choice. There are two differences in the implementation of these sessions relative to the 316

non-verbal sessions. First, the actual reward magnitude and delay are written within the yellow and blue 317

circles presented on the screen, in place of using sounds. Second, in the non-verbal and verbal short delay 318

sessions, subjects continued to accumulate coins (following experiential learning stages) and the total earned 319

was paid via electronic payment at the end of each experimental session. In the long-verbal sessions, a single 320

trial was randomly selected for payment (method of payment commonly used in human studies with long 321

delays, [17]) and shown at the end of the session. The associated payment is made now or later depending on 322

the subject’s choice in the selected trial. 323
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Analysis 324

For model-based analysis we use hierarchical Bayesian analysis (HBA) brms, 2.0.1 [10,12] that allows for 325

pooling data across subjects, recognizing individual differences and finding full posterior distributions, rather 326

than point estimates of parameters. The means of HBA posteriors of the individual discount-factors for each 327

task are almost identical to the individual fits done for each experimental task separately using maximum 328

likelihood estimation through fmincon in Matlab (SI Method, Fig. S1 & Fig. S2). We further validated the 329

HBA method by simulating choices from a population of ‘agents’ with known parameters and demonstrating 330

that we could recover those parameters given the same number of choices per agent as in our actual dataset. 331

The first non-verbal session data was excluded from model-fitting due to a comparatively high proportion of 332

first-order violations than in the following two non-verbal sessions (see further discussion in SI Results). A 6 333

population level and 4 subject level parameters model (mixed-effects model (M6p,4s), SI Method) is used to 334

estimate discount-factors and decision-noise from choices. At the subject level this model transforms the 335

stimulus and individual preferences on each trial (inputs to the model include rewards and delays for sooner 336

and later options) into a probability distribution about the subject’s choice. For the non-verbal task, we 337

assumed that the subjects had an unbiased estimate of the meaning of the frequency and AM modulation of 338

the sound. For example, for a given set of parameters the model would predict that trial one will result in 80% 339

chance of the subject choosing later option. First, rewards and delays are converted in the subjective value of 340

each choice option using hyperbolic utility model (Eq. 1). Then, Eq. S3 (a logit, or softmax function) 341

translates the difference between the subjective value of the later and the subjective value of the sooner 342

(estimated using Eq. 1) into a probability of later choice for each subject. Two functions below rely on the four 343

parameters (ki,s: (ki,NV ,ki,SV ,ki,LV ), the discounting factor per subject*task, and τi individual decision noise). 344

Hyperbolic utility model: 345

Ui =
V

1 + ki,sT
(1)

where V is the current value of delayed asset and T is the delay time. 346

Softmax rule: 347

P (Li) =
eULi/τi

eULi/τi + eUSi/τi
(2)

where L is the later, S is the sooner offer and τi is the individual decision noise. 348

For plotting posteriors of log(k) we calculated probability density estimates (for smoothing) using the 349

ksdensity function in Matlab. The estimate is based on a normal kernel function, and is evaluated at 350

equally-spaced 100 points, xi, that cover the range of the data in x. 351

To test for differences across tasks we examined the HBA fits using the brms::hypothesis function. This 352

function allows us to directly test the posterior probability that the log(k) is shifted and/or scaled between 353

treatments. This function returns an ”evidence ratio” which tells us how much we should favor the hypothesis 354

over the inverse (e.g. P (a>b)
P (a<b) ) and we used Bayesian confidence intervals to set a threshold (p < 0.05) to assist 355

frequentists in assessing statistical significance. 356

The bootstrapped (mean, median and variance) tests are done by sampling with replacement and 357

calculating the sample statistic for each of the 10000 boots, therefore creating a distribution of bootstrap 358

statistics and (i) testing where 0 falls in this distribution for unpaired tests or (ii) doing a permutation test to 359

see whether the means are significantly different for paired tests. 360

Simulations done for both model-based and model-free analyses are described in detail in SI Results. 361

Software 362

Tasks were written in Python using the PsychoPy toolbox (1.83.04, [58]). All analysis and statistics was 363

performed either in Matlab (version 8.6, or higher, The Mathworks, MA), or in R (3.3.1 or higher, R 364

Foundation for Statistical Computing, Vienna, Austria). R package brms(2.0.1) was used as a wrapper for 365

Rstan [32] for Bayesian nonlinear multilevel modeling [10], shinystan [27] was used to diagnose and develop 366

the brms models. Package lme4 was used for linear mixed-effects modeling [6]. 367
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Data Availability 368

Software for running the task, as well as the data and analysis code for regenerating our results are available at 369

github. 370
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Supporting Information 379

SI Method: Functional Forms and Estimation Methods 380

Nonlinear Models 381

Time discounting is the decline in the subjective value of a good as a function of the expected delay and 382

reward. There is no consensus which functional form of delay-discounting best describes human behavior. 383

Although the exponential model [67] of time discounting has a straightforward economic meaning: a constant 384

probability of loss of reward per waiting time, the hyperbolic model [47] seems to more accurately describe how 385

individuals discount future rewards, in particular preference reversals [7]. In order to be sure that our results 386

and main conclusions did not depend on the method (e.g. hierarchical Bayesian vs. maximum likelihood 387

estimation of individual subject parameters) or functional form (e.g. exponential vs. hyperbolic), we validated 388

our results with several methods. 389

Exponential model: 390

Ui = V e−kiT (S1)

Hyperbolic model: 391

Ui =
V

1 + kiT
(S2)

where V is current value of delayed asset, T is the delay time and ki is the individual discounting factor. 392

We considered both a shift-invariant softmax rule and a scale-invariant matching rule to transform the 393

subjective utilities of the sooner and later offers into a probability of choosing the later offer. 394

Softmax: 395

P (Li) =
eULi/τi

eULi/τi + eUSi/τi
(S3)

Matching rule: 396

P (Li) =
U

1/τi
Li

U
1/τi
Li + U

1/τi
Si

(S4)

where Li is the later, Si is the sooner option, and τi is the individual decision rule noise, or temperature. 397

Using maximum likelihood estimation we fit each subject’s choices to four baseline models: 1) hyperbolic 398

utility with softmax, 2) exponential utility with softmax, 3) hyperbolic utility with matching rule and 4) 399

exponential utility with matching rule. We also considered models that account for utility curvature, i.e. V is 400

replaced by V αi and models that account for trial number and cumulative waiting time. 401

In the models that account for trial number or cumulative wait time the individual discounting factor, ki 402

consists of a constant component kci and time-dependent component: 403

ki = kci + ktritr
θi (S5)

or 404

ki = kci + ktwitw
θi
i (S6)

where tr is the trial number and twi is the individual’s total waiting time in seconds that exists only for 405

short delays task and θi is a scaling parameter. 406

MLE Estimation Methods 407

We first estimated subjects’ time-preferences individually (since discounting factors differ among people) for 408

each experimental task with maximum likelihood estimation (MLE) and used leave-one-trial-out 409

cross-validation for model comparison. Based on the Bayesian information criterion criterion (BIC, Table S1) 410

and number of subjects that were well described by the model (Table S2), the softmax-hyperbolic model was 411

selected as the best nonlinear model, and we used this for the Bayesian Hierarchical modeling. 412
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Table S1. BIC Comparison for Various Models (the smaller the better)

BIC SE
Matchrule-Hyperbolic 179.47 4.99
Softmax-Hyperbolic 191.16 4.96
Matchrule-Exponential 192.03 4.82
Softmax-Hyperbolic-Time-Trial 210.00 4.77
Softmax-Hyperbolic-Time-Wait 213.23 4.98
Softmax-Exponential 215.33 4.45
Softmax-Hyperbolic-Curvature 222.98 4.18

Since the estimation procedure was identical for all MLE fits (Matlab code available on github repository) 413

we describe it using the softmax-hyperbolic model as an example. This is a 2-parameter model to estimate 414

choice behavior, i.e. it transforms the stimulus on each trial (inputs to the model include rewards and delays 415

for sooner and later options) into a probability distribution about the subject’s choice. For example, if for a 416

given set of parameters, the model predicts that trial 1 will result in 80% chance of the subject choosing later 417

option, and the subject, in fact, chose the later, the trial would be assigned a likelihood of 0.8 (if the subject 418

chose sooner, the trial would have a likelihood of 0.2). Finally, we perform a leave-one-out cross-validation for 419

each subject-task to avoid overfitting. We leave one trial out and use the rest of the trials in the experimental 420

task to predict this trial. We repeat this procedure for each trial. 421

Figure S1 shows an example of the model fit and estimated parameters for one of the subjects. For this 422

particular subject fitting softmax-hyperbolic model in the non-verbal task resulted in delay-discounting 423

coefficient k = 0.07 (Fig. S1). We can readily observe that although first-order violations were present during 424

non-verbal task, in the verbal task they get eliminated. Although the unit-free discount rates seem pretty 425

stable, the decision noise τi gets smaller from non-verbal to verbal tasks. 426
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Figure S1. An example of the softmax-hyperbolic fit for one subject. A-C - Matlab fits, D-F - Stan fits.
Psychometric curves obtained from the model fits versus actual data (circles) for non-verbal (NV) and verbal
(short (SV) and long (LV) delay) tasks for each delay value, where the x-axis is the reward and the y-axis is
the probability (or proportion for actual choices) of later choice. Error bars are binomial.
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Table S2. Top 3 Models Rank Correlations

Model N NV vs. SV SV vs. LV
log(ki) M-Hyperbolic 57 0.52, p < 0.01 0.46, p < 0.01
log(ki) S-Hyperbolic 63 0.68, p < 0.01 0.49, p < 0.01
log(ki) M-Exponential 49 0.38, p < 0.01 0.5, p < 0.01
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Figure S2. HBA model pooled data Stan fits (x-axis) vs. Matlab individual data fits (y-axis) across tasks
against the unity line.

Hierarchical Bayesian Estimation Methods 427

Instead of getting point estimates (or distributions of parameter values through cross-validation as we did) one 428

can use hierarchical Bayesian analysis (HBA) to find full posterior distributions. It allows for both pooling 429

data across subjects and recognizing individual differences. After comparing MLE fits we decided to use the 430

softmax-hyperbolic functional form as described above. 431

Using the brms [10] package in R allows to do HBA of nonlinear multilevel models in Stan [12] with the 432

standard R formula syntax: 433

cho i c e ˜ 434

inv l o g i t ( ( l a t e r reward/(1 + exp( logk )∗delay ) − 435

sooner reward )/no i s e ) , 436

no i s e ˜ task + (1 | sub j i d ) , 437

l ogk ˜ task + ( task | sub j i d ) 438

where later reward is the later reward, sooner reward is the sooner reward; logk is the natural logarithm of 439

the discounting parameter k and noise (τ) is the decision noise (like in Eq. S2 and S3, respectively). The 440

model (M6p,4s) had 6 population level parameters (discount factor, k, and decision-noise, τ for each of the 441

three tasks) and 4 parameters per subject: kNV ,kSV ,kLV and τ . The parameters from this model are used in 442

the main text and in SI Results. 443

SI Results 444

Significant Rank Correlations Are Robust to Different Functional Forms and Methods of 445

Estimation 446

Table S2 combines rank correlations obtained from individual level MLE fits from top 3 models by BIC: 447

‘model’ - functional form that is fitted (‘M-’ is matchrule, ‘S-’ is softmax, models are presented in the order of 448

BIC), ‘N ’ - number of models converged out of 63 (total number of subjects), finally, Spearman r for rank 449

correlations between non-verbal and short delay verbal tasks (NV vs. SV) and short delay verbal vs. long 450

delay verbal tasks (SV vs. LV), respectively. 451

The fits from HBA model are almost identical to the individual fits done for each experimental task 452

separately using softmax-hyperbolic model and ‘fmincon’ function in Matlab (Fig. S2). The individual log(k) 453

values also agree with the range of delay-discounting values reported in a large cohort GWAS delay-discounting 454

study [69]. The rank correlation values for individual fits in table S2 correspond to the ones in the main text 455

both in magnitude and significance. 456
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For nonparametric analysis we calculated a coarse model-free measure: percentage of trials in which the 457

later option was chosen in each of the three tasks (percent ‘yellow’ choice). There was significant heterogeneity 458

between subject’s responses (NV: mean = 0.45, std = 0.19; SV: mean = 0.59, std = 0.23; LV: mean = 0.59, 459

std = 0.26; our experiments considered both larger and smaller later options, with the percentage of smaller 460

later options bigger for nonverbal than for verbal tasks, see further discussion on first-order violations). 461

Nevertheless, if we ranked the subjects by the fraction of trials they chose the later option in each task, there 462

is a strong correlation between subjects’ ranks across tasks (SV vs. NV, Spearman r = 0.71 (p < 0.01); SV vs. 463

LV, r = 0.49 (p < 0.01); NV vs. LV, r = 0.30 (p < 0.05), regardless of gender or nationality (see ‘Significance 464

Tests of Demographic and Psychological Categories’ below). 465

First-order Violations 466

The notion of first-order stochastic dominance is usually defined for gambles [75,82]. Compliance with 467

first-order stochastic dominance means that, in principle, this observed behavior can be adequately modeled 468

with a utility-function style analysis. Utility-function analysis is controversial in part if subjects show 469

inconsistent behavior and require significant variation within subjects. By design, our experiments considered 470

both larger and smaller later options generating significant variation to identify utility function parameters. 471

Overall, in the non-verbal task there was 25% of smaller later options, whereas in the verbal experiment there 472

was 10% of smaller later options. Given that the smaller later option is always strictly worse than larger 473

immediate option, if in such a trial smaller later is chosen, economic theory would classify this choice as 474

reflecting a first-order violation. In the non-verbal task, violations could result from lapses in attention, motor 475

errors or difficulty in transforming the perceptual stimuli into offers (in particular, early on in the first session 476

while learning has not completed). In the verbal tasks, inattention and/or misunderstanding are likely 477

explanations of violations. Our analysis indicates that first-order violations declined significantly from 478

non-verbal (16%) to verbal tasks (4%) (Wilcoxon signed-rank test, p < 0.01) and are not dependent on gender 479

or nationality. The proportion of first-order violations decreased from 26% of trials in the first non-verbal 480

session (NV1) to 19% and 13% for the next two non-verbal sessions, NV2 and NV3, respectively (Wilcoxon 481

signed-rank test, NV1 vs. NV2 & NV1 vs. NV3, p < 0.01) . It is important that NV1 did not differ 482

significantly in choice consistency (the number of preference reversals was not significantly different between 483

NV1 and later non-verbal sessions, Wilcoxon signed-rank test, all p > 0.2). 484

Significance Tests of Demographic and Psychological Categories 485

We don’t find any significant effects for any of the categorical subjects’ groups, including gender and 486

nationality in learning stages (Learning Stages Analysis), intertemporal decisions and first-order violations. 487

For the proportion of ‘yellow’ choice there is no significant difference between females and males (females: 488

mean = 0.5636, std = 0.2429; males: mean = 0.5322, std = 0.2900; Wilcoxon rank sum test, p = 0.22) and 489

between Chinese and Non-Chinese (Chinese: mean = 0.5666, std = 0.2341; Non-Chinese: mean = 0.5384, std 490

= 0.2851; Wilcoxon rank sum test, p = 0.3309). Similarly, for the first-order violations there is no significant 491

difference between females and males (females: mean = 1.1353 (violations per session), std = 1.9655; males: 492

mean = 1.0682, std = 2.1959; Wilcoxon rank sum test, p = 0.2607) and a slight difference between Chinese 493

and Non-Chinese (Chinese: mean = 1.2086, std = 2.0684; Non-Chinese: mean = 1.0031, std = 2.0039; 494

Wilcoxon rank sum test, p < 0.1). 495

We used the Barratt Impulsiveness Scale (BIS-11; [57]) as a standard measure of impulsivity. This test is 496

reported to often correlate with biological, psychological, and behavioral characteristics. The mean total score 497

for our students sample was 61.79 (std = 9.53), which is consistent with other reports in the literature 498

(e.g., [71]). The BIS-11 did not correlate significantly with the estimated delay-discounting coefficients (BIS vs. 499

log(kNV ): Pearson r = 0.2, p = 0.1180; BIS vs. log(kSV ): Pearson r = 0.19, p = 0.1384; BIS vs. log(kLV ): 500

Pearson r = 0.15, p = 0.2521). 501
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Figure S3. Simulation results: distributions of expected correlations of the delay-discounting coefficients
ranks between tasks.

Table S3. Corrected Correlations of subjects’ discount factors

Spearman Corrected
Rank Correlation Rank Correlation

SV vs. NV 0.76 0.77
SV vs. LV 0.54 0.57
NV vs. LV 0.36 0.39

all p < 0.01

Model-based Analysis (Simulations) 502

Given that we are estimating subjects discount-factors using a finite number of trials per task, even if subjects’ 503

discount-factors were identical in different tasks, we would not expect the rank correlations to be perfect. In 504

order to estimate the expected maximum correlation we could observe we simulated ”consistent” subjects’ 505

choices using hyperbolic model with softmax rule, assuming that there is a single delay-discounting parameter - 506

ki (mean across tasks) for each subject. We did this 100,000 times and computed a distribution of pairwise 507

rank correlations (Fig. S3). These simulations revealed that the decision noise contributed a very small 508

amount of variance (Table S3). 509

Model-free Analysis (Nonparametric Predictions) 510

To validate our model-free analysis we did a non-parametric out-of-sample prediction by binning each subject’s 511

choices into 7 bins (7-vectors, based on delay & reward) for each task (21 bins total). A 7-vector is a way of 512

clustering data into 1) ‘small’ rewards (1 or 2 coins), 2) ‘medium’ reward and ‘small’ delay (5 coins in 3 or 6.5 513

secs/days), 3) ‘medium’ reward and ‘medium’ delay (5 coins in 14 secs/days), 4) ‘medium’ reward and ‘large’ 514

delay (5 coins in 30 or 64 secs/days), 5) ‘large’ reward and ‘small’ delay (8 or 10 coins in 3 or 6.5 secs/days), 6) 515

‘large’ reward and ‘medium’ delay (8 or 10 coins in 14 secs/days), and 7) ‘large’ reward and ‘large’ delay (8 or 516

10 coins in 30 or 64 secs/days). 517

Next, we combined the 7-vectors for each subject into a 21-vector and performed a 518

leave-one-subject/task-out cross-validation. For each subject-task, we trained a linear model to predict the 519

choices from one task based on the other two tasks for all other subjects. Then, for the left out subject we 520

predicted each task from the other two. We can predict 70% of the subjects 21-vectors this way (Fig. S4). We 521

conclude that, for most subjects, there is a shared scaling effect that allows each tasks’ choices to be predicted 522

by the other two. 523

Time and Reward Re-Scaling 524

In our main experimental tasks we used two types of delays: in seconds and in days, where 1 day = 86400 525

seconds. We also used three types of exchange rates: for non-verbal task 1 coin = 0.1 RMB; for verbal short 526

delay 1 coin = 0.05 RMB; for long delay 1 coin = 4 RMB. Humans tend to discount large rewards less steeply 527

than small rewards, i.e. discounting rates tend to increase as amounts decrease [29,30]. We re-calculated the 528
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Figure S4. Distribution of the Pearson correlation coefficients between real and predicted 21-vectors of each
subject. Darker bars are significant correlations.

model-based (softmax-hyperbolic model) median HBA model fits: 1) we convert them to the same units 529

(1/days): kNV = 4173.1 (by multiplying original unit-free k by the day to seconds conversion rate), 530

kSV = 2548.8, kLV = 0.0356, 2) we consider reward re-scaling: ”going from $10 to $.20, a factor of 50, k values 531

would increase by a factor of 2” [53] kNV = 4173.1, kSV = 2548.8, kLV = 0.0712 and 3) conclude that 532

discrepancy of discount rates between time-horizons cannot be accounted by magnitude effects. Thus, the 533

discount rate revealed in the verbal short delay task is more than 104 times larger than the rate describing the 534

choices made by the same participants in the verbal long delay task. 535

Dynamic Stability across and within Sessions 536

We checked for possible dynamic instability within experimental tasks. We find that time-preferences 537

(measured as percent ‘yellow’ choices) are stable in the same task between the first half of the block and the 538

second half of the block for each subject (Wilcoxon signed-rank test, p = 0.3491). Similar to other 539

researchers [4, 50] we observe stability within subjects across experimental sessions that take place each other 540

week: no significant difference in percent ‘yellow’ choice between NV sessions (Wilcoxon signed-rank test, 541

p = 0.4721), between SV sessions (Wilcoxon signed-rank test, p = 0.6613) and a slight difference between LV 542

sessions (Wilcoxon signed-rank test, p < 0.1). 543

Power Analysis 544

We ran power analysis to find out total sample size required to determine whether a correlation coefficient 545

differs from zero. For expected correlation r = 0.5 and 80% power (the ability of a test to detect an effect, if 546

the effect actually exists, [9, 16]) the required sample size is N = 29, for a medium size correlation of r = 0.3 - 547

N = 84. 548

Learning Stages Analysis 549

64 (1 out of 64 did not complete all sessions of the study, the analysis below is done for 63 subjects) out of 67 550

subjects passed learning stages (SI Movies) for our novel language-free task. 551

There were 6 learning stages (0, 1, 2, 3, 4, 5). The first four stages were respectively designed to 0) learn 552

the reward port, 1) learn the initiation port, 2) fixation, and 3) associate the blue colored port with the sooner 553

option (a reward of a fixed 4 coin magnitude that is received instantly). 4 trials without violations in a row are 554

required to pass these learning stages. In stage 4, subjects are primed to the sound frequency to learn the 555

variability of reward magnitudes (1, 2, 5, 8, or 10 coins): first, the lower and upper bounds, then, in ascending 556

and descending order and, finally, in random order. In the final stage 5, subjects heard the AM of a sound 557

during fixation that is now mapped to the delay (3, 6.5, 14, 30, or 64 seconds) of the later option. The order of 558

the stimuli presented was the same as in the previous stage. For the last two stages 4 trials without violations 559

in a row are required during the random order of stimuli presentation to pass. Learning stages were shorter for 560

the 2nd and the 3rd non-verbal sessions, since only random rewards and delays were presented for ‘forced’ 561

choices excluding the experience of the bounds and the ordered values. 562
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Table S4. Percent of Trials without Violation in Each Learning Stage

stage 0 stage 1 stage 2 stage 3 stage 4 stage 5
mean 0.9092 0.9126 0.3304 0.8482 0.81 0.7734
std 0.1567 0.1098 0.2490 0.16 0.1851 0.2036
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Figure S5. Violation Pattern 2. Each one unit increase in y with increase in x (trials) is a correct trial. Each
violation drops the ‘correct in a row’ measure to 0 for each stage. 4 correct trials in a row are required to
advance to the next learning stage. In stages 4 and 5 only trials with random order of stimuli were counted as
correct or not correct. The circles identify fixation violations.

There were no significant differences between learning stage performance across demographic categories, 563

such as gender and nationality (between females (mean = 0.7503 (percent trials without violations), std = 564

0.2814) and males (mean = 0.7874, std = 0.2713): Wilcoxon rank sum test, p < 0.1; between Chinese (mean = 565

0.7463, std = 0.2870) and Non-Chinese (mean = 0.7877, std = 0.2643): Wilcoxon rank sum test, p = 0.1268). 566

Subjects experienced difficulty with the learning stage 2. This is the only stage where the average performance 567

was less than 40% compared to more than 70% performance in other stages (Table S4). Subjects on average 568

also spent significantly more time measured in seconds for the learning stage 2 compared to the next learning 569

stage 3 (Wilcoxon signed-rank test, p < 0.01), although only 4 trials without violations are required to pass 570

this learning stage and learning stage 3 includes more steps. During learning stage 2 subjects had to learn 571

fixation. Fixation was specifically designed to drive subjects attention away from the computer mouse (since 572

no movement is allowed outside of the circle during fixation) and bring focus to other senses. During fixation 573

in the learning stages 4 and 5 (as well as in the decision stages) subjects hear sound that corresponds to the 574

reward magnitude and delay. 575

There were three major patterns of violations: 1. subject had difficulty passing stage 2 (because of fixation 576

violations), however later stages were completed quickly; 2. subject was able to pass stage 2, by having 4 577

correct answers in a row, but during stage 4 encountered problems with fixation violation again; 3. subject was 578

able to proceed till stage 5 almost without violations, but was stopped by several fixation violations at stage 5. 579

Figure S5 shows the second pattern of correct choices vs. violations. 580

SI Method: Control Experiments 581

Control Experiment 1: No Circles (NC) 582

In total, 25 (29 started, 4 withdrew) undergraduate students from NYU Shanghai participated in 5 583

experimental sessions (3 non-verbal and 2 verbal sessions, in this sequence, that were scheduled bi-weekly). 584

The study requirements in order to meet the IRB protocol conditions remained the same as in the main 585

experiment (Materials and Methods). In each session, subjects completed a series of intertemporal choices. 586

Across sessions, 160 trials were conducted in each of the following tasks mimicking the main experiment, i) 587

non-verbal (NV), ii) verbal short delay (SV; 3 seconds - 64 seconds), and iii) verbal long delay (LV; 3 days - 64 588
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days). In each trial, irrespective of the task, subjects made a decision between the sooner and the later options. 589

The NV task was exactly the same as in the main experiment. All subjects passed learning stages. The SV 590

and LV tasks differed from the main experiment in exactly two ways: 1) the stimuli presentation didn’t include 591

a display of circles of different colors. Instead, two choices were presented on the left or on the right side 592

(counterbalanced) of the screen (Fig. S6), 2) the subjects didn’t have to click on the circles using mouse, 593

instead they used a keyboard to indicate ‘L’ or ‘R’ choice. Everything else stayed the same as in the main 594

experiment, i.e the last two sessions included an alternating set of verbal tasks: SV-LV-SV-LV (or 595

LV-SV-LV-SV, for a random half of subjects), the payment was done differently for SV and LV (randomly 596

picked trial for payment in LV, Materials and Methods), etc. The purpose of this control experiment is to 597

confirm that significant correlation between non-verbal tasks and verbal tasks we report in Results is not an 598

artifact of our main experimental design: subjects experience the same visual display and motor responses in 599

the non-verbal and verbal tasks and this design similarity might drive the correlation between time-preferences 600

in these tasks. Instead, in this control experiment the verbal tasks are made as similar as possible (keeping our 601

experiment structure) to typical intertemporal choice tasks used in human subjects. 602

Short Delay Verbal Long Delay Verbal

Figure S6. Control Experiment 1 choice screen example.

Control Experiment 2: Days & Weeks (DW) 603

In total, 16 subjects took part in this experiment. Subjects were undergraduate students from NYU Shanghai. 604

This experiment was approved under the same IRB protocol as the control experiment 1 and the main 605

experiment. This experiment included two following experimental tasks: i) verbal days delay (DV; 1 day - 64 606

days) and ii) verbal weeks delay (WV; 1 week - 35 weeks). Subjects underwent only one session where the 607

verbal tasks were alternated: DV-WV-DV-WV (or WV-DV-WV-DV, for roughly half of subjects; 200 trials 608

per task). For each of the tasks in this control experiment the stimuli and procedures were exactly the same as 609

for LV task in the control experiment 1. The purpose of this control task is to check whether subjects pay 610

attention to units. 611

SI Results: Control Experiments 612

Individual delay-discounting fits were estimated using HBA softmax-hyperbolic model using the same 613

procedure as in the main experiment. No-Cirles (NC) data was analyzed as is, keeping delay units in seconds 614

and in days, whereas days-weeks (DW) data was analyzed after converting delays in weeks to days. Among 615

estimated delay-discounting coefficients (Fig. 4C), there is no significant difference in means of log(k) between 616

tasks (bootstrapped mean (and median) tests, SV vs. LV and NV vs. SV, all p > 0.8). Thus, we find that 617

similar to the main experiment there is no common shift across tasks and individual effects per task explain a 618

significant amount of variance. For DW, based on Fig. 5A we conclude that day delay task and week delay 619

task are likely to be perceived by subjects as a single delay task with different units in it. Subjects do pay 620

attention to units and individual differences between delay-discounting coefficients do matter, while the 621

differences between the tasks do not. 622

Correlations Between Tasks and Order Effects 623

Even with a smaller subject’s pool (25 subjects) for the NC control experiment the correlation of ranks of 624

log(k) between SV and NV tasks stays strong, while the Pearson correlation becomes a bit smaller (Fig. 4A,B; 625

Table S5). To determine whether the correlations observed were within the range expected by chance, we 626

repeatedly (10,000 times) randomly sampled 25 of the original 63 subjects (from Fig. ) and computed the 627

correlations between tasks. Pearson r = .42 is lower than we would expect for NC (the 95% CI of the 628

correlation assuming 25 subjects is [0.498 0.915]). This suggests that some of the SV-NV correlation in the 629

main experiment may be driven by visuo-motor similarity in experimental designs. 630
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Table S5. Correlations of Subjects’ Discount-factors for NC

Pearson Spearman
Correlation Rank Correlation

SV vs. NV 0.42* 0.52**
SV vs. LV 0.69** 0.52**
NV vs. LV 0.36 0.33

** p < 0.01, * p < 0.05

The correlation between log(k) and ranks of log(k) for DW experiment is almost perfect (Fig. 4D; Pearson 631

r = .97; Spearman r = .95, all p < 0.01). This suggests that subjects are making choices in day and week delay 632

tasks by converting these delays to a common unit. 633

We don’t find any order effects for the NC control experiment (bootstrapped mean test, SV-LV-SV-LV vs. 634

LV-SV-LV-SV order for SV and LV log(k), respectively, all p > 0.6) as well as for the DW control experiment 635

(bootstrapped mean test, DV-WV-DV-WV vs. WV-DV-WV-DV order for DV and WV log(k), respectively, all 636

p > 0.2). To confirm the absence of order effect we also run an order model with DW data, where 637

(log(k) ∼ (order|subjid)). The comparison based on 10-fold cross validation criteria (using the ‘kfold‘ function 638

in the ‘brms‘ package) between order and main models is in favor of the latter (order = 3467.59 ¿ 3261.15 = 639

main), since lower is better. 640

SI Movies: Experimental Task 641

Learning 642

We provide videos of the learning stages, showing the examples of violations that can be made. The video 643

starts with stage 0 - 00:00 and continues with stage 1 - 00:14, stage 2 - 00:31, stage 3 - 00:55, stage 4 644

(trimmed) - 01:18 and stage 5 (trimmed) - 01:41. 645

NV, SV, LV 646

In addition, videos of several trials of decision stages for non-verbal, short delay and long delay tasks are 647

recorded. 648
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