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Abstract  78 

To define the cell populations in rheumatoid arthritis (RA) driving joint inflammation, we applied 79 

single-cell RNA-seq (scRNA-seq), mass cytometry, bulk RNA-seq, and flow cytometry to sorted 80 

T cells, B cells, monocytes, and fibroblasts from 51 synovial tissue RA and osteoarthritis (OA) 81 

patient samples. Utilizing an integrated computational strategy based on canonical correlation 82 

analysis to 5,452 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass 83 

cytometry and transcriptomics together revealed cell states expanded in RA synovia: 84 

THY1+HLAhigh sublining fibroblasts (OR=33.8), IL1B+  pro-inflammatory monocytes (OR=7.8), 85 

CD11c+T-bet+ autoimmune-associated B cells (OR=5.7), and PD-1+ Tph/Tfh (OR=3.0). We also 86 

defined CD8+ T cell subsets characterized by GZMK+, GZMB+, and GNLY+ expression. Using 87 

bulk and single-cell data, we mapped inflammatory mediators to source cell populations, for 88 

example attributing IL6 production to THY1+HLAhigh fibroblasts and naïve B cells, and IL1B to 89 

pro-inflammatory monocytes. These populations are potentially key mediators of RA 90 

pathogenesis. 91 

 92 
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Rheumatoid arthritis (RA) is an autoimmune disease affecting up to 1% of the population 101 

where a complex interplay between many different cell types drives chronic inflammation in the 102 

synovium of the joint tissue1–3. This inflammation leads to joint destruction, disability and 103 

shortened life span4. Defining key cellular subsets and their activation states in RA has been a 104 

longstanding key step to defining new therapeutic targets. CD4+ T cell subsets5,6, B cells7, 105 

monocytes8,9, and fibroblasts10–12 have established relevance to RA pathogenesis.  A global 106 

portrait of RA-relevant cell subsets using single cell technologies across a large sample 107 

collection tissues from inflamed joints is a critical resource for advancing therapeutics.  108 

Application of transcriptomic and cellular profiling technologies to whole synovial tissue 109 

has already identified promising specific cellular populations associated with RA3,13–15. However, 110 

most studies have focused on a pre-selected cell type, surveyed whole tissues rather than 111 

disaggregated cells, or used only one technology. Latest advances in single-cell technologies 112 

offer an opportunity to identify disease-associated cell subsets in human tissues at high 113 

resolution in an unbiased fashion16–19. These technologies have already indicated roles for T 114 

peripheral helper (Tph) cells20 and HLA-DR+CD27– cytotoxic T cells21 in RA pathogenesis. 115 

Separately, scRNA-seq has defined myeloid cell heterogeneity in human blood22 and identified 116 

a distinct subset of PDPN+CD34–THY1+ (THY1, also known as CD90) fibroblasts enriched in RA 117 

synovial tissue16,23.   118 

To generate high-dimensional multi-modal single-cell data from synovial tissue samples, 119 

we developed a robust tissue analytical pipeline24 in the Accelerating Medicines Partnership 120 

(AMP) RA/SLE consortium. We collected and disaggregated tissue samples from patients with 121 

RA and OA, and then subjected constituent cells to scRNA-seq, sorted-population bulk RNA-122 

seq, mass cytometry, and flow cytometry. We developed a robust computational strategy based 123 

on canonical correlation analysis (CCA) to integrate multi-modal transcriptomic and proteomic 124 

profiles at a single cell level. A unified analysis of single cells across data modalities can 125 
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precisely define contributions of specific cell subsets to pathways relevant to RA and chronic 126 

inflammation. 127 

 128 

RESULTS 129 

Generation of parallel mass cytometric and transcriptomic data from synovial tissue   130 

In phase 1 of AMP-RA/SLE, we recruited 36 RA patients meeting 1987 ACR classification 131 

criteria and 15 OA control patients from 10 clinical sites over 16 months (Supplemental Table 132 

1) and obtained synovial tissues from ultrasound guided synovial biopsies or joint replacements 133 

(Methods). All tissue samples included had with synovial lining documented by histology (Fig. 134 

1a). Synovial tissue disaggregation yielded many viable cells (362,190 cells per tissue, S.E.M 135 

7,687 cells) for downstream analyses. Applying a previously validated strategy for synovial cell 136 

sorting24 (Fig. 1a), we separated cells into B cells (CD45+CD3–CD19+), T cells (CD45+CD3+), 137 

monocytes (CD45+CD14+), and stromal fibroblasts (CD45–PDPN+) (Supplemental Fig. 1a). We 138 

applied bulk RNA-seq to all four sorted subsets from the 51 samples. For a subset of samples 139 

with sufficient cell yield (Methods), we measured single-cell protein expression using a 34-140 

marker mass cytometry panel (n=26, Supplemental Table 2), and single-cell RNA expression 141 

in sorted populations (n=21, Fig. 1b).  142 

 143 

Summary of computational data integration strategy to define cell populations 144 

To confidently define RA associated cell populations, we used bulk RNA-seq data as the 145 

reference point for our study (Fig. 1c). Bulk RNA-seq data were available for almost all of the 146 

samples, had the highest dimensionality and least sparsity, and were the least sensitive to 147 

technical artifacts. 148 
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We used CCA to integrate bulk RNA-seq data with the three other datasets (Fig. 1c). 149 

Integrating scRNA-seq with bulk RNA-seq data ensures robust discovery of individual cellular 150 

populations. Here, we used CCA to find linear combinations of bulk RNA-seq samples and 151 

scRNA-seq cells (Fig. 1d) to create gene expression profiles that were maximally correlated. 152 

These linear combinations captured sources of shared variation between the two datasets and 153 

allowed us to identify individual cellular populations that drive variation in the bulk RNA-seq 154 

data. We clustered scRNA-seq data by using the most correlated canonical variates for each 155 

cell to compute a nearest neighbor network, and then identified clusters with a community 156 

detection algorithm (Methods, Supplemental Fig. 2a). 157 

We identified clusters of cells in mass cytometry data using density-based clustering25. 158 

To define the genes that best correspond to the mass cytometry clusters, we integrated bulk 159 

RNA-seq with mass cytometry using CCA. In this analysis, CCA identifies linear combinations of 160 

genes and mass cytometry cluster proportions so that correlation across individual samples is 161 

maximized. These canonical variates offer a way to visualize genes and mass cytometry 162 

clusters together and define genes possibly specific for individual clusters. We then integrated 163 

mass cytometry clusters with identified scRNA-seq clusters to define the relationship between 164 

them (Methods). We also associated bulk gene expression in each sample with proportions of 165 

cells in different flow cytometry gate by integrating bulk RNA-seq with flow cytometry data using 166 

CCA. 167 

 168 

Disease association test of cellular populations 169 

We tested whether abundances of individual populations were altered in RA case samples 170 

compared to controls using two ways. First, we assessed whether marker genes (AUC>0.7, 20 171 

< n < 100) of each scRNA-seq derived cluster was differentially expressed concordantly in bulk 172 
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RNA-seq samples. Second, we applied MASC21, a single cell association testing framework, to 173 

identify mass cytometry clusters associated with disease (Methods).  174 

 175 

Synovial lymphocyte and monocyte infiltration distinguishes leukocyte-rich RA synovia  176 

Histology of RA synovial tissues revealed heterogeneous tissue composition with variable 177 

lymphocyte and monocyte infiltration (Fig. 2a,b); in contrast OA tissues had minimal 178 

lymphocytic infiltration (Fig. 2a). This expected heterogeneity reflects variable disease activity 179 

among RA patients which results in differences in tissue immune cell infiltration26. 180 

Consequently, we employed a data-driven approach to separate samples based on the degrees 181 

of lymphocyte and monocyte infiltration of tissues measured by flow cytometry (Supplemental 182 

Fig. 1b,c). We calculated a multivariate normal distribution of these parameters based on OA 183 

samples as a reference, and then for each RA sample calculated the Mahalanobis distance 184 

from OA27. We defined the maximum OA value (4.5) as a threshold to separate all leukocyte-185 

rich RA samples from leukocyte-poor samples (Methods, Supplemental Fig. 1d). We defined 186 

19 leukocyte-rich RA and 17 leukocyte-poor RA samples in our cohort. Whereas leukocyte-rich 187 

RA tissues had marked infiltration of synovial T cells and B cells (Fig. 2c), leukocyte-poor RA 188 

tissues had a similar cellular composition of leukocytes and stromal fibroblasts as OA (Fig. 2c). 189 

Synovial monocytes were similar between RA and OA (Fig. 2c). 190 

Mass cytometry in 26 synovial tissues was consistent with flow cytometric and histologic 191 

analyses. We observed marked differences in synovial cellular composition between leukocyte-192 

rich RA, leukocyte-poor RA, and OA. Stromal fibroblasts and endothelial cells constituted most 193 

synovial cells in OA and leukocyte-poor RA and are otherwise characterized by expansion of 194 

monocytes with few lymphocytes (Fig. 2f, Supplemental Fig. 3). In stark contrast, leukocyte-195 

rich RA tissues constituted predominantly of CD4 T, CD8 T, and B cells (Fig. 2f). 196 
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To validate whether our classification indicated inflammation, we assessed tissue 197 

histology and assigned a Krenn inflammation score28. We observed that leukocyte-rich RA 198 

samples exhibited significantly higher score than leukocyte-poor RA and OA (Fig. 2d). In 199 

contrast, synovial lining membrane hyperplasia was not significantly different between 200 

leukocyte-rich RA, leukocyte-poor RA, and OA controls. We observed significant correlation 201 

between synovial lymphocyte infiltration and histologic inflammation score (t-test p=5e-04; 202 

Spearman’s rho = 0.55, Fig. 2e), suggesting consistent classification between cytometric and 203 

histologic assessments. 204 

 205 

Single-cell RNA-seq analysis reveals distinct cell subpopulations 206 

Next, we analyzed 5,265 scRNA-seq profiles passing stringent quality control, including 207 

1,142 B cells, 1,844 fibroblasts, 750 monocytes, and 1,529 T cells (Methods). We used 208 

canonical variates (from bulk RNA-seq integration) to define clusters that were independent of 209 

donor and sequencing batch effects (Fig. 3a-b, Supplemental Fig. 2b,c). In contrast, 210 

conventional PCA-based clustering led to clusters that were confounded by batch effects 211 

(Supplemental Fig. 2d,e). We selected marker genes for scRNA-seq clusters by comparing 212 

cells within it to cells outside it and applied the following criteria: 1) percent of non-zero 213 

expressing cells > 60%; 2) AUC score > 0.7; and 3) FC > 2 (Supplemental Table 4). CCA-214 

based clustering identified 18 clusters (4 fibroblast clusters, 4 monocyte clusters, 6 T cell 215 

clusters, and 4 B cell clusters) from 21 donors (Fig. 3a, interactive form at 216 

https://immunogenomics.io/amp/). The distribution of these distinct clusters varies between 217 

donors, suggesting heterogeneity in immune and stromal cell subsets across patients (Fig. 3b). 218 

We show typical markers for cells in a t-Distributed Stochastic Neighbor Embedding (tSNE29) 219 

into two-dimensional space (Fig. 3c-f). Here we briefly summarize these populations. 220 
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Within stromal fibroblasts, we identified four putative cell subpopulations (Fig. 3c). The 221 

CD55+ (SC-F4) cluster represented lining fibroblasts and were the most different from the other 222 

fibroblast clusters16,23. The other three fibroblast clusters were CD34+ sublining fibroblasts (SC-223 

F1), HLAhigh sublining fibroblasts (SC-F2), and DKK3+ sublining fibroblasts (SC-F3). In 224 

monocytes (Fig. 3d), we identified IL1B+ pro-inflammatory monocytes (SC-M1), NUPR1+ 225 

monocytes (SC-M2), C1QA+ monocytes (SC-M3), and IFN-activated monocytes (SC-M4). In T 226 

cells (Fig. 3e), we identified three CD4+ clusters: CCR7+CD4+ T cells (SC-T1), FOXP3+ Tregs 227 

(SC-T2), and PD-1+ Tph/Tfh (SC-T3). We also found three CD8+ clusters: GZMK+ T cells (SC-228 

T4), GNLY+GZMB+ cytotoxic lymphocytes (CTLs) (SC-T5), and GZMK+/GZMB+ T cells (SC-T6). 229 

Within B cells (Fig. 3f), we identified four cell clusters, including naive IGHD+CD27– (SC-B1) 230 

and IGHG3+CD27– memory B cells (SC-B2). Intriguingly, we identified an autoimmune-231 

associated B cell (ABC) cluster (SC-B3) with high expression of ITGAX (CD11c)30,31. We also 232 

identified a plasmablast cluster (SC-B4) with high expression of IgG genes and XBP1, a 233 

transcription factor critical for plasma cell differentiation32. 234 

 235 

Distinct synovial fibroblasts defined by cytokine activation and MHC II expression 236 

In synovial fibroblasts, differential single cell gene expression suggested that CD55+ 237 

fibroblasts (SC-F4) were the most transcriptionally distinct subset from the three sublining 238 

THY1+ clusters SC-F1, SC-F2, and SC-F3, indicating that anatomical localization contributes to 239 

synovial fibroblast diversity16,23 (Fig. 4a). Consistent with the role of synovial fibroblasts in matrix 240 

remodeling, the three sublining fibroblasts, CD34+ fibroblasts (SC-F1), HLAhigh fibroblasts (SC-241 

F2), and DKK3+ fibroblasts (SC-F3) share gene expression in pathways related to extracellular 242 

matrix constituents by gene set enrichment analysis (GSEA) (Fig. 4a,b). HLAhigh sublining 243 

fibroblasts (SC-F2) are enriched with genes related to MHC class II presentation (HLA-DRA and 244 

HLA-DRB1) and the interferon gamma-mediated signaling pathway (IFI30) (Fig. 4a,b), 245 
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suggesting upregulation of MHC class II in response to interferon-gamma signaling in these 246 

cells. We identified a novel sublining fibroblast subtype (SC-F3) that is characterized by high 247 

expression of DKK3, CADM1 and COL8A2. 248 

To identify fibroblast populations expanded in leukocyte-rich RA synovia, we first 249 

examined expression of genes associated with each fibroblast subsets from bulk-sorted 250 

fibroblasts (CD45–PDPN+) from RA and OA patients. Expression of genes associated with 251 

HLAhigh fibroblasts (HLA-DRA, IRF1, ACTA2, and CXCL12, t-test p<1e-3) were upregulated in 252 

leukocyte-rich RA (n=16) compared to OA (n=12) by bulk RNA-seq (Fig. 4c), suggesting 253 

expansion of SC-F2. Genes associated with SC-F4 lining fibroblasts (PRG4, CD55, HTRA1, 254 

and DNASE1L3, t-test p<1e-3) were significantly decreased in leukocyte-rich RA (Fig. 4c). 255 

Next, we used the most differentially expressed genes (AUC>0.7) in each fibroblast subset to 256 

query transcriptomic profiles of bulk-sorted fibroblasts from leukocyte-rich RA and OA synovia. 257 

HLAhigh sublining fibroblasts (SC-F2) and CD34+ sublining fibroblasts (SC-F1) were significantly 258 

expanded in RA synovia compared to OA (t-test p=2.5e-6 and p=2.1e-3, respectively), while 259 

CD55+ lining fibroblasts (SC-F4) were relatively decreased in leukocyte-rich RA (t-test p=5.0e-7) 260 

(Fig. 4d). 261 

We then queried the proteomic expression to validate these four fibroblast populations. 262 

Analysis of CD45–PDPN+ cells identified eight putative cell clusters based on the differential 263 

expression pattern of THY1, HLA-DR, CD34, and Cadherin11 (Fig. 4e-g) that were not 264 

confounded by obvious batch effects (Supplemental Fig. 4a). Integration of mass cytometry 265 

clusters with bulk RNA-seq using CCA showed that the IL6, CXCL12, and HLA gene expression 266 

is highly associated with frequency of THY1+CD34–HLA-DRhigh fibroblasts, suggesting an active 267 

cytokine-producing state (Fig. 4h). In contrast, the expression of lining fibroblast genes PRG4 268 

and CD55 separated in the CCA space with a gradient, indicating relative decreased number of 269 

lining fibroblasts in leukocyte-rich synovium (Fig. 4h). We then integrated each scRNA-seq 270 

subset based on the most unique genes (AUC>0.7) with identified the corresponding mass 271 
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cytometry clusters and determined the statistical significance (z-score) of this association by 272 

explicit permutation (Fig. 4i, Methods). We consistently observed that HLAhigh sublining 273 

fibroblasts (SC-F2) are strongly associated (z-score=2.8) with THY1+CD34–HLA-DRhigh 274 

fibroblasts, and CD34+ sublining fibroblasts (SC-F1) are strongly correlated (z-score=2.7) with 275 

THY1+CD34+HLA-DRlow fibroblasts (Fig. 4h, Table 1) indicating that these populations 276 

correspond to each other.  277 

Consistent with the differential expression analyses, we found that THY1+CD34–HLA-278 

DRhigh cells are dramatically overabundant in leukocyte-rich RA compared to leukocyte-poor RA 279 

and OA controls (36% versus 2% of fibroblasts, MASC OR = 33.8 (95% CI: 11.7-113.1), one 280 

tailed MASC p=1.9e-05) (Table 1). 281 

 282 

Unique activation states define heterogeneity among synovial monocytes  283 

With scRNA-seq, we defined four transcriptionally distinct monocyte subsets: IL1B+ pro-284 

inflammatory monocytes (SC-M1), NUPR1+ monocytes (SC-M2), C1QA+ monocytes (SC-M3) 285 

and IFN-activated monocytes (SC-M4) (Fig. 5a). GSEA demonstrated that monocyte LPS 286 

response was associated with SC-M1 (44.8% of total monocytes) (Fig. 5b), suggesting it 287 

represents a phenotype similar to IL-1- or TLR-activated proinflammatory monocytes. Using 288 

Gene Ontology gene sets, we observed that SC-M4 monocytes were highly enriched in the type 289 

I interferon signaling and the interferon-gamma mediated pathway (Supplemental Fig. 5a), 290 

including increased expression of IFITM322 and IFI6 (Fig. 5a). The phenotypes of the 291 

monocytes from SC-M2 and SC-M3 clusters do not align well with known activation states, 292 

possibly indicating a more homeostatic role in the synovium. 293 

By querying bulk RNA-seq monocyte samples from leukocyte-rich RA (n=17) and OA 294 

samples (n=13), we found that genes associated with IL1B+ monocytes (SC-M1), including 295 

NR4A2 (t-test p=2.2e-05), HBEGF (t-test p=1.2e-4), PLAUR (t-test p=1.5e-4) and the IFN-296 
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activated monocytes gene IFITM3 (t-test p=9.3e-05) were significantly upregulated in leukocyte-297 

rich RA samples. In contrast, marker genes associated with NUPR1+ monocytes (SC-M2) were 298 

relatively depleted in leukocyte-rich RA (Fig. 5c). Extensive examination of the top differentially 299 

expressed genes (AUC>0.7) for each monocyte subset confirmed a significant enrichment of 300 

IL1B+ monocytes (t-test p=6.1e-5) and IFN-activated monocytes (t-test p=6.2e-3) in leukocyte-301 

rich RA synovia in contrast to a relative depletion of NUPR1+ monocytes (t-test p=2.2e-5) (Fig. 302 

5d). These data indicate that cytokine activation drives the expansion of unique monocyte 303 

populations in active RA synovia. 304 

Mass cytometry identified five synovial CD14+ monocyte clusters (CD45+CD3–) (Fig. 5e-305 

g) without obvious batch effects (Supplemental Fig. 4b). A CCA-based integration of mass 306 

cytometry and bulk RNA-seq data indicated that monocyte genes enriched in RA subsets, such 307 

as IFITM3, PLAUR, CD38, and HLA genes, are associated with CD11c+CCR2+ and 308 

CD11c+CD38+ mass cytometry clusters (Fig. 5h). These markers may define inflammatory 309 

synovial monocyte populations. We further associated proteomic expression of monocytes with 310 

distinct scRNA-seq clusters based on marker genes (AUC>0.7) and observed that population 311 

defined by cell surface CD11c+CD38+ is highly associated with the activated monocytes states 312 

(SC-M1 and SC-M4) (z-score=2.3) (Fig. 5i, Table 1). Supporting this finding, indeed using 313 

MASC, we confirmed that synovial CD11c+CD38+ monocytes are significantly expanded in 314 

leukocyte-rich RA (OR = 7.8 (95% CI: 3.6-17.2), one tailed MASC p=6.7e-05) (Table 1). 315 

Conversely, monocytes from cluster SC-M2 correlate with CD11c– by mass cytometry and are 316 

inversely correlated with inflammatory monocyte populations (z-score=2.7) (Fig. 5i, Table 1). 317 

 318 

Heterogeneity in synovial CD4 and CD8 T cells defined by effector functions 319 

Single-cell RNA-seq data defined distinct CD4+ and CD8+ T cell populations (Fig. 6a). 320 

Among CD4+ T cells, expression of CCR7 and SELL were notably higher in SC-T1 and the 321 
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central memory T cells gene set is enriched in SC-T1 expressed genes (Fig. 6a,b), supporting 322 

the identification of SC-T1 as central memory T cells. Next, we identified two populations of 323 

CD4+ T cells marked by high expression of FOXP3 (SC-T2) and CXCL13 (SC-T3) (Fig. 6b). 324 

Examination of differentially expressed genes between these two T cell subsets suggested that 325 

SC-T2 represents FOXP3+ Tregs33 while SC-T3 represents PD-1+ Tph cells and Tfh cells20 326 

(Supplemental Fig. 6). 327 

Single-cell RNA-seq analysis of synovial CD8+ T cells identified three unexpected 328 

populations characterized by distinct expression of effector molecules GZMK, GZMB, GZMA 329 

and GNLY (Fig. 6a). We defined these populations as GZMK+CD8+ (SC-T4), GNLY+GZMB+ 330 

cytotoxic T lymphocytes (CTLs) (SC-T5), and GZMK+/GZMB+ T cells (SC-T6). GZMK+/GZMB+ T 331 

cells not only expressed HLA-DRA and HLA-DQA1 at high levels, but also expressed genes 332 

suggestive of an effector phenotype (Fig. 6a,b). Application of GSEA to these populations 333 

annotated each of the six T cell clusters (Fig. 6b). 334 

Many genes specifically expressed by T cell subsets in bulk-sorted T cells were 335 

upregulated in leukocyte-rich RA synovia comparing to OA by bulk-sorted T cells (CD45+CD14–336 

CD3+), including chemokine CXCL13 (t-test p=1.2e-4) and NFKBID (t-test p=1.6e-6), a gene 337 

downstream of TCR activation (Fig. 6c). This likely reflected expansion of Tph cells and 338 

activated T cell subsets. Indeed, unbiased interrogation of bulk RNA-seq T cell data using the 339 

top differentially expressed genes (AUC>0.7) among scRNA-seq T cell subsets revealed 340 

significant expansion of Tph/Tfh cells (t-test p=0.01) (Fig. 6d). 341 

Using mass cytometry, we identified nine putative T cell clusters among the synovial T 342 

cells (CD45+CD14–CD3+) (Fig. 6e-g, Supplemental Fig. 4c). By integrating bulk RNA-seq with 343 

mass cytometry cluster abundances, we found that the gene expression of CXCL13 and 344 

inhibitory receptors TIGIT and CTLA4 are associated with abundance of the CD4+PD-1+ICOS+ 345 

mass cytometry cluster. The abundance of CD8+HLA-DR+ cells was associated with the 346 
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expression of gene IFNG and HLA-DQA2 (Fig. 6h). When aggregating the differentially 347 

expressed marker genes (AUC>0.7) for scRNA-seq clusters, we consistently observed 348 

significant associations between Tph/Tfh cells (SC-T3) and CD4+PD-1+ICOS+ T cells (z-score = 349 

3.4); CD8+ subsets including GZMK+/GZMB+ (SC-T6), CTLs (SC-T5), and GZMK+ (SC-T4) and 350 

CD8+PD-1–HLA-DR+ T cells by mass cytometry (Fig. 6i, Table 1), confirming their respective 351 

identities. In addition, CD4+PD-1+ICOS+ cells were significantly expanded in leukocyte-rich RA 352 

(MASC OR = 3 (95% CI: 1.7-5.2), one tailed MASC p=2.7e-04) (Table 1). Interestingly, Tregs 353 

(SC-T2) exhibited nominal association with CD4+PD-1+ICOS+ and CD8+PD1+HLA-DR+ T cells 354 

(z-score = 1.5), potentially due to shared gene expression programs between Tregs, Tph/Tfh, 355 

and CD8+PD-1+HLA-DR+ T cells. 356 

 357 

Autoimmune-associated B cells expanded in RA synovium by single-cell RNA-seq 358 

We identified synovial B cell 4 clusters with scRNA-seq: naïve B cells (SC-B1), memory B cells 359 

(SC-B2), CD11c+ ABC cells (SC-B3), and plasmablasts (SC-B4) (Fig. 7a). Using Gene 360 

Ontology pathway enrichment for these four subsets we observed that MHC Class II protein 361 

complex and interferon-gamma-mediated signaling pathways (Supplemental Fig. 5b) were 362 

enriched in all the HLA+ subsets, SC-B1, SC-B2, and SC-B3 (Fig. 3f), suggesting B cell 363 

activation. Pathway analysis on curated immunological genes sets demonstrated that SC-B1 364 

expresses naïve B cell genes, while SC-B2 and SC-B3 are more enriched for IgM and IgG 365 

memory B cell genes (Fig. 7b). Intriguingly, we observed that SC-B3 cells express high levels of 366 

CD11c and T-bet (Fig. 7b), which are autoimmune-associated B cells (ABC) markers30,31, as 367 

well as markers of recently activated B cells including ACTB34. High expression of AICD is also 368 

in accord with the recently reported transcriptomic analysis of CD11c+ B cells from SLE 369 

peripheral blood35. While ABCs constitute as a relatively small proportion of all B cells, they are 370 

almost exclusively derived from two leukocyte-rich RA patients. Examination of bulk 371 
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transcriptomic profiles of synovial B cell samples shows that genes MZB1, XBP1 and CD11c 372 

genes are upregulated in leukocyte-rich RA (n=16) compared to OA (n=7) (Fig. 7c).  373 

         Mass cytometric data of synovial B cells (CD45+CD3–CD14–CD19+) identified ten 374 

putative B cell clusters (Fig. 7d-f, Supplemental Fig. 4d). Next, we analyzed bulk RNA-seq and 375 

mass cytometry cluster abundances from the shared samples, and found that the gene 376 

expressions of CD38, MZB1, and plasma cell differentiation factor XBP1 are associated with 377 

abundance of CD38++CD20–IgM–IgD– plasmablasts (Fig. 7g). To further validate the distinct 378 

scRNA-seq clusters using mass cytometry, we integrated ten mass cytometry populations with 379 

scRNA-seq clusters and observed significant correlation between plasmablasts (SC-B4) and 380 

CD38++CD20–IgM–IgD– B cells (z-score=2.7) (Fig. 7h, Table 1). Consistent with identification of 381 

ABCs in RA synovia, CD11c+ ABCs (SC-B3) were positively correlated (z-score=1.6) with IgM– 382 

IgD– HLA-DR++ CD20+ CD11c+, which is significantly (OR = 5.7 (95% CI: 1.8-22.3), one tailed 383 

MASC p=2.7e-03) expanded in leukocyte-rich RA (Fig. 7h, Table 1). Mass cytometry analysis 384 

further identified three putative subsets within CD11c+ cells based on expression of 385 

immunoglobulin profiles: IgM– IgD– HLA-DR++ CD20+ CD11c+, CD38+ HLA-DR++ CD20–  CD11c+, 386 

and IgM+ IgD+ CD11c, suggesting additional heterogeneity within ABCs. Among these, IgM+ IgD+ 387 

CD11c B cells express FcRL4, suggesting homology to a population of CD11c+FcRL4+ 388 

memory B cells described in the human tonsil. 389 

 390 

Inflammatory pathways and effector modules revealed by global transcriptomic profiling  391 

We used bulk and single cell transcriptomes of sorted synovial cells to detect pathogenic 392 

molecular signal pathways. First, principal component analysis (PCA) on post-QC OA and 393 

leukocyte-rich RA samples (Supplemental Fig. 7a,b) demonstrated that cell type accounted for 394 

most of the variance and each cell type expressed specific marker genes (Supplemental Fig. 395 

7c). Within each cell-type we observed that leukocyte-rich RA appeared distinct from OA 396 
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samples, but leukocyte-poor RA grouped together with OA samples (Supplemental Fig. 7d-g). 397 

We observed that 173 genes in fibroblasts, 159 genes in monocytes, 10 genes in T cells, and 5 398 

genes in B cells were upregulated in leukocyte-rich RA tissues compared to OA (FC>2 and 399 

FDR<0.01). To define the pathways relevant to leukocyte-rich RA, we applied GSEA weighted 400 

by gene effect sizes and identified TLR signaling (monocytes and B cells), type I interferon 401 

response and inflammatory response (monocytes and fibroblasts) (Supplemental Fig. 7h-i), Fc 402 

receptor signaling (monocytes), NF-kappa B signaling (fibroblasts), and interferon gamma (T 403 

cells) pathways (Fig. 8a). We observed that in fibroblasts and monocytes that inflammatory 404 

response genes (PTGS2, PTGER3, and ICAM1), interferon response genes (IFIT2, RSAD2, 405 

STAT1, and XAF1), and chemokine/cytokine genes (CCL2 and CXCL9) were significantly 406 

upregulated in leukocyte-rich RA (Fig. 8b), suggesting a coordinated chemotactic response to 407 

interferon activation. We also observed upregulation of interferon regulatory factors (IRFs), 408 

including IRF7 and IRF9 in T cells, and IRF1, IRF7, IRF8 and IRF9 in monocytes. Synovial 409 

monocytes in leukocyte-rich RA exhibit increased expression of TLR8 and MYD88, consistent 410 

with IL-1 or TLR signaling (Fig. 8a). Taken together, pathway analysis suggests crosstalk 411 

between immune and stromal cells in leukocyte-rich RA synovia. Inflammatory response genes 412 

upregulated in leukocyte-rich RA, had comparable expression in leukocyte-poor RA and OA 413 

synovial cells (Fig. 8b), suggesting leukocyte infiltration is a key drive of molecular 414 

heterogeneity in RA synovia. 415 

Next, we asked whether inflammatory cytokines upregulated in leukocyte-rich RA are 416 

driven by global upregulation within a synovial cell type, or specific upregulation within a 417 

discrete cell subset defined by scRNA-seq. Whereas TNF was produced at a high level by a 418 

multiple monocyte, B cell and T cell populations; IL6 expression was restricted to HLAhigh 419 

sublining fibroblasts (SC-F2) and naive B cells (SC-B1) (Fig. 8c). Similarly, expression of IL1B 420 

and CXCL13 was restricted to IL1B+ pro-inflammatory monocytes (SC-M1) and Tph/Tfh cells 421 
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(SC-T3), respectively. Surprisingly, we identified CD8 T cells, rather than CD4 T cells, as the 422 

dominant source of IFNγ in leukocyte-rich synovia.    423 

We also observed cell subset-specific responses to inflammatory pathways. Toll-like 424 

receptor signaling pathway was strongly enriched in B cells and monocytes in leukocyte-rich RA 425 

tissues (Fig. 8a). At the single cell level, we observed that TLR10 was only expressed by HLA+ 426 

B cells, indicating that TLR10 has a functional role within the B cell lineage36. In contrast, TLR8 427 

was significantly elevated in all RA monocyte subsets. The hematopoietic cell-specific 428 

transcription factor IRF8 was expressed in a significant fraction of monocytes and HLA+ B cells 429 

that cooperatively regulate differentiation of monocytes and activated B cells in RA synovium. 430 

SLAMF7, a potential therapeutic target for Systemic Lupus Erythematosus (SLE)37, is highly 431 

expressed by pro-inflammatory monocytes (SC-M1), IFN-activated monocytes (SC-M4), 432 

plasmablasts (SC-B4) and CD8 T cells.  433 

 434 

DISCUSSION 435 

Using multi-model, high-dimensional synovial tissue data we defined stromal and 436 

immune cell populations expanded in RA indicating essential inflammatory pathways. 437 

Recognizing the considerable variation in clinical parameters for disease duration and activity, 438 

treatment types, and joint histology scores38,39, we elected to use a molecular parameter, based 439 

on percent lymphocytes, monocytes of the total cellularity, to classify our samples at the local 440 

tissue level. We note that differences in leukocyte enrichment of joint replacement samples and 441 

biopsy samples were best explained by leukocyte infiltration and not by the tissue source 442 

(Supplemental Fig. 1, Supplemental Fig. 7d-g). 443 

This and previous studies have highlighted stromal fibroblasts as a potential therapeutic 444 

target in RA40,12. Consistent with previous reports12,23,41, we identified sublining fibroblasts as a 445 

major producer of pro-inflammatory cytokines, notably IL6, within the leukocyte-rich synovium 446 
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(Fig. 4). Furthermore, a single subset of those fibroblasts expressing MHC II (SC-F2, 447 

THY1+CD34–HLA-DRhigh) was >15 fold expanded in RA tissues, highlighting it as a possible 448 

therapeutic target. In addition, MHC II expression supports a role for stromal cells in T cell 449 

antigen presentation42. We also observed that T cells, B cells, and monocyte proportions track 450 

with synovial fibroblasts gene expression, suggesting that synovial fibroblasts respond to 451 

infiltrating lymphocytes in RA synovium (Supplemental Fig. 8). Intriguingly, DNASE1L3, a gene 452 

whose loss of function is associated with RA43 and systemic lupus erythematosus44 453 

susceptibility in recent genetic studies, was found to be highly expressed in synovial CD55+ 454 

lining fibroblasts (SC-F4), which was relatively depleted in human RA. We identified a novel 455 

fibroblast subset (SC-F3) characterized by high DKK3 (Fig. 4), encoding Dickkopf3, and protein 456 

upregulated in OA that prevents cartilage degradation in vitro45,46. 457 

Transcriptional heterogeneity in the synovial monocyte compartment indicated that 458 

distinct RA-enriched subsets are driven by inflammatory cytokines (such as IL-1 or TNF) and 459 

interferons (Fig. 5, Fig. 8). This suggests monocyte may be sensitive to the local 460 

microenvironment with unique cytokine combinations constituting the inflammatory milieu in the 461 

RA synovium. These inflammatory phenotypes align with effective RA therapeutic targets, for 462 

example TNF and the interferon-activated JAK kinases, respectively47,48. The NUPR1+ 463 

monocytes demonstrated lower proportions in RA tissue and had transcriptomes that were anti-464 

correlated with the inflammatory phenotypes, suggesting either an anti-inflammatory phenotype, 465 

supported by high levels of MERTK (Fig. 5)49, or an unrecognized monocyte phenotype specific 466 

to the normal uninflamed synovium. Alternatively, NUPR1+ markers such as osteoactivin 467 

(GPNMB) and cathepsin K (CTSK) could indicate a specific subset of osteoclast progenitors 468 

that control bone remodeling (Fig. 5)50,48,51. Further studies on normal and various disease 469 

control synovial tissues may clarify the functional role of the NUPR1+ (SC-M2) monocyte 470 

phenotype. Furthermore, anatomical and spatial studies of the identified monocyte 471 
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populations—particularly focused on lining versus sublining, perivascular and lymphocyte 472 

aggregate-associated monocytes—will help to elevate our understanding of the functional roles 473 

for these myeloid cell types. 474 

Single cell classification of T cell subsets in RA synovium demonstrated CD4+ T cell 475 

heterogeneity that is consistent with distinction between the homing capacity and effector 476 

functions of these subsets. Consistent with previous studies, we observed expansion of CD4+ T 477 

peripheral helper cells20 (SC-T3, CD4+PD-1+ICOS+) within leukocyte-rich RA synovium. We also 478 

identified distinct CD8 T cell subsets (SC-T4-6) characterized by high expression of IFNG and a 479 

distinct granzyme expression pattern (Fig. 6). A larger study may be better powered to 480 

differentiate the relative expansion of individual subpopulations. A role of CD8+ T cells is 481 

consistent with MHC class I genetic associations in rheumatoid arthritis52, and may be relevant 482 

to tissue inflammation. 483 

To our knowledge, this study is the first to report the presence of autoimmune-484 

associated B cells (SC-B3, ABCs) by transcriptomic sequencing data in leukocyte-rich synovium 485 

in RA. This B cells population, dependent on T-bet for generation and expressing CD11c, was 486 

first reported in aging mice; subsequently it was seen to be expanded in autoimmune mice and 487 

enriched for autoreactive specificities53,54. We observed heterogeneity in this cell subset, with a 488 

sizable population of CD11c+ B cells detectable in both IgD+ and switched B cell populations by 489 

mass cytometry. The expression of other markers by ABCs in our transcriptome analysis 490 

suggests a balance between germinal center (IRF8, AID)55  and plasma cell (SLAMF7) 491 

differentiation programs within the RA synovium. We observed that multiple B cell subsets 492 

expressed MHC II, consistent with the potential for B cell antigen presentation in the RA target 493 

tissue. As previously reported, we observed in leukocyte-rich RA synovium an expansion of 494 

plasma cells56 (SC-B4), which are targeted by rituximab57, an effective RA therapy, as 495 

previously demonstrated. We also observe that naive B cells are a dominant IL6 producer. In 496 
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contrast to leukocyte-rich RA, OA synovia contain comparatively few B cells (Fig. 2b), which 497 

limited our ability to identify RA-associated synovial B cell subsets through case-control 498 

comparisons (Fig. 7g).   499 

         A critical unmet need in RA is identifying therapeutic targets for patients failing to 500 

respond to DMARDs and biologics38. We observed upregulation of chemokines (CXCL8, 501 

CXCL9, and CXCL13), cytokines (IFNG and IL15), and surface receptors (PDGFRB and 502 

SLAMF7) in distinct immune and stromal cell populations, suggesting potential novel targets. 503 

This study was enabled by important advances in the statistical analysis of single-cell data21,58–61 504 

alongside rapid improvements in scaling single cell technologies17,62 and our recent work 505 

optimizing robust methodologies for disaggregation of synovial tissue24. 506 

We advance strategies to integrate multiple molecular data sets; these approaches 507 

modulate the effect of technical artifact, frequently confounding single cell technologies63–65, 508 

while emphasizing biological signals. Our CCA-based integrative strategy clusters high-509 

dimensional scRNA-seq data using canonical variates that capture variance that are present in 510 

both the single-cell and bulk RNA-seq data. These shared variances likely represent biological 511 

trends, and not technical factors that would likely be uncorrelated in these two independent data 512 

sets. CCA has been successfully employed effectively in other contexts to integrate high-513 

dimensional biological data66,65. Penalized CCA67 and deep CCA68,69 can produce non-linear 514 

variates and may prove to be highly effective as we confront higher throughput platforms with 515 

greater cell-to-cell data. 516 

The two single cell modalities used in this study, mass cytometry and scRNA-seq, 517 

complement each other. Single-cell RNA-seq captures expression of thousands of genes70,71, 518 

but at the cost of sparse data63. A single mass cytometry assay captures hundreds of thousands 519 

of individual cells, but only measures a limited number (~40)72 of pre-selected markers. But, 520 

since markers are backed with decades of experimental experience they can be effective at 521 
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defining cellular heterogeneity73. Mass cytometry analysis across all cell populations identified 522 

that leukocyte-rich patients show high cell abundances of HLA-DR+ fibroblast populations, Tph 523 

cells, CD11c+CD14+ monocytes, and CD11c+ B cell populations (Supplemental Fig. 4e). 524 

Combining mass cytometry with the extended dimensionality of scRNA-seq analyses, enables 525 

quantification of well-established cell populations, while also enabling discovery of rare or novel 526 

cell states, such as the CD8 T cell states noted here. We note the recent development of 527 

approaches to capture mRNA and protein expression simultaneously that will further augment 528 

our ability query tissue inflammation74,75. 529 

Whether cell population expansions and molecular pathways highlighted in this study 530 

represent RA pathogenesis or a downstream effect of inflammation warrants further 531 

investigation. The RA/SLE AMP is now engaged in obtaining a large collection of synovial 532 

biopsy specimens and paired blood samples from 150 RA patients for single cell analyses with 533 

detailed clinical data, disease activity metrics, and ultrasound score evaluation of synovitis. We 534 

anticipate that this ongoing larger study will enable us to not only define additional 535 

subpopulations, but to better define their link to clinical sub-phenotypes. 536 

It is essential to interrogate the tissue infiltration of diseases other than RA, including 537 

systemic lupus erythematosus, type I diabetes, psoriasis, multiple sclerosis and other organ 538 

targeting conditions. Application of multiple single cell technologies together can help to define 539 

key novel populations, thereby providing new insights about etiology and potential therapies. 540 
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leukocyte-poor leukocyte-rich One tailed leukocyte-rich 
RA and OA RA MASC p value OR (CI)

THY1– Cadherin11– 21% 4% 1.00 0.04 (0-0.2)
Lining (SC-F4) THY1– Cadherin11+ 18% 2% 1.00 0.1 (0-0.3)

THY1– CD34+ HLA-DRhigh 7% 3% 0.87 0.5 (0.3-1.2)
THY1– CD34– HLA-DRhigh 17% 15% 0.48 1.2 (0.3-4.4)

HLA high  sublining (SC-F2) THY1+ CD34– HLA-DRhigh 2% 36% 1.9E-05 33.8 (11.7-113.1)
DKK3 +  sublining (SC-F3) THY1+ CD34– HLA-DRlow 16% 15% 0.66 0.8 (0.3-1.8)
CD34 +  sublining (SC-F1) THY1+ CD34+ HLA-DRlow 18% 4% 1.00 0.2 (0.1-0.4)

THY1+ CD34+ HLA-DRhigh 2% 21% 1.6E-04 25.5 (7.5-101.8)
NUPR1 +  (SC-M2) CD11c– 30% 4% 1.00 0.1 (0-0.4)
IL1B + (SC-M1), IFN-activated (SC-M4) CD11c+ CCR2+ 34% 40% 0.23 1.6 (0.7-3.6)

CD11c+ CD38– 13% 2% 1.00 0.1 (0-0.3)
CD11c+ CD38– CD64+ 13% 3% 0.93 0.3 (0.1-1)

IL1B + (SC-M1), IFN-activated (SC-M4), C1QA + (SC-M3) CD11c+ CD38+ 15% 51% 6.7E-05 7.8 (3.6-17.2)
CD4– CD8– 15% 9% 0.95 0.6 (0.3-1)

CCR7 + (SC-T2) CD4+ CCR2+ 26% 13% 1.00 0.4 (0.2-0.7)
CD4+ HLA-DR+ 6% 2% 0.83 0.7 (0.2-4.1)
CD4+ PD-1+ ICOS– 13% 12% 0.81 0.9 (0.5-1.6)

Tph/Tfh (SC-T4) CD4+ PD-1+ ICOS+ 11% 25% 2.7E-04 3.0 (1.7-5.2)
CD8+ PD-1– HLA-DR– 14% 9% 0.76 0.7 (0.3-1.5)

GZMK + /GZMB + (SC-T7), GZMK + (SC-T5), CTLs(SC-T6) CD8+ PD-1– HLA-DR+ 2% 1% 0.64 0.9 (0.4-2.2)
CD8+ PD-1+ HLA-DR– 13% 14% 0.40 1.1 (0.6-1.9)

Tph/Tfh (SC-T4) CD8+ PD-1+ HLA-DR+ 1% 15% 9.2E-05 11.8 (4.9-34.2)
plasmablasts (SC-B4) CD38++ CD20– IgM– IgD– 6% 12% 0.01 3.3 (1.2-10.5)

CD38++ CD20– IgM+ HLA-DR+ 1% 3% 0.01 6.9 (1.3-83.1)
Memory B cells (SC-B2) IgM– IgD– HLA-DR– 27% 2% 1.00 0.1 (0-0.3)

CD38+ HLA-DR++ CD20– CD11c+ 19% 6% 0.56 0.9 (0.1-6.7)
ABCs (SC-B3) IgM– IgD– HLA-DR++ CD20+ CD11c+ 4% 12% 2.7E-03 5.7 (1.8-22.3)

IgM– IgD– HLA-DR+ 32% 20% 0.98 0.4 (0.2-1)
IgA+ IgM– IgD– 5% 4% 0.68 0.9 (0.5-1.6)

Naïve B cells (SC-B1) IgM+ IgD– 22% 11% 0.97 0.5 (0.2-1)
IgM+ IgD+ CD11c– 12% 26% 0.02 4.0 (1.3-12.0)
IgM+ IgD+ CD11c+ 4% 7% 0.14 2.2 (0.74 - 7.7)

Bold mass cytometry clusters are significantly enriched in leukocyte-rich RA (one tailed FDR q value < 0.05). 
Two significant digits are given to the one tailed MASC p value.
95% confidence interval (CI) for the odds ratio (OR) is given for each mass cytometry cluster.
Where possible, we have identified the most similar scRNA-seq clusters for each cluster found by mass cytometry.

scRNA-seq cluster mass cytometry cluster

Table 1. Connection between cell populations determined by mass cytometry and scRNA-seq clusters and disease associations. 
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