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The brain has a central, short-term learning module, the hippocampus, which transfers what it has
learned to long-term memory in cortex during non-REM sleep. The putative mechanism responsible
for this type of memory consolidation invokes hierarchically nested hippocampal ripples (100-250
Hz), thalamo-cortical spindles (7-15 Hz), and cortical slow oscillations (< 1 Hz) to enable transfer.
Suppression of, for instance, thalamic spindles has been shown to impair hippocampus-dependent
memory consolidation. Cortical oscillations are central to information transfer in neural systems.
Significant evidence supports the idea that coincident spike input can allow the neural threshold
to be overcome, and spikes to be propagated downstream in a circuit. Thus, an observation of
oscillations in neural circuits would be an indication that repeated synchronous spiking is enabling
information transfer. However, for memory transfer, in which synaptic weights must be being trans-
ferred from one neural circuit (region) to another, what is the mechanism? Here, we present a
synaptic transfer mechanism whose structure provides some understanding of the phenomena that
have been implicated in memory transfer, including the nested oscillations at various frequencies.
The circuit is based on the principle of pulse-gated, graded information transfer between neural
populations.

INTRODUCTION

The case of Henry Molaison (H.M.) [1] taught us that there
was a distinction between the location of short- and long-
term memory storage in the brain. A bilateral medial tem-
poral lobectomy removing the anterior part of H.M.’s hip-
pocampi and other nearby brain regions resulted in an in-
ability for H.M. to create new long-term memories (but he
could still recall old memories), while leaving intact the abil-
ity to form and recall short-term memories. This caused
researchers to believe that encoding and retrieval of long-
term memories was mediated by distinct systems and that
memories may be formed in one location in the brain, but
consolidated elsewhere.

Sleep has been shown to support the consolidation of mem-
ory [2]. During non-rapid-eye-movement (NREM) sleep,
thalamo-cortical spindles [3] and hippocampal sharp wave-
ripples [4] have been implicated in declarative memory con-
solidation [5–11]. Evidence [8, 9, 12, 13] suggests that long-
term memory consolidation is coordinated by the generation
of hierarchically nested hippocampal ripples (100-250 Hz),
thalamo-cortical spindles (7-15 Hz), and cortical slow oscil-
lations (< 1 Hz) enabling memory transfer from the hip-
pocampus to the cortex.

Consolidation has also been demonstrated in other brain
tasks, such as in the acquisition of motor skills, where there is
a shift from activity in prefrontal cortex to premotor, poste-
rior parietal, and cerebellar structures [14] and in the transfer
of conscious to unconscious tasks, where activity in initial
unskilled tasks and activity in skilled performance are lo-
cated in different regions, the so-called ‘scaffolding-storage’
framework [15].

Cortical oscillations are an important mechanism that en-
ables information transfer in the brain. Experimental evi-

dence has demonstrated improved communication between
sender and receiver neurons when gamma-phase relation-
ships exist between upstream and downstream populations
[16–18]. Loss of theta-band coherence has been shown to
result in memory deficits [19] and pharmacological enhance-
ment can improve learning and memory [20]. Theoretical
investigations support the idea that coincident spiking can
allow neuronal populations to overcome their threshold and
propagate spikes downstream [21–25].

Recent work shows that, by separating a neural circuit into
a feedforward chain of gating populations and a second chain
coupled to the gating chain (graded chain), graded informa-
tion (i.e. information encoded in firing rate amplitudes) may
be faithfully propagated and processed as it flows through
the circuit [26–30]. The neural populations in the gating
chain generate pulses, which push populations in the graded
chain above threshold, thus allowing information to flow in
the graded chain [29, 30].

The separation of a circuit into gating and graded chains,
so-called ‘synfire-gated synfire chains’ (SGSCs), allows the
flow of information through the graded chain component to
be precisely controlled by the gating chain component. This
control allows the circuit to process information [26, 27],
make decisions [27], and, importantly, deploy learning in a
precise manner [28].

Using SGSCs, circuits have been constructed that learn
a covariance matrix from an autoregressive process by gat-
ing information through a circuit with a designated Hebbian
learning module, enabling the encoding of the covariance ma-
trix in a set of synapses [28].

In this paper, we will describe how a set of previously
learned synapses may in turn be copied to another mod-
ule with a pulse-gated transmission paradigm that operates
internally to the circuit and is independent of the learning
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process.

METHODS

Model. We use a mean-field model of an SGSC,

τ
d

dt
Ij+1
i = −Ij+1

i + fi

(∑
k

W j+1,j
ik Ijk + Igatei (t)

)
. (1)

Here, Iji denotes the synaptic current in neural population
i in layer j. Igatei is a gating current, approximated by a
square pulse of length T . Both currents are subthreshold.
Thus, in the absence of the gating current, no information is
propagated. For the simulations shown here, the time con-
stant τ = T . W j,j+1

ik are elements of a synaptic connectivity
matrix connecting layers j and j + 1. And f is a non-linear
activity function, giving the firing rate, which, for an SGSC,
is approximately piecewise-linear of the form

f(x) =

{
x, x > 0
0, x ≤ 0

. (2)

These equations may be derived from an underlying set
of integrate-and-fire equations via a Fokker-Planck analysis
[29].

Synaptic weights evolve according to a differential equa-
tion implementing Hebbian learning

τW
dW j+1,j

xy

dt
= −

(
W j+1,j

xy − fx(t)fy(t)
)
, (3)

where fx and fy are firing rates of neuronal populations on
post- and pre-synaptic (resp.) sides of a synapse, Wxy. Here,
τW = 20, 000 × 19T , where 19T is the length of a single
instance of a repeated gating motif (see below).

Note carefully that firing rates in this system are turned
on and off by gating current pulses, Igatei (t). For Hebbian
learning, synaptic modification (other than an overall leak)
will only occur when firing occurs simultaneously on both
sides of the synapse. Hence, learning may be turned on and
off depending on the gating sequence used in the circuit.
When information is gated to both pre- and post-synaptic
sides of a synapse simultaneously, synaptic weights are mod-
ified. When information is gated through the synapse (i.e.
first a pulse to the pre-synaptic population, then a pulse
to the post-synaptic population, giving graded information
propagation) no synaptic modification occurs.

The use of pulse-gating [28] is an alternative to other mech-
anisms, such as synaptic scaling, spike-timing dependent
plasticity, and synaptic redistribution [31], that have been
appealed to in order to regulate Hebbian learning, which is an
inherently positive-feedback process, since effective synapses
are strengthened, but ineffective synapses are weakened. The
advantage of pulse-gating in this context is the capability of
precisely controlling the destination and timing of informa-
tion propagation, and hence learning, in the circuit.

Connectivity and Pulse Sequence. The neural circuit con-
nectivity used for synaptic copy is shown in Fig. 1. One

FIG. 1. Synaptic copy circuit. M1 - M10 (green) denote neuronal
populations used for a short-term memory. M1, M3, etc. denote
populations that carry positive values of the input AR(2) process.
M2, M4, etc. carry the absolute values of negative values of the
input process (we use a zero mean process). C (pink) and K (ma-
genta) populations represent populations pre- and post-synaptic
to a set of Hebbian synapses. These synapses (light gray) are
used to learn the lagged-covariances from the input process. U
populations (blue) are used to coordinate a unit input value to
various neural populations. C′ (pink) and K′ (magenta) popu-
lations are used for synaptic copy. The synaptic weights learned
in the C and K populations are transferred to these populations.
Synaptic weights for dark gray arrows are fixed. Arrows show
synaptic direction.

sequence of a periodically repeating set of gating pulses for
the control of information propagation through the circuit is
shown in Fig. 2.

In the first phase of operation of the circuit, a stochas-
tic, autoregressive (AR(2)) process with covarying lags at
times 2T and 4T is input to neural populations M1 and M2.
Positive values (above the mean) are input to M1, and the
absolute values of negative values are input to M2. Although
the functionality is not explicitly used for these simulations,
both positive and negative values are necessary to recon-
struct an AR process from the covariance [28]. These values
are propagated through short-term memories, M3 through
M10.

The gating pulse sequence guides information through the
circuit. Initial pulses propagate information from the input
AR(2) process through the short-term memory populations
M1 through M10 (Fig. 2, purple box at upper left). The neu-
ral populations M3, M4, and M7, M8 are temporary storage
to allow neural currents to relax (and hence maintain accu-
rate graded information propagation) between repeated in-
formation transfers to each population. Once the memory
values are simultaneously in populations M1, M2, M5, M6,
and M9, M10, the values are gated simultaneously to both
sides, C and K, of a set of Hebbian synapses (Fig. 2, vertical
red box).

Initially, no information is read into the U populations,
and therefore, no further processing occurs. During this
phase of information processing, the covariance of the AR(2)
process is encoded in the synapses between populations C
and K of the neural circuit. This phase is meant to repre-
sent short-term memory encoding.

During the second phase of operation, the input process
continues to be read into short-term memory. For this cir-
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FIG. 2. Synaptic copy pulse sequence. Each row corresponds to
a gating pulse time series. Neuronal populations are denoted on
the left: M (short-term memory), C (input to Hebbian synapses
that learn AR(2) covariance), K (output from Hebbian synapses
that learn AR(2) covariance), U (populations that coordinate
unit inputs to various neural populations), C′ (input to Heb-
bian synapses to which AR(2) covariance is copied), and K′ (out-
put from Hebbian synapses to which AR(2) covariance is copied).
Purple boxes surround pulses that gate the AR(2) process through
the short-term memory. Red boxes surround the pulses used to
learn the AR(2) covariance. Yellow boxes gate Euclidean ba-
sis vectors to the C populations. Green boxes gate transformed
Euclidean vectors to the K populations. The cyan box denotes
pulses that gate a unit value through a subcircuit. Magenta boxes
simultaneously gate Euclidean basis vectors and their transforms
to C′ and K′, hence implementing synaptic copy.

cuit, this is necessary in order to maintain the amplitude
of the covariance encoded between the C and K popula-
tions. Otherwise, the leak would cause an exponential de-
crease in the covariance amplitude (although relative covari-
ances would still have the correct proportional values). In a
complete biological neural circuit, a means of stabilizing the
synapses, such as lengthening the relaxation time constant,
τW , would need to be invoked.

The copy is begun with the input of a unit pulse into the U1

population. This pulse circulates through the U populations
and is gated to the C1, C2, C3, and C4 populations succes-
sively (Fig. 2, yellow boxes). This corresponds to writing the
Euclidean basis vectors, (1, 0, 0, 0), (0, 1, 0, 0), etc., to the in-
put of the covariance. The unit pulse is then gated through
the C-K synapses (Fig. 2, green boxes) producing a trans-
formed unit vector in the K populations. The unit pulse then
gates the Euclidean basis vectors and the transformed vec-
tors simultaneously to both sides of the synapses connecting
the C ′ populations with the K ′ populations. Upon multiple
repeats of this process, Hebbian learning then encodes a copy
of the C-K synapses in the C ′-K ′ synapses. This phase of
operation is meant to represent consolidation of short-term
memory to long-term memory.

M

C

K

U

C'

K'

Time (units of transfer time T)

A B

C

0 190

Time (units of transfer time T)
0 19

Covariance Encoding
Single Sequence

Covariance Copy
Single Sequence

Covariance Encoding (Multiple Sequences)

D

Covariance Copy (Multiple Sequences)

FIG. 3. Synaptic copy graded sequences, encoding and copy
phases. Each row corresponds to a graded pulse time series. Neu-
ronal populations are denoted on the left: M , C, K, U , C′, and
K′. A) Graded information pulses during the encoding phase.
Here, the time series is read in and copied simultaneously to
pre- and post-synaptic populations C and K (resp.). During this
phase, the lagged covariance of the AR(2) time series is encoded
via Hebbian learning in synapses between these populations. B)
Graded information pulses during the copy phase. Here, the en-
coded covariance is maintained using the same pulses as in A).
Additionally, a unit pulse is written into the U populations, and
this unit pulse is used to write Euclidean basis vectors to the C
populations, the unit vectors are gated through the covariance en-
coding synapses, and their transforms result in the K populations.
The unit vectors and transforms are then written simultaneously
to pre- and post-synaptic populations C′ and K′ (resp.). Heb-
bian learning causes the covariance to be copied to these synapses.
Note that the graded pulses, of length T , here appear flat. This is
because the simulation was long, and only the peak of the pulse
was saved. See [26] for the canonical graded pulse shape.

RESULTS

In Fig. 3, we show the AR(2) process values gated through
the circuit for both encoding and copy phases. Fig. 3A
shows input during the encoding phase as it is gated through
the short-term memory populations, M , and simultaneously
gated to C and K populations, hence encoding the covari-
ance. Fig. 3B shows circuit operation after the copy phase
has begun. At this point, the unit pulse may be seen circu-
lating through the U populations, and the Euclidean basis
vectors and their transforms being generated in the C and K
populations, and their simultaneous propagation to C ′ and
K ′ populations leading to synaptic copy. Fig. 3C,D show
sets of repeated encoding and copy sequences.

In Fig. 4A, we show the graded information as it is repeat-
edly propagated through the circuit 20× τW times. Halfway
through the simulation, at time 10 × τW , the synaptic copy
phase is turned on. In Fig. 4B, we see the evolution of the
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Graded Information (Full Simulation, Both Phases)
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FIG. 4. Synaptic weight evolution. A) Graded pulses shown
for the full synaptic copy simulation. The encoding and copying
phases are evident in the lower half of the plot, where the onset
of the copy pulses may be seen. B) The synaptic weights shown
as a function of time. The weights encoding the covariance from
the stochastic time series input are seen transiently rising to their
asymptotic values first. Then, once the unit pulse has been in-
troduced and the copying phase has been initiated, the weights
encoding the copied covariance are seen rising to their asymp-
totic values. Note that the copied weights rise smoothly because
of the effective double filtering of the Hebbian learning evolution.
First from the initial encoding, then a second smoothing from
the copy. C, D, E) The synaptic weights shown as they evolve
within the connectivity matrix: before encoding, after encoding,
after copy. Note that the copied synapses both in panel E) and in
panel B) have been normalized by an overall multiplicative scalar
that is induced by the differing effective leakages from the peri-
odic learning sequences (times between simultaneous copy to pre-
and post-synaptic populations).

encoding and copy synapses, with the encoding phase occur-
ring first, and the copy phase initiating after the encoded
synapses are stable. In Fig. 4C, D, E we show the synap-
tic connectivities (see Fig. 1) with the covariance matrices
initially, after encoding, and after copy (resp.).

DISCUSSION

The synaptic copy circuit that we have presented here has
an important feature that is remarkably similar to that seen
experimentally in measurements of memory consolidation
[8, 9, 12, 13], viz. nested, in-phase oscillations at multiple
frequencies. During memory consolidation, that is, during
the copy phase of our simulations, intermediate frequency

oscillations are used to generate transformed vectors from en-
coding synapses that are propagated to copy synapses. High
frequency oscillations are used to coordinate the transforma-
tion and propagation of information from one part of the
circuit to another. These are all nested within the base fre-
quency set by the overall sequence execution period of 19T .

We do not mean to imply that there is a direct mapping
between our circuit and memory consolidation circuits in the
brain. Our circuit is simply meant as an existence proof that
synaptic copy is possible in pulse-gated neural circuits. For
instance, the size of the effective synaptic matrix for this
process (proportional to 2n, where n is the length of input
dimension of the synaptic connectivity) determines the inter-
mediate frequencies and influences the low-frequency behav-
ior. However, the similarities are intriguing and the under-
lying concept, that the nature of the algorithm informs the
structure of oscillatory phenomena seen in the circuit, could
provide a way forward for reverse engineering the informa-
tion processing features of neural circuits from the details of
spectral measurements.

An important feature of this synaptic copy mechanism is
that it functions independently of how the information be-
ing copied was learned originally. This is important in that,
if there were such a dependence, for instance, in the mam-
malian brain, then one would not expect a canonical set of
frequencies to be involved in consolidation during NREM
sleep. Indeed, the frequency content would vary depending
on the day-to-day processes that the encoding system was
exposed to. In this example, one would need to re-generate
the AR process whose covariance was learned initially. This
would be impractical, particularly for a general purpose sys-
tem, such as the brain obviously has.

In addition to being a useful model for understanding how
memory is transferred between brain areas, pulse-gating and
the capability of synaptic copy within a neural circuit may be
useful in neuromorphic systems for which learning or commu-
nication is expensive, or for neuromorphic implementation of
machine learning structures such as neural Turing machines
[33]. For such circuits, it may be cheaper to temporarily en-
able (possibly expensive) learning only in specific regions of
a neuromorphic chip (or chips). This would allow synapses
to be copied to regions that, for instance, would be used for
inference, but not intensive learning, similarly to how TPUs
are used to make inferences that were learned on a GPU.

Finally, the synaptic copy circuit is an explicit solution to
the long-standing ‘weight transfer problem’ [34, 35] that has
hindered the implementation of biophysically realistic deep
neural networks [36].
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[4] G. Buzsáki, Z. Horváth, R. Urioste, J. Hetke, and K. Wise.
High-frequency network oscillation in the hippocampus. Sci-
ence, 256:1025–1027, 1992.

[5] S. M. Fogel and C. T. Smith. The function of the sleep spin-
dle: a physiological index of intelligence and a mechanism
for sleep-dependent memory consolidation. Neurosci Biobe-
hav Rev, 35(5):1154–1165, Apr 2011.

[6] M. Friedrich, I. Wilhelm, J. Born, and A.D. Friederici. Gener-
alization of word meanings during infant sleep. Nature Com-
munications, 6:6004, 2015.

[7] N. K. Logothetis, O. Eschenko, Y. Murayama, M. Augath,
T. Steudel, H. C. Evrard, M. Besserve, and A. Oeltermann.
Hippocampal-cortical interaction during periods of subcorti-
cal silence. Nature, 491(7425):547–553, Nov 2012.

[8] L. Marshall, H. Helgadottir, M. Molle, and J. Born. Boosting
slow oscillations during sleep potentiates memory. Nature,
444(7119):610–613, Nov 2006.

[9] H. V. Ngo, T. Martinetz, J. Born, and M. Molle. Auditory
closed-loop stimulation of the sleep slow oscillation enhances
memory. Neuron, 78(3):545–553, May 2013.

[10] T. Schreiner, M. Lehmann, and B. Rasch. Auditory feedback
blocks memory benefits of cueing during sleep. Nat Commun,
6:8729, Oct 2015.

[11] D. V. Wang, H. J. Yau, C. J. Broker, J. H. Tsou, A. Bonci,
and S. Ikemoto. Mesopontine median raphe regulates hip-
pocampal ripple oscillation and memory consolidation. Nat.
Neurosci., 18(5):728–735, May 2015.

[12] N. Maingret, G. Girardeau, R. Todorova, M. Goutierre, and
M. Zugaro. Hippocampo-cortical coupling mediates memory
consolidation during sleep. Nat. Neurosci., 19(7):959–964, 07
2016.

[13] C.-F.V. Latchoumane, H.-V.V. Ngo, J. Born, and Shin H.-S.
Thalamic spindles promote memory formation during sleep
through triple phase-locking of cortical, thalamic, and hip-
pocampal rhythms. Neuron, 95:424–435, 2017.

[14] R. Shadmehr and H. H. Holcomb. Neural correlates of mo-
tor memory consolidation. Science, 277(5327):821–825, Aug
1997.

[15] S. E. Petersen, H. van Mier, J. A. Fiez, and M. E. Raichle.
The effects of practice on the functional anatomy of task
performance. Proc. Natl. Acad. Sci. U.S.A., 95(3):853–860,

Feb 1998.
[16] T. Womelsdorf, J.M. Schoffelen, R. Oostenveld, W. Singer,

R. Desimone, A.K. Engel, and P. Fries. Modulation of neu-
ronal interactions through neuronal synchronization. Science,
316:1609–1612, 2007.

[17] L. Colgin, T. Denninger, M. Fyhn, T. Hafting, T. Bonnevie,
O. Jensen, M. Moser, and E. Moser. Frequency of gamma
oscillations routes flow of information in the hippocampus.
Nature, 462:75–78, 2009.

[18] M. Vinck, T. Womelsdorf, and P. Fries. Gamma-band syn-
chronization and information transmission. CRC Press, Boca
Raton, London, New York, 2013.

[19] J. Winson. Loss of hippocampal theta rhythm results in
spatial memory deficit in the rat. Science, 201:160–163, 1978.

[20] A.L. Markowska, D.S. Olton, and B. Givens. Cholinergic
manipulations in the medial septal area: Age-related effects
on working memory and hippocampal electrophysiology. J.
Neurosci., 15:2063–2073, 1995.

[21] M. Abeles. Role of the cortical neuron: Integrator or coinci-
dence detector? Isr. J. Med. Sci., 18:83–92, 1982.

[22] E. Salinas and T.J. Sejnowski. Correlated neuronal activity
and the flow of neural information. Nat. Rev. Neurosci., 2:
539–550, 2001.

[23] T. P. Vogels and L. F. Abbott. Signal propagation and logic
gating in networks of integrate-and-fire neurons. J Neurosci,
25:10786–10795, 2005.

[24] A. Kumar, S. Rotter, and A. Aertsen. Spiking activity prop-
agation in neuronal networks: Reconciling different perspec-
tives on neural coding. Nat. Rev. Neurosci., 11:615–627,
2010.

[25] T. P. Vogels and L. F. Abbott. Gating multiple signals
through detailed balance of excitation and inhibition in spik-
ing networks. Nat. Neurosci., 12(4):483–491, Apr 2009.

[26] A.T. Sornborger, Z. Wang, and L. Tao. A mechanism for
graded, dynamically routable current propagation in pulse-
gated synfire chains and implications for information coding.
J. Comput. Neurosci., August 2015. doi:10.1007/s10827-015-
0570-8.

[27] Z. Wang, A.T. Sornborger, and L. Tao. Graded, dy-
namically routable information processing with synfire-
gated synfire chains. PLoS Comp Biol, 12:6, 2016. doi:
10.1371/journal.pcbi.1004979.

[28] Y. Shao, A.T. Sornborger, and L. Tao. A pulse-gated,
predictive neural circuit. Proceedings of the 50th Asilomar
Conference on Signals, Systems and Computers, 2016. doi:
10.1109/ACSSC.2016.7869530.

[29] Z.C. Xiao, J.W. Zhang, A.T. Sornborger, and L. Tao. Cusps
enable line attractors for neural computation. Phys. Rev. E,
96:052308, 2017. doi:10.1109/ACSSC.2016.7869530.

[30] Z.C. Xiao, B.X. Wang, A.T. Sornborger, and L. Tao. Mutual
information and information gating in synfire chains. En-
tropy, 20:102, 2018. doi:10.3390/e20020102.

[31] L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming
the beast. Nat. Neurosci., 3 Suppl:1178–1183, Nov 2000.

[32] B.A. Olshausen and D.J. Field. Sparse coding of sensory
inputs. Curr. Opinion in Neurobiol., 14:481–487, 2004.

[33] A. Graves, G. Wayne, and I. Danihelka. Neural Turing ma-
chines. ArXiv:1410.5401, Oct 2014.

[34] S. Grossberg. Competitive learning: from interactive activa-
tion to adaptive resonance. Cognitive Science, 1:23–63, 1987.

[35] F. Crick. The recent excitement about neural networks. Na-
ture, 337:129–132, 1989.

[36] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Aker-
man. Random synaptic feedback weights support error back-
propagation for deep learning. Nat Commun, 7:13276, Nov

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351114doi: bioRxiv preprint 

https://doi.org/10.1101/351114
http://creativecommons.org/licenses/by-nc-nd/4.0/


6
2016.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351114doi: bioRxiv preprint 

https://doi.org/10.1101/351114
http://creativecommons.org/licenses/by-nc-nd/4.0/

