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Abstract 

 

Interest in real-time fMRI neurofeedback has grown exponentially over the past few years, both 

for use as a basic science research tool, and as part of the search for novel clinical interventions 

for neurological and psychiatric illnesses. In order to expand the range of questions which can 

be addressed with this tool however, new neurofeedback methods must be developed, going 

beyond feedback of activations in a single region. These new methods, several of which have 

already been proposed, are by their nature complex, involving many possible parameters. Here 

we suggest a framework for evaluating and optimizing algorithms for use in a real-time setting, 

before beginning the neurofeedback experiment, by offline simulations of algorithm output 

using a previously collected dataset. We demonstrate the application of this framework on the 

instantaneous proxy for correlations which we developed for training connectivity between 

different network nodes, identify the optimal parameters for use with this algorithm, and 

compare it to more traditional correlation methods. We also examine the effects of advanced 

imaging techniques, such as multi-echo acquisition, and the integration of these into the real-

time processing stream. 
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Introduction 

 

The field of real-time fMRI based neurofeedback is growing rapidly, prompting the equally rapid 

development of new methods and algorithms designed to make this tool ever more flexible (1-

6). A particularly interesting new method is connectivity-based neurofeedback, in which the goal 

is to feedback correlations between different brain regions, rather than the activity levels in a 

single region. From a basic science perspective, this approach is particularly appealing because it 

opens up an entirely new space of potential targets for neurofeedback, and moves away from 

the obvious over-simplification of a single brain region working in isolation. It allows us to 

investigate networks, and how interactions within and between networks affect behavior (7). 

 

This approach to neurofeedback also holds great promise from a clinical perspective, as aberrant 

connectivity has been demonstrated in many neuropathologies, and is often the network 

characteristic most well correlated with symptom severity. In depression, studies have shown 

altered thalamo-cortical correlations (8), decreased functional connectivity within the reward 

network (9), and decreased cortico-cortico correlations (10). Aberrant connectivity has also been 

implicated in schizophrenia (11-14), ADHD (15, 16) and Autism Spectrum Disorders (17-20), 

among others. 

 

However, there are several significant hurdles for carrying out real-time fMRI connectivity-based 

(or correlation-based) neurofeedback. The first stems from the inherently slow nature of the 

BOLD signal. This is a limitation above and beyond the slow acquisition rate, and is far more 

fundamental in that while the slow acquisition rate can be improved upon, the Hemodynamic 

Response Function (HRF) cannot be bypassed. The HRF not only imposes a delay between the 

neural event and the feedback, but it also limits the effective acquisition rate, as any data 

acquired with a TR of <1s will have substantial autocorrelations between neighboring time points 

(21). Secondly, the real-time fMRI signal is noisy, and only a limited set of preprocessing steps 

can be carried out in real-time. Thirdly, global signal fluctuations, comprised both of global 

artifacts such as motion and physiological noise, as well as real global signal, are prominent in 
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fMRI data (22-25). These global fluctuations must be accounted for, to ensure that the correlation 

being reinforced is specific to the selected targets, rather than a global event. 

 

In order to overcome these difficulties, we developed an instantaneous proxy for correlations, 

described in (26), to be used for correlation-based training. Unlike the block design or sliding 

window based correlational methods that have mostly been used previously for providing 

correlation-based feedback (27-29), this method allows for far more feedback events (relative to 

block design), and for much faster, less history-dependent feedback (relative to sliding windows). 

However, the development of this method raised many additional questions, most importantly 

relating to the validation and optimization of the chosen algorithm. Neurofeedback experiments 

are often lengthy and expensive, making it impractical to run several pilot studies to evaluate 

different potential algorithms. It is therefore important to assess the quality of correlational-

based methods / proxies, or indeed any other proposed algorithm, by offline simulations, prior 

to beginning any new neurofeedback experiment. Offline simulations (run on previously 

collected data), cannot of course be used to determine which algorithm or method leads to 

better or more robust learning. However, they can be used to compare the algorithm output to 

the “gold standard” calculations obtained by means of offline complex preprocessing of full-

series data (referred to in the rest of this manuscript as “fully processed”). This allows  estimation 

of the effects of noise and timing present in the real-time signal. In this manner, previously 

acquired resting data can be used to optimize neurofeedback parameters such as target size, 

number of target regions, and their location, among other things. 

 

We propose here a general framework for offline evaluation and optimization of candidate 

algorithms which can be used for any neurofeedback implementation, by using previously 

collected resting state data. In this framework, both the fully preprocessed data (i.e. the gold 

standard of offline processing, using the full dataset), and minimally preprocessed data, meaning 

data which is preprocessed only to the level that would be available to the real-time algorithm 

(assuming that the full time series is not available in a real-time environment) are run through 

the real-time algorithm, simulating the “real-time” algorithm output. During the evaluation 
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phase, the algorithm output is compared to the relevant gold standard calculation carried out on 

the offline, full-series, fully processed data (Figure 1). This is done for both the fully processed 

data, to assess how the algorithm compares with full-series data, and with the minimally 

processed data, to assess how the algorithm fares given the noise levels in the real-time data.  

 

 

Figure 1 – Framework for 

evaluation of candidate algorithms 

Schema for evaluating potential 
real-time algorithms and optimizing 
their parameters using previously 
collected data. Raw data are 
processed in two processing 
streams, to output both fully 
processed data, which are the 
cleanest signals we can achieve, and 
minimally processed data, which 
represent the data processing steps 
which can be done online in real-
time, and which the algorithm will 
have access to in a true real-time 
environment. Data from both 
processing streams are run through 
the algorithm, which goes through 
the same calculations it would 
perform in a real-time experiment. 
This results in two outputs, for each 
of the processing streams. The full-
series, fully processed data is also 
run through the “gold standard” 
calculation which would have been 
carried out offline, post-hoc. The 
output of this “gold standard” 
calculation and the algorithm 
outputs are then compared. 
Different algorithm parameters can 
then be evaluated, to uncover the 
optimal parameters in terms of 
correspondence to the gold 
standard calculation. 
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The gold standard calculation which the algorithm output is compared to can vary according to 

the goal of the training. We demonstrate the application of this framework on the two-point 

algorithm described in (26) and adapted for Figure 2, and explain how the many possible 

parameters are optimized. We also use this framework to compare the two-point method with 

more traditional correlation methods. Finally, we draw some general conclusions about real-time 

fMRI data, and optimization of this signal, for instance using multi-echo acquisition. 

 

 
Figure 2 – Two point algorithm 

Each TR, the decision whether a feedback event occurs is made based on the change in signal from the previous time 
point (t-1) to the current time point (t) in the three ROIs (two targets and one control). Target locations are 
illustrations, not the targets used in the analysis here. A feedback event occurs if the direction of change in the two 
targets is the same, and opposite from the direction of change in the control ROI. Figure reproduced with minor 
changes from (26).  
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Materials and Methods 

 

Participants: 

For the dataset used in these analyses, 34 typically developing young adults (20 female 14 male, 

mean age 23.4), with no history of psychiatric, neurological illness or other medical condition 

which could compromise cognitive function, were recruited. Participants were all right-handed, 

and all had normal or corrected to normal vision. Participants were all compensated for their 

participation, and gave written informed consent. The experiment was approved by the NIMH 

Institutional Review Board (protocol 10-M-0027, clinical trial number NCT01031407). 

 

Functional scans: 

All participants completed two 9-minute rest scans, for which they were instructed to lay still, 

not fall asleep, and fixate on the black fixation cross on a blank grey screen. Following the rest 

scans, participants completed two face/scene localizer scans, each 8 minutes twenty seconds 

long. The localizer scans were comprised of an initial 20 second blank grey screen with a fixation 

cross, and then sixteen 20-second long presentation blocks, each followed by 10 seconds of a 

blank grey screen with a fixation cross. During the presentation blocks, 20 pictures of either faces 

(face blocks) or scenes (scene blocks) were presented (stimulus duration = 200ms, inter-stimulus 

interval=700ms), with one or two of the images repeating in immediate succession in each block. 

To ensure attention to the images, subjects were given a repetition detection (1-back) task, and 

were instructed to search for repetitions, and to press a button on the response box whenever 

one occurred. There were 8 face blocks and 8 scene blocks in each of the localizer runs, and 

participants viewed 320 exemplars from each category, with each exemplar repeating no more 

than twice in each run.  

 

Imaging data collection and MRI parameters: 

All scans were collected at the Functional Magnetic Resonance Imaging Core Facility on a 32 

channel coil GE 3T (GE MR-750 3.0T) magnet and receive-only head coil, with online slice time 

correction and motion correction. The scans included a 5 minute structural scan (MPRAGE) for 
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anatomical co-registration, which had the following parameters: TE = 2.7, Flip Angle = 12, 

Bandwidth = 244.141, FOV = 30 (256 x 256), Slice Thickness = 1.2, axial slices. EPI was conducted 

with the following parameters: TR = 2s, Voxel size 3*3*3, Flip Angle: 60, Multi-echo slice 

acquisition with three echoes, TE1 = 17.5ms, TE2 = 35.3ms, TE3=53.1ms, Matrix = 72x72, Slices: 

28. 270 TRs were collected for the rest scans, and 250 TRs for the localizer scans. All scans used 

an accelerated acquisition (GE's ASSET) with a factor of 2 in order to prevent gradient 

overheating. 

 

Definition of Regions of Interest (ROIs): 

The localizer data was used to define individual face and scene ROIs for each participant. A 

standard General Linear Model was used with a 20 second long boxcar function, coinciding with 

the presentation blocks. This was convolved with a canonical hemodynamic response function, 

and deconvolved using the AFNI (Analysis of Functional Neuro-Images, (30)) function 

3dDeconvolve. Face and scene selective ROIs were found using the face>scene contrast, or the 

scene>faces contrasts respectively. The functional and anatomical datasets were co-registered 

using AFNI, and then transformed to Talairach space. All ROIs, for each individual participant, 

were defined in Talairach space. In the faces>scenes contrast, we identified the center of mass 

for bilateral fusiform face area (FFA), occipital face area (OFA) and amygdala, as well as the right 

Anterior Temporal Lobe (ATL) face patch. In the scenes>faces contrast, we identified the center 

of mass of the bilateral Parahippocampal place area (PPA), and the bilateral dorsal scene patches. 

We then defined a spherical ROI of 4mm radius around each of these 11 centers of mass, to 

obtain 11 individually localized visual ROIs. These visual ROIs were used as the targets in all 

subsequent analyses, with all possible combinations of ROI pairs producing 55 unique target pairs 

((11*11-11)/2 = 55). To define the control ROI, which was selected for being uncorrelated to the 

visual ROIs, we found the voxels least correlated to the visual ROIs across the entire group (N=34), 

and then defined a 4mm radius spherical ROI as the control. The control ROI was the same for all 

participants, for all target pairs. 

 

Real-time fMRI algorithm: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/351072doi: bioRxiv preprint 

https://doi.org/10.1101/351072
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

The basic real-time algorithm used in these simulations is the same as that described in (26). 

Unless explicitly mentioned in the text, the algorithm gets input of the mean signal from two 

target ROIs and one control ROI. The objective is to selectively increase connectivity between the 

target ROIs, while simultaneously decoupling the targets from the control ROI, by providing 

feedback whenever this desired brain state is achieved. Each TR, the algorithm makes a decision 

whether feedback should be given (constituting a feedback event) based on whether or not the 

trend of the ROI mean signal has the same sign (increasing /decreasing) for the target ROIs, and 

the opposite sign for the control, between two time points, the current TR and the previous one. 

Mathematically, a positive feedback event for TR=t will happen if and only if: 

 
!"($%&'()*($+,))).!"($%&'()*($+,)))
!"($%&'()/($+,))).!"($%&'()/($+,).*))

 > 0    &    !"($%&'()*($+,))).!"($%&'()*($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0 

(ms = mean signal across all voxels in a given ROI)   

 

If these two conditions are not met, then no feedback event occurs (see also Figure 2). 

This decoupling of the targets from the control ROI serves a dual purpose – first, it allows for the 

more selective reinforcement of target-target correlations, while avoiding feedback for global 

changes in activation. Such global fluctuations would be observed as changes in the momentary 

correlation measured by the algorithm between the two targets, but would also be seen as 

increased momentary correlation of the targets with control, i.e. the trend in all three ROIs would 

be in the same direction, and therefore no feedback would be given. It can also be useful to train 

more complex networks, where there is under-connectivity between some nodes and over-

connectivity with others, as was the case in the original publication. 

  

Our algorithm can also easily be extended to consider more than two adjacent time points. For 

example, the manipulation should the algorithm be using three time points for the decision, 

would look like this:  

 
!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()/($+,))).!"($%&'()/($+,).*))

 > 0    &    !"($%&'()*($+,))).!"($%&'()*($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0 
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&   !"($%&'()*($+,).*)).!"($%&'()*($+,)./))
!"($%&'()/($+,).*)).!"($%&'()/($+,)./))

 > 0   &   !"($%&'()*($+,).*)).!"($%&'()*($+,)./))
!"(012)&13($+,).*)).!"(012)&13($+,)./))

 < 0 

 

This means that the trend is required to be the same for the targets and opposite for the control 

both between the current TR and the previous one, and between the previous TR and the one 

before, for a positive feedback event to occur.  

 

Similarly, the algorithm can be modified to accommodate the modulation of connectivity 

between more than two ROIs (or networks). For example, if interested in modulating the 

connectivity between three target ROIs, then a positive feedback event should only occur if the 

trend in all three targets has the same sign, and opposite from control; as in:  

 
!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()/($+,))).!"($%&'()/($+,).*))

 > 0    &  !"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()4($+,))).!"($%&'()4($+,).*))

 > 0                  &     

!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0 

 

For four targets, the algorithm was more lenient, and required that only three of the four targets 

move in the same direction, for any given TR. This leniency was added because using the stricter 

requirement for all targets having the same trend resulted in very few feedback events. This 

configuration created 4 possible conditions for feedback, with three conditions in each one: 

 
!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()/($+,))).!"($%&'()/($+,).*))

 > 0    &  !"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()4($+,))).!"($%&'()4($+,).*))

 > 0    &   

!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0      (or) 

!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()/($+,))).!"($%&'()/($+,).*))

 > 0    &  !"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()5($+,))).!"($%&'()5($+,).*))

 > 0    &   

!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0      (or) 

!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()4($+,))).!"($%&'()4($+,).*))

 > 0    &  !"($%&'()*($+,))).!"($%&'()*($+,).*))
!"($%&'()5($+,))).!"($%&'()5($+,).*))

 > 0    &   

!"($%&'()*($+,))).!"($%&'()*($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0      (or) 
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!"($%&'()/($+,))).!"($%&'()/($+,).*))
!"($%&'()4($+,))).!"($%&'()4($+,).*))

 > 0    &  !"($%&'()/($+,))).!"($%&'()/($+,).*))
!"($%&'()5($+,))).!"($%&'()5($+,).*))

 > 0    &   

!"($%&'()/($+,))).!"($%&'()/($+,).*))
!"(012)&13($+,))).!"(012)&13($+,).*))

 < 0      (or) 

(ms = mean signal)   

 

Another parameter to be manipulated and evaluated here, is ROI size. For our evaluation of the 

effect of ROI size, the algorithm remained the same as the basic algorithm, but the input changed 

so that it came from larger ROIs (defined using 6mm / 8mm / 10mm radius spheres centered 

around the same voxels identified as the center of mass for each region). The same is true for the 

evaluation of linear weighted combination of multi-echo data. In this case, instead of simply using 

as input to the neurofeedback algorithm the time series from the second echo (TE=35.3ms), we 

used as input the linear weighted combination of all echoes according to (31, 32). Such linear 

combination scheme, referred to as “optimally combined” (OC) in the rest of the manuscript, 

creates a new time series optimized for functional contrast (31, 32). 

 

fMRI offline data preprocessing: 

Post-hoc signal preprocessing was conducted in AFNI. For the fully processed data, which was 

processed using the gold standard for offline preprocessing, the first four EPI volumes from each 

run were removed to ensure remaining volumes were at magnetization steady state, and 

remaining large transients were removed through a squashing function (AFNI's 3dDespike). 

Volumes were slice-time corrected and motion parameters were estimated with rigid body 

transformations (through AFNI’s 3dVolreg function). Volumes were co-registered to the 

anatomical scan. The data were then entered to a Multi-Echo ICA analysis (ME-ICA), as described 

in (33), to further remove nuisance signals (e.g., hardware-induced artifacts, residual head 

motion). Briefly, this procedure removes non-BOLD fluctuations (noise) present in the data based 

on the fact that BOLD and non-BOLD fluctuations differ in their properties across echo times, 

with signal from BOLD sources increasing linearly across echo times, and signal from non-BOLD 

sources remaining unchanged across echoes. 
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For the minimally processed data, the first four EPI volumes were also discarded, and then the 

volumes from all three echoes were corrected for motion using AFNI’s 3dVolreg function. 

Volumes were co-registered to the anatomical scan. Unless otherwise stated, the minimally 

processed data used for the simulations refers to the second echo, which is similar in terms of 

echo time to a standard single echo acquisition (TE=35.3ms). An additional optional step, was to 

linearly combine the multi-echo data to optimize for functional contrast. The weights used for 

this purpose are given by 

 

𝑤7,9 = 𝑇𝐸7 ∗ 𝑒
.$?@
$A∗B  

 
where i = 1..3 refers to echo, v refers to voxel, and  𝑇/∗B  corresponds to voxel-wise estimates 

of 𝑇/∗	obtained via a log-linear firs to the multi-echo dataset. This data, comprised of the weighted 

average of the three echoes, was then used for all the simulations with optimally combined (OC) 

minimally processed data.  

 

Data analysis: 

All data were analyzed with in-house software written in Matlab, as well as the AFNI software 

package (30). Our “gold standard” calculation was designed to capture the same network being 

trained by the algorithm, so is defined as the correlation between the two targets, minus the 

average target-control correlation. It was computed by subtracting the average correlation of the 

two target/control pairs, from the target/target correlation:   

𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡1,𝑇𝑎𝑟𝑔𝑒𝑡2) −
1
2 (𝑐𝑜𝑟𝑟

(𝑇𝑎𝑟𝑔𝑒𝑡1,𝐶𝑜𝑛𝑡𝑟𝑜𝑙) + 	𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡2,𝐶𝑜𝑛𝑡𝑟𝑜𝑙)) 

For the three-target and four-targets implementation of the algorithm, the composite measure 

was updated to reflect the greater number of targets. For three targets, it was defined thus: 

 

𝑚𝑒𝑎𝑛(𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡1,𝑇𝑎𝑟𝑔𝑒𝑡2), 𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡1, 𝑇𝑎𝑟𝑔𝑒𝑡3), 𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡2, 𝑇𝑎𝑟𝑔𝑒𝑡3))

− 𝑚𝑒𝑎𝑛(𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡1, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙), 𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡2,𝐶𝑜𝑛𝑡𝑟𝑜𝑙), 𝑐𝑜𝑟𝑟(𝑇𝑎𝑟𝑔𝑒𝑡3,𝐶𝑜𝑛𝑡𝑟𝑜𝑙)) 
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For four targets, it was the same, the average of all the pairs within the four targets, minus the 

average of the target-control pairs.  

 

Temporal Signal-to-Noise Ratio (tSNR) 

The quality of each individual dataset was characterized in terms of its temporal Signal-to-Noise 

Ratio (tSNR). This metric is defined and computed on a voxel-wise basis as the ratio of the mean 

steady-state signal of the fMRI time-series to the voxel temporal standard deviation (34). We 

then averaged the tSNR across all voxels belonging to the two targets to get per-ROI tSNR 

values.  

 

Permutation Tests for Statistical Thresholding  

All p-values were computed through permutation tests, randomly permuting the appropriate 

variables for 10,000 iterations. For instance, to calculate the p-value of the difference between 

two time points and three time points across the 55 target pairs, the real difference of the 

average for all 55 target pairs between the two-point and the three-point methods was 

compared to the distribution of a permutation test in which the two-point and three-point 

labels were permuted for each pair before averaging, and then the difference of the average of 

the permuted groups was calculated. This was repeated for 10,000 iterations. 

 

 

Results 

 

First, we used the proposed evaluation framework to further validate the two-point method 

presented in (26), Figure 2 figure supplement 2, and test its generalizability. To that end, we 

tested the algorithm under different parameter configurations –  number of time-points, number 

of ROIs, ROI size, using online optimal combination of echoes (OC) –  on a different dataset than 

that used in the original publication. Apart from allowing us to validate the findings from (26) on 

an additional dataset, this dataset also had the advantage of having more participants (N=34); 

multiple individual functional Regions of Interest (ROIs) defined through a separate visual 
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face/scene localizer; and being  a multi-echo dataset it gave us the opportunity to test the effects 

of using the optimal combination of the echoes as explained in (33) as an additional pre-

processing step in real-time.  

 

Briefly, the algorithm has two possible outputs, reward / no reward, and acts as an instantaneous 

proxy for correlations between the defined target ROIs, and control ROI, using only two time 

points. Feedback events occur when the instantaneous change in the time-series (over the 

previous TR)  is in the same direction for the target ROIs, and opposite in the control ROI ( see 

Materials and Methods, Figure 2). 

 

The goal of this proxy is to train relative correlations between different brain regions, 

strengthening the correlations between the targets, while simultaneously decoupling them from 

the control region. Our “gold standard” calculation should capture the same network being 

trained, so is defined as the correlation between the two targets, minus the average target-

control correlation. This is calculated over the full time-series, using the fully processed data. We 

named this measure the composite difference correlation measure (hence referred to as the 

composite measure) (see Materials and Methods). The evaluation of the real-time algorithm is 

through its correspondence to this composite measure (Figure 1). To separate the effects of the 

online optimal combination of echoes, we first fed the algorithm data from the second echo only, 

which is comparable to single-echo data given its proximity to the average T2* of grey matter at 

3T. Unless otherwise stated, results are based on this second echo.  

 

Number of time points 

 

When designing an instantaneous proxy for correlation-based training, there are many factors to 

consider. While eventually we would want to test the performance of the algorithm on the 

minimally processed data that is actually available in the real-time setting, we must first begin by 

assessing how similar this instantaneous proxy is to the traditional, full-series Pearson’s 
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correlations, and how that correspondence can be optimized. We began therefore by running 

the fully processed data through various implementations of the algorithm.  

 

We first tested whether using more than two consecutive time points for the feedback would 

increase reliability in terms of correlation to the full-series data. To this end, we compared the 

algorithm output using two of our visual face targets (right fusiform face area, FFA and right 

occipital face area, OFA) and a control region identified as being uncorrelated to the targets (left 

inferior parietal lobule, IPL), for different configurations in terms of the number of time points 

the algorithm takes into consideration.  

We first required the trend in the targets between two time points to be in the same direction 

and opposite from control, as in the original publication (Materials and Methods). This was 

calculated for each subject, for each of the two rest runs, and the total number of simulated 

feedback events was counted for each run. This was then compared with the composite measure 

described above. These data are shown in Figure 3a.  

We then ran another set of simulations, in which the algorithm required the trend in the targets 

to be the same over three time points (see Materials and Methods). Once again, the number of 

simulated feedback events was recorded for each run, and compared with the composite 

measure (see Figure 3b).  

 

As can be seen, the correlation of the two-point measure to the full-series composite measure is 

higher than that of the three-point method (r=0.65 vs. r=0.59). Using four time points lowered 

the correlations even further (r=0.34). 

 

We next carried out the same analysis, using other target pairs. There were 11 visual targets, 

comprised of seven face regions and four scene related regions (see Materials and Methods). All 

regions were individually localized. While the control region was kept constant, as it was 

uncorrelated to all these visual areas, all 55 possible target pair combinations were examined. 

For each pair of targets, we calculated simulated feedback events using both the two-point 

measure and the three-point measure across all 34 subjects and both rest scans, and then 
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calculated the correlation of the number of simulated feedback events to the composite measure. 

The data for all the possible pairs is shown in Figure 3c, with the correlation values of the two-

point and three-point algorithm outputs to the composite measure constituting the values along 

the X and Y axes respectively. Note that for almost all target pairs (49/55), the two-point method 

was better correlated to the composite measure than the three-point method, with 49 points 

falling below the identity line, and this difference was statistically significant  (p<10-4, 

permutation test). 

 
Figure 3 – Number of time points 

(a) The correlation between the output of the two-point algorithm on the fully processed data, with right FFA and 
right OFA as the targets on the x-axis (each dot represents the number of simulated feedback events for one 
participant, for one rest scan, 34 participants x 2 rest scans), and the composite measure (correlation of right FFA to 
right OFA, minus the average correlation of FFA to the control region and OFA to the control region) for each 
participant, for each rest scan. (b) Same as (a), but x-axis now shows the output of the algorithm using three time 
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points instead of two (three-point algorithm). (c) The value for each of the 55 possible target pairs of the correlation 
between the two-point algorithm output and the composite measure (an example of which was shown in (a)), and 
the correlation between the three-point algorithm output and the composite measure (and example of which was 
shown in (b)). The right FFA/OFA pair shown in (a) and (b) is marked in red. Black line is the identity line, note that 
almost all dots (representing almost all target pairs) are to the right of the line, indicating the correlations are higher 
for the two-point algorithm. (d) Same as (c), but using the minimally processed data as input to the two-point and 
three-point algorithms right FFA/OFA target pair marked in red. Note that again correlation is higher for the two-
point method for most target pairs.  
 

We then carried out the same analysis on the minimally pre-processed data, using only the pre-

processing steps that would be available in our real-time scenario (3D motion correction, 

functional-anatomical co-registration). The noise levels in this analysis are higher because of the 

lack of sufficient pre-processing, so correlations are overall lower, but similarly to before, even 

with the increased noise, the two-point method still out-performed the three-point method for 

73 percent of potential target pairs (40/55 pairs, Figure 3d). This difference was also assessed 

statistically through a permutation test, and was found significant (p<10-4). 

 

ROI size 

 

Another important parameter to consider is ROI size. However, the optimal size for ROIs can be 

difficult to determine. Larger ROIs entail more averaging, which is beneficial for thermal noise 

reduction, but are also more likely to sample outside of the functionally relevant cortical region 

that was targeted. To determine the effects of ROI size, we first examined its influence on 

correlations between target regions, by measuring the full-series Pearson’s correlations between 

all possible 55 target pairs, in both the fully processed data (Figure 4a) and the minimally 

processed data (Figure 4b). In both cases, there was a linear increase in correlations between 

ROIs as ROI size increased, with differences between 4mm radius, 6mm radius, 8mm radius and 

10mm radius ROIs all being significant (Figure 4c, p<10-4, permutation test). However, as our 

algorithm involves the interaction between the correlation of the targets with the correlation of 

the targets to the control (with reward given when the target regions are congruent but not 

congruent with the control region), an overall increase in correlation strength does not 

necessarily translate to better algorithm performance. We therefore next examined the effect of 
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ROI size on the performance of the algorithm in the same manner as described above, by 

calculating the correlation of the simulated algorithm output for all 55 possible target pairs, using 

both the fully processed and the minimally processed data, to the full-series, fully processed 

composite measure (Figure 4d-f). For individual target pairs (Figure 4d-e), ROI size had quite a 

disparate effect, with larger ROIs increasing algorithm performance for some pairs, and 

decreasing it for others. When considering the average change across all possible target pairs, 

there was a significant increase in the correlation of algorithm output to the composite measure 

for the fully processed data between ROIs of size 10mm radius vs. all other ROI sizes (p<10-4, 

permutation test). The differences between all other ROI sizes were not statistically significant. 

For the minimally processed data, Only the 8mm radius ROIs were significantly better than others 

(p<10-4 for the difference between 8mm and the 4mm and 10mm ROIs, p=0.002 for the 

difference between 8mm and the 6mm ROIs, permutation test). 

 

 
 

Figure 4 – ROI size 

Target-target full-series correlations for all 55 possible target pairs using 4mm radius ROIs (blue), 6mm radius ROIs 
(orange), 8mm radius ROIs (yellow) and 10mm radius ROIs (purple) on the fully processed data (a) and the minimally 
processed data (b). Target pairs sorted by target-target correlations of the 4mm ROIs. (c) Average target-target 
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correlations for different ROI sizes for the fully processed data (left) and the minimally processed data (right). Error 
bar indicates standard error of the mean (SEM), colors same as (a) Correlations are significantly different between 
all the ROI sizes. (d) and (e) show the correspondence of the two-point algorithm to the composite measure for ROIs 
of size 4, 6, 8, and 10 mm radius for the fully processed and the minimally processed data, respectively. Target pairs 
sorted according to the 4mm ROI correlations. (f) Summary of (d) and (e) – average correlations of the algorithm to 
the composite measure for each of the ROI sizes, for the fully processed data (left) and the minimally processed data 
(right). Colors same as (a), error bar indicates SEM. Correlations are only significantly different between the 10mm 
ROI and the rest for the fully processed data, and between the 8mm ROI and the rest for the minimally processed 
data. 
 

 

Number of targets 

 

We next tested whether adding additional targets to the algorithm would improve its 

correspondence to the composite measure. Two potential algorithm configurations were tested, 

using either three targets or four instead of two (see Materials and Methods). Again, we 

simulated the algorithm output for both the fully processed and the minimally processed data, 

and the results are shown in Figure 5. For each of the 55 possible target pairs, we plotted the 

correspondence to the composite measure for that target pair in red, with the boxplot showing 

the spread of correlations to the composite measure of all the possible combinations of 3 (top) 

and 4 (bottom) targets which include that pair. For the fully processed data, adding an additional 

target resulted in reduced correspondence to the composite measure for all possible target pairs 

/ triads (Figure 5, top left). Adding two additional targets was also detrimental for all but 8 

potential 4-target combinations (out of 3960 possible combinations) (Figure 5, bottom left). For 

the minimally processed data, adding targets had a more mixed effect, but additional targets only 

benefitted target pairs whose correspondence to the composite measure (without additional 

targets) was low to begin with (below r=0.23 for three targets, below r=0.3 for four targets). This 

happened in 13% of potential 3-target combinations, and 23% of potential 4-target combinations 

(Figure 5, right panels). 
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Figure 5 – Number of targets 

Top: for each target pair, comparing the correlation of the two-point algorithm to the composite measure using just 
these two targets (red dots) vs. all the possible correlations to the composite measure when adding a third target 
(box and whisker plots), for the fully processed data (left) and the minimally processed data (right). Bottom: same, 
but adding any other two targets to each possible target pair. Note that using just two targets gives better results, 
for all but the target pairs that perform very poorly to begin with. 
 

 

Optimally combined 

 

Finally, we examined the effect of the optimal combination of the three echoes, a procedure 

which can be done online and thus a level of processing that could be available to the real-time 

algorithm.  

As with the fully processed and the single-echo data, the OC data was sensitive to ROI size, with 

correlations between the 55 potential target pairs generally increasing with ROI size, but then 

declining when ROIs became too large (10mm, see Figure 6a-b). The differences between 4, 6, 

and 8mm ROIs were all significant (p<10-4, permutation test), whereas the 10mm ROIs had higher 
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target-target correlations than the 4 and 6mm ROIs (p<, p=0.02, respectively), but lower 

correlations than the 8mm ROIs (p=0.046). However, for the real-time algorithm correspondence 

to the composite measure, the 4mm ROIs fared significantly better than all others (p<10-4, 

permutation test, Figure 6d-e). The OC target-target correlations for 4mm ROIs were slightly but 

significantly greater than the single echo target-target correlations (mean difference = 0.014, 

p<10-4, Figure 6c). The difference between OC and single echo in the correspondence of the 

algorithm to the composite measure however (again for the 4mm radius ROIs), was more 

pronounced (mean difference = 0.11, p<10-4, Figure 6f). For larger ROI sizes however, single-echo 

ROIs did better than the OC in terms of algorithm performance (p<0.01).  

 

 
 

Figure 6 – Effects of optimally combining echoes 

(a) Target-target full-series correlations for all 55 possible target pairs using 4mm radius ROIs (blue), 6mm radius 
ROIs (orange), 8mm radius ROIs (yellow) and 10mm radius ROIs (purple) on the minimally processed data after 
optimal combination of the echoes (MP-OC). Target pairs sorted by target-target correlations of the 4mm ROIs. (b) 
Average target-target correlations for different ROI sizes for the MP-OC data. Error bar indicates standard error of 
the mean (SEM), colors same as (a). Correlations are significantly different between the 4mm, 6mm, and 8mm radius 
ROIs. 10mm radius ROI is significantly greater than the 4 and 6mm ROIs, but not the 8mm. (c) Comparing the target-
target correlations for the Minimally Processed Single Echo data (MP-SE) and the MP-OC data. There is a slight but 
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significant difference in favor of the MP-OC data. (d) Correspondence of the two-point algorithm on the MP-OC data 
to the composite measure for ROIs of size 4, 6, 8, and 10 mm radius. Target pairs sorted according to the 4mm ROI 
correlations. (e) Summary of (d) – average correlations of the algorithm to the composite measure for each of the 
ROI sizes, for the MP-OC data. Colors same as (a), error bar indicates SEM. Correlations are only significantly greater 
for the 4mm ROI compared to the others. (f) Comparing the correspondence of the algorithm to the composite 
measure for the MP-SE data and the MP-OC data. There is a significant difference in favor of the MP-OC data. 
 

Target identity 

 

Given the large degree of variance in algorithm performance for the different target pairs, we 

decided to test two possible hypotheses for the source of the at least a portion of that variance, 

the target-target correlations, and tSNR. 

Target-target correlations were found to explain a large degree of the variance. This was 

especially true for the fully processed data, for which the correlation between the full-series, 

target-target Pearson’s correlation of each target pair, and the correlation of the algorithm 

output using that target pair to the composite measure was r=0.81 (measured across the 55 pairs, 

i.e. the correlation between the target-target correlations. For the minimally processed, single 

echo data this was lower, r=0.48, and for the minimally processed, optimally combined data, the 

correlation between these two measures was  r=0.62. Correlation strength is influenced by the 

signal to noise ratio, as uncorrelated noise sitting on top of truly correlated signals can reduce 

the strength of correlation estimates. We therefore calculated the correlations between the 

target-target correlations for each target pair, and the average tSNR for all the voxels included in 

the two target ROIs for the fully processed and minimally processed data, with and without 

optimally combined echoes. The correlation of the tSNR to target-target correlations for the fully 

processed data was r=0.52, for the minimally processed data without optimally combined echoes 

r=0.66, and with optimally combined echoes r=0.61. This analysis suggested that although there 

is a significant correspondence between tSNR and target-target correlations at all levels of 

processing (p<10-4, permutation test), the cleaner the signal, the less the target-target 

correlations were affected by tSNR, therefore the variance in algorithm performance was 

potentially driven more by the target-target correlations irrespective of tSNR, than by tSNR itself. 

To test this, we calculated the partial correlations of the algorithm performance to target-target 
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correlations, while co-varying out tSNR. For the fully processed data this correlation remained 

high (r=0.74), while for the single echo minimally processed data the correlation dropped to 

r=0.22, and for the OC minimally processed data it dropped to r=0.39, confirming the above 

hypothesis. This data is summarized in Figure 7. 

 

 

 
 

Figure 7 – Explanation of variance 

(a) Correlation of the correspondence of the two-point algorithm to the composite measure for each of the 55 target 
pairs (x-axis), to the target-target correlations (y-axis), for the fully processed (FP) data (left), the MP-OC data (center) 
and the MP-SE data (right). (b) Blue bars show the same correlation measure as (a), between the algorithm to the 
composite measure, and the target-target correlations, across all possible pairs, for FP (left), MP-OC, (center) and 
MP-SE (left). Orange bars show the correlations of target-target correlations to tSNR, and yellow bars show the 
partial correlations of the algorithm correspondence with the composite measure, to target-target correlations, after 
factoring out tSNR. Note that as data becomes better processed, the correspondence of the algorithm to the 
composite measure becomes more dependent on target-target correlations, but less dependent on tSNR. 
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Comparing the algorithm to standard correlational approaches 

 

Given the drop in performance for the algorithm using the minimally processed data, we 

wondered how this noisier data would affect calculation of Pearson’s correlations, which are 

more standardly used in connectivity-based feedback, for instance in sliding window approaches. 

We tested how these more traditional correlational methods would work for our training goal, 

to reinforce the correlations between the targets, and simultaneously decouple them from 

control. This would be most similar to calculation of the composite measure on the real-time 

data. For this we chose the least noisy data which could be made available to the feedback 

algorithm in an actual real-time environment, namely the OC minimally processed data. There 

are multiple different ways of calculating sliding window correlations, using different numbers of 

time points, and different averaging functions. Instead of calculating a version of the composite 

measure on all of these possible parameter combinations, we decided to simply calculate the 

composite measure on the full-series OC minimally processed data for each of the 55 possible 

target pairs, to get a more general estimate of how correlations differ between the fully 

processed and the noisier minimally processed data. Using the full time-series for this analysis 

would give us an upper bound on how well correlated sliding-window based algorithms can be 

to the fully processed composite measure. For each target pair, we calculated the composite 

measure for the OC minimally processed data and the fully processed data, for both rest scans, 

for each of the 34 participants, and then calculated the correlation between these two measures. 

An example of this for the FFA and OFA targets is shown in Figure 8a. As with the correspondence 

of the two-point algorithm output to the fully processed composite correlations, there was a 

large degree of variance in how well the composite measure on the OC minimally processed data 

corresponded to the composite measure on the fully processed data for different target pairs. To 

compare standard correlations to our two-point algorithm performance, we calculated the 

correspondence of the two-point algorithm (on the OC minimally processed data) to the fully 

processed composite measure for our 55 target pairs (Figure 8b, X-axis), and compared it to the 

correspondence of the composite measure on the OC minimally processed data to the composite 

measure on the fully processed data (Figure 8b, Y-axis). As can be seen from the figure, these 
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were within the same range, though there were more target pairs for which the two-point 

algorithm was more highly correlated to the fully processed composite measure than the actual 

calculation of the composite measure on the OC minimally processed data. The difference 

between the two measures was significant (p=0.006, permutation test) 

 
 

Figure 8 – Comparing to more 

traditional correlation methods 

(a) Comparing the composite measure 
calculated using right FFA and OFA as the 
targets, on the Minimally Processed 
Optimally Combined data (MP-OC, x-
axis), and the fully processed data (FP, y-
axis). Each dot represents the value of 
the composite measure for one rest 
scan, for one participant, on the MP-OC 
data (x) and the FP data (y). (b) 
Comparing the performance of the two-
point algorithm for the MP-OC data 
(correlation of the algorithm to the 
composite measure, x-axis), with the 
correlation of the actual calculation of 
the composite measure on the MP-OC 
data with the composite measure 
calculated on the FP data (y-axis), for all 
possible target pairs. Example from (a) of 
the FFA and OFA pair plotted in red. Note 
that correlations are generally within the 
same range, and for most possible target 
pairs there is an advantage for the two-
point algorithm over just calculating the 
composite measure on the MP-OC data 
using the full time series. 
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Discussion 

 

With the development of real-time fMRI neurofeedback, new and more complex algorithms are 

emerging, algorithms which go beyond simple measurement of amplitude and perform non-

trivial calculations on the real-time signal. The framework suggested here aims to provide a 

method for more rigorously validating and optimizing these algorithms for best feedback results 

before putting them to use in an expensive real-time experiment, through offline testing using a 

previously collected dataset. This type of framework can benefit not only those seeking to do 

connectivity-based feedback, but will be useful for any feedback method in which there are 

parameters to be optimized, for instance MVPA classifiers or Dynamic Causal Modelling 

(comparing the results of the classifier on the fully processed vs. minimally processed data is an 

important sanity check, finding the optimal number of time points to feed into the classifier, 

optimal ROI size, etc.).  

 

The simulations carried out here, using various possible parameters for the two-point method 

(target identity, number of time points, ROI size, number of targets), had two primary objectives. 

The first, to validate and optimize our correlation proxy using ideal, fully processed data. This is 

a first step towards creating such a proxy, as the fully processed data is our ground truth for the 

state of correlations in the brain. Whatever algorithm we propose to act as a proxy for 

correlations, must first be shown to be valid on the cleanest signals we have. For this reason, we 

included the Multi-Echo ICA cleaning step in the fully processed data, as this has been shown to 

increase statistical power and effect size estimations (35, 36).  

 

The second step is validating and optimizing the algorithm on the minimally processed data, 

which is the data the algorithm will actually have access to in a real-time experiment. Though the 

algorithm performance (measured as the correlation of the algorithm output to the fully 

processed, full series composite measure) on the minimally processed data was predictably lower 

than on the fully processed data, reassuringly, the different parameters generally affected these 

correlations in much the same manner. Broadly speaking, it appeared that simpler was better. 
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Fewer time points and fewer targets were better (Figures 3, 5), and larger ROIs increased 

algorithm performance only when ROIs were so large that they were unlikely to still be 

functionally congruent (10mm radius for the fully processed data, 8mm radius for the minimally 

processed data, Figure 4). For a discussion of functional ROI size within the face network see (37). 

In any case, it is important to find parameters which work well in both the fully processed and 

the minimally processed condition, so extremely large ROIs such as the 10mm radius ones which 

perform worse in the real-time conditions, are unlikely to be useful in this case. It may seem 

unintuitive that using more time points was detrimental to the algorithm’s performance, but it is 

important to note in this regard that this was true of the algorithm output on the fully processed 

data, as well as the minimally processed data, and is therefore unlikely to be purely due to the 

noise in the signal.  

 

Acquiring multi-echo data has significant advantages in terms of post-processing, but to our 

knowledge, the advantages of the online optimal combination of the echoes to a real-time 

algorithm have not been tested. The results here suggest that at least for small ROIs (and 

probably also if using single voxels), the OC minimally processed data gives better results than 

the single echo data, though the advantage is lost for larger ROIs (Figure 6). This could be due to 

averaging in larger ROIs already reducing thermal noise to a similar extent to that achieved by 

OC, thus negating its advantage.  Neither OC nor averaging over large ROIs address other sources 

of noise, such as motion artifacts or physiological noise, and these would still be present in the 

minimally processed data regardless of the chosen parameters. More advanced processing 

methods which can currently only be carried out offline on the full time-series, such as ME-ICA, 

or AFNI’s ANATICOR pipeline (38), would be needed to remove these. 

 

Taken together, these results suggest that the best performance of this algorithm would be 

achieved by choosing only two targets (even though a wider network could well be functionally 

relevant), defining small (4mm radius) ROIs, using only two time points to determine feedback, 

and using online OC. We must however add a caveat, that all these analyses were carried out 

under specific acquisition parameters, and it is possible that with different acquisition 
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parameters we would have found different results. For instance, a shorter TR might have resulted 

in more robust performance for the algorithm using three time points instead of two. Similarly, 

all the ROIs tested here were visual ROIs, and only one control region was tested. Different ROIs 

outside of visual cortex, or a different control ROI, might behave differently. Different 

neurofeedback objectives will impose different constraints regarding the location and size of 

target and control ROIs. 

 

Throughout these analyses, what stood out perhaps even more than the effects of the various 

parameters we manipulated, was the great degree of variance among our 55 potential target 

pairs. This was apparent in all the parameters we compared, and was true for both the fully 

processed and the minimally processed data, with and without the optimal combination of 

echoes. In searching for the source of this variance, we discovered that much of it is explained by 

the target-target correlation within each target pair. This means that the identity of target ROIs 

is important for the success of the algorithm, and potential targets should be evaluated prior to 

beginning a new neurofeedback experiment, with baseline correlations between the targets 

being taken into account. Most connectivity-based training paradigms seek to increase 

correlations between regions with initially poor connectivity. The two-point algorithm might be 

less effective in training correlations between regions that are uncorrelated to begin with, though 

as long as some degree of initial correlation is present, training is possible (see Figure 7).  

 

While tSNR does not appear to have a large effect on algorithm performance in the fully 

processed data (see partial correlations in Figure 7), it does greatly affect the minimally processed 

data, which is used for the actual real-time calculations. It would therefore seem prudent to steer 

away from signal-poor regions, such as ATL in our dataset, whenever possible. It should be noted 

that issues of noise affect not just this algorithm, but any calculation on real-time data. The two-

point algorithm actually performed overall better than a straightforward calculation of 

correlations on the OC minimally processed data, even using the full time series, and either way 

the two measures were within the same range (Figure 8). Note that this analysis only estimates 

the effects of noise on the correspondence of the online measures to our gold standard, offline 
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calculation. It does not take into account other differences between the online algorithms, such 

as number of feedback events and reliance on history, which are likely to affect the induced 

training effects.  

 

Beyond the technical points described here, the greatest challenge in crafting the best algorithm 

for providing the most accurate feedback, might be identifying the gold standard against which 

to compare it. In the demonstration of the two-point algorithm here, the goal was to train a small 

network of relative correlations between the target and control ROIs. Although our measure is 

instantaneous, theoretically allowing us to train dynamic connectivity, we are interested in 

training the static connectivity, which is the average connectivity throughout the entire scan. In 

our case, it is the static connectivity which was correlated to the behavior (26), and our gold 

standard was therefore the composite measure, comprised of the relative correlations between 

the targets and the control over the full time-series. When choosing the gold standard offline 

calculation for testing algorithm performance using this framework, it is imperative to consider 

the goal of the training. Had we been attempting to train dynamic connectivity, our gold standard 

would not have been the composite measure calculated over the full time-series, but something 

more relevant to such an alternative goal, such as the composite measure calculated with sliding 

windows.   

 

Alternately, as the ultimate objective of the training is often to induce a change in behavior, and 

targets for training are generally chosen because of their correspondence to a behavioral 

measure, then an additional way to evaluate the validity and reliability of an algorithm would be 

through direct comparison to the relevant behavioral measure. The exact same general 

framework can be applied in this case as well, for instance comparing how correlated the 

algorithm output is to the behavioral measure using two time points vs. three time points. 

Comparing the algorithm output to the behavioral measure also provides an important sanity 

check. If there is no significant correlation between the two, then can the feedback induce the 

desired behavioral change? It is also possible for the two measures (one examining the network, 

such as correlations, and a second for behavior) to disagree on the optimal algorithm parameters. 
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ROI size is a likely example in this case. Although for the fully processed data, the correspondence 

of the algorithm to the composite measure increased with ROI size, it is doubtful that this would 

also be the case if comparing to a behavioral measure, given the extent of the functional 

averaging that must take place in an ROI of that size. 

 

Overall, many of the optimal parameters for use with our two-point algorithm were unintuitive, 

illustrating the need for a framework such as this for testing out algorithms before applying them 

in an actual real-time experiment. Given the large degree of variance based on both scan 

parameters and target identity, it is recommended that an analysis using this framework be 

carried out in the design phase of any new experiment, using a dataset with similar parameters 

for testing. 
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