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Abstract: 

Several studies have shown that neither the formal representation nor the functional 

requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a 

consistent standard, comparability, reproducibility, and interoperability of models across 

groups and software tools cannot be guaranteed. 

 

Here, we present memote (https://github.com/opencobra/memote) an open-source software 

containing a community-maintained, standardized set of ​me ​tabolic ​mo ​del ​te ​sts. The tests 

cover a range of aspects from annotations to conceptual integrity and can be extended to 

include experimental datasets for automatic model validation. In addition to testing a model 

once, memote can be configured to do so automatically, i.e., while building a GEM. A 

comprehensive report displays the model’s performance parameters, which supports 

informed model development and facilitates error detection. 

 

Memote provides a measure for model quality that is consistent across reconstruction 

platforms and analysis software and simplifies collaboration within the community by 

establishing workflows for publicly hosted and version controlled models. 

 

Introduction 

The reconstruction and analysis of metabolic reaction networks provide mechanistic, 

testable hypotheses for an organism’s metabolism under a wide range of empirical 

conditions ​1​. At the current state of the art, genome-scale metabolic models (GEMs) can 

include thousands of metabolites and reactions assigned to subcellular locations, 
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gene-protein-reaction rules (GPR), and annotations, which provide meta-information by 

referencing large biochemical databases. This development has been facilitated by standard 

protocols for reconstruction ​2​ and guidelines for provenance-tracking and interoperability ​3–5​. 

However, the quality control of GEMs remains a formidable challenge that must be solved to 

enable confident use, reuse, and improvement. 

Both Ravikrishnan and Raman ​6​ and Ebrahim et al. ​7​ lamented the lack of an agreed-upon 

description format as they found that GEMs can be published as SBML ​8​, MATLAB files, 

spreadsheets, and PDF. While the former noted that incompatible formats limit the scientific 

exchange and, thus, the ability to reproduce calculations on different setups, the latter 

elaborated how formatting errors can directly cause inconsistent results when parsed and 

evaluated with various software packages. 

When comparing four previously published models for ​Pseudomonas putida​ KT2440, Yuan 

et al. discovered that in identical simulation conditions the predicted growth rate of one 

model was almost twice as high as that of another​9​. Moreover, one of the examined models 

could generate ATP without needing to consume any substrate, rendering some model 

predictions useless. 

 

This behavior occurs when a model’s reaction directions are not checked for thermodynamic 

feasibility, leading to the formation of flux cycles which provide reduced metabolites to the 

model without requiring nutrient uptake. Fritzemeier et al.​10​ detected such erroneous 

energy-generating cycles (EGCs) in the majority of GEMs specifically in the MetaNetX ​11,12 

(~66%) and ModelSEED ​13​ (~95%) databases, which mostly contain 

automatically-generated, non-curated metabolic models. Although the authors found that 

EGCs are rare in manually-curated GEMs from the BiGG Models database (~4%), their 

effect on the predicted growth rate in FBA may account for an increase of up to 25%. This 
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makes studies involving the growth rates predicted from such models unreliable. It is 

possible to identify and correct these issues either with functions included in the COBRA 

Toolbox ​14​, or the modified GlobalFit algorithm ​15​ presented by Fritzemeier et al.​10​. Yet, as 

the models of ​P. putida​ analyzed by Yuan et al. show, this is not done consistently ​9​. 

 

Investigating the biomass compositions (BCs) of 71 manually-curated prokaryotic GEMs, 

Xavier et al. found that organic cofactors (e.g., Coenzyme A, pyridoxal 5-phosphate, and 

S-adenosyl-methionine) are missing even though their inclusion is vital to a model’s 

performance in gene-essentiality studies​16​.  

 

Chan et al. highlighted deviations in molecular weight as another problem with the 

formulation of BCs​17​. Conforming to the defined molecular weight of 1 g/mmol is essential to 

reliably calculate growth yields, cross-compare models, and obtain valid predictions when 

simulating microbial consortia. Half of the 64 tested models deviated from the defined 1 g by 

up to 5%, with the other half differing even more strongly. Any discrepancy, however, should 

be avoided as the smallest error affects the predicted biomass yield, favoring models 

containing BCs which sum to lower molecular weight. 

 

In addition to discussing encoding related problems, Ravikrishnan and Raman stressed that 

missing metabolite and reaction annotations are further fundamental issues when trying to 

exchange ​GEMs which have been generated from different pla ​tforms,​ or when attempting to 

integrate them into existing computational workflows ​6​. Mapping annotations between 

biochemical databases is not trivial but semi-automatic approaches help to reduce the 

required manual effort ​18​. Nonetheless, they reported the absence of metabolite annotations 

(i.e., metabolite formula, database-dependent (e.g., ChEBI ID), and database-independent 
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i.e. derived from the properties of the object itself (e.g., SMILES, InCHI) references) in 

almost 60% of the 99 models they examined. 

 

Increasing numbers of manually-curated and automatically-generated GEMs are published 

each year, growing both in scale and scope; from models on single cells to multi-organism 

communities ​19​ to multi-compartmental plant ​20​, human and cancer tissue models ​21​. 

Especially when considering the growing application of models to human health and 

disease, it becomes essential to address any remaining issues concerning reproducibility 

and interoperability to pave the way for reliable systems medicine ​22​. 

 

Thus, we need to establish a standard framework which ensures that: 

● Models are formulated consistently in a software agnostic manner. 

● Components of GEMs are uniquely identifiable using standardized 

database-independent identifiers which can be converted easily using 

cross-references. 

● Default conditions and mathematically specified modeling formulations are precisely 

defined to allow the reproduction of the original model predictions. 

● Models yield biologically feasible phenotypes when analyzed under alternating 

conditions​. 

● Data that has been used to curate/parametrize the model are adequately 

documented to precisely understand the model refinement process. 

Here, we argue for a two-pronged approach in creating this framework: 1) We advocate the 

use of the latest version of the ​SBML Level 3 Flux Balance Constraints (FBC) Package ​23​ as 

the agreed-upon description format, which renders GEMs to be independent through a 
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unified formulation. 2) Borrowing tools and best practices from software development ​24,25​, 

we present ​memote​ as a unified approach for benchmarking metabolic models. 

Results 

SBML: Tool-independent model formulation 

Historically, GEMs have been structured and stored in many non-standard ways, for 

example, tool specific formats or language dialects ​6​. This prevented the accurate exchange 

of models between various software tools and the unambiguous, machine-readable 

description of all model elements such as chemical reactions, metabolites, gene 

associations, annotations, objective functions and flux capacity constraints. While a widely 

used model description standard, such as the Systems Biology Markup Language (SBML) 

Level 3 Core ​8​, can describe some of these components, e.g., reactions, metabolites, or 

annotations, it cannot present other model components needed to describe a parameterised 

GEM or FBA model in a structured and semantic way. 

Consequently, an adequate model description format is needed that allows for the 

unambiguous definition and annotation of such a model’s components and underlying 

mathematics. 

With the release of SBML Level 3 it has become possible to load specific modeling 

packages that extend the core format with additional features. The ​SBML Level 3 Flux 

Balance Constraints (FBC) Package ​(SBML3FBC)​ ​has been specifically designed to 

address the problems described above. Such extensions allow users to take advantage of 

infrastructure built around SBML, while also providing a smaller set of specifications that can 

be adjusted to cater to the quickly changing needs of a specific research area. The FBC 
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package allows for the unambiguous, tool neutral and validatable SBML description of 

domain-specific model components such as flux bounds, multiple linear objective functions, 

gene-protein-reaction associations, metabolite chemical formulas, charge and related 

annotation ​23​. The SBML and constraint-based modeling communities collaboratively 

develop this package and update it based on user input. As a result, FBC Version 2 is the ​de 

facto ​ standard for encoding GEMs. Critical to this process is its implementation in a wide 

range of constraint-based modeling software and adoption by public model repositories 

22,26–34​. We believe these factors make SBML3FBC the optimal format for sharing and 

representing GEMs, thus models encoded in SBML3FBC serve as the input to memote. 

Memote: Community-driven quality control 

In software engineering, test-driven development ensures that in response to a defined input 

a piece of code generates the expected output ​35​. Distributed version control represents an 

efficient way of tracking and merging changes made by a group of people working on the 

same project ​36​.  Finally, continuous integration ties these two principles together by 

automatically triggering tests to be executed after each change that is introduced to the 

project ​37​. Memote (​/'mi:moʊt/ (IPA)​)​, ​short for ​me ​tabolic ​mo ​del ​te ​sts, is an open-source 

python software that applies these engineering principles to genome-scale metabolic 

models. 

 

Memote accepts stoichiometric  models encoded in SBML3FBC as input, allowing users to 

benchmark them against a set of consensus tests. By enabling researchers to quickly 

interrogate the quality of GEMs, problems can be addressed before they affect 

reproducibility and scientific discourse, or increase the amount of time spent troubleshooting 

38​.  
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Memote supports two basic workflows (Figure 1a). First, by running the test suite on a model 

once, memote generates a comprehensive, human-readable report, which quantifies the 

model’s performance. By this information, a definitive assessment of model quality can be 

made, i.e., by editors or reviewers. This workflow is accessible through a web interface 

(https://memote.dd-decaf.eu), analogous to the SBML validator ​27​, or locally through the 

command line. 

Second, for model maintenance and reconstruction, memote coordinates version control and 

continuous integration, such that each tracked-edit in the reconstruction process can 

progressively be tested. Users edit the model with their preferred reconstruction tool, and 

export to SBML afterward. This way, each incremental change can be tested with the suite. 

Then, a report on the entire history of results serves as a guide towards a functional, 

high-quality GEM. This workflow is accessible through the command line and may be 

extended to include custom tests against experimental data. Memote allows researchers to 

test a model repository offline, but we encourage and support community collaboration in 

reconstruction via distributed version control development platforms such as GitHub 

(https://github.com/), GitLab (​https://gitlab.com/​) or BioModels ​39 

(http://wwwdev.ebi.ac.uk/biomodels/). 

Either development platform supports a branching strategy (Figure 1b), which model builders 

could use to curate different parts of the model simultaneously or to invite external experts to 

improve specific model features. Memote further enables model authors to act as 

gatekeepers, choosing to accept only high-quality contributions. Identification of functional 

differences happens in the form of a comparative ‘diff’ report, while for the file-based 

discrepancies memote capitalizes on the platform’s ability to show the line-by-line changes 

between different versions of a model. For this purpose, the model is written in a sorted 

YAML format ​40​ after every change. 
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Figure 1: ​Functionality offered by memote ​. (a) Graphical representation of the two 

principal workflows in detail. For peer review, memote serves as a benchmark tool offering a 

quick snapshot report. For model reconstruction, memote helps the user to create a 
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version-controlled repository for the model (indicated by the ​* ​), and to activate continuous 

integration. The model is tested using memote’s library of tests, the results are saved, and 

an initial report of the model is generated. This constitutes the first iteration of the 

development cycle. Now, the user may edit the model using a tool of their choice creating a 

new version (indicated by the ​+n​). This will restart the cycle by running the tests 

automatically, saving the results for each version and including them incrementally in a 

history report. (b) An example of a potential branching strategy employing memote as a 

benchmark of external contributions. ​Bold blue text ​denotes actions performed by memote.  

 

Description of the test library  

The tests within memote are divided into independent core tests and tests that depend on 

user-supplied experimental data. Core tests are further divided into a scored and an 

unscored section (Figure 2).  

 

The tests in the scored section are independent of the type of the modeled organism, the 

complexity of the model itself or the types of identifiers that are used to describe the model 

components. Calculating a score for these tests allows for the quick comparison of any two 

given models at a glance. The unscored section provides general statistics and covers 

specific aspects of a model that are not universally applicable. For instance, dedicated 

quality control of the biomass equation only applies to metabolic models which are used to 

investigate cell growth. Tests in either section belong to one of four general areas:  

 

1) Basic tests give an insight into the formal correctness of a model, verifying the 

existence of the main model components such as metabolites, compartments, 

reactions, and genes. These tests also check for the presence of formula and charge 
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information of metabolites, and for the presence of gene-protein-reaction rules of 

reactions. General quality metrics such as the degree of metabolic coverage 

representing the ratio of reactions and genes ​41​ are also covered here. 

2) Some tests are dedicated to testing the biomass reaction. This includes testing the 

model’s ability to produce all biomass precursors in different conditions, the biomass 

consistency, a non-zero growth rate and direct precursors. The biomass reaction is 

based on the biomass composition of the modeled organism and expresses its ability 

to produce the necessary precursors for ​in silico​ cell growth and maintenance. 

Hence, an extensive, well-formed biomass reaction is crucial for accurate predictions 

with a GEM ​16​. 

3) Stoichiometric inconsistency, erroneously produced energy metabolites ​10​ and 

permanently blocked reactions, are identified by testing the model’s consistency. 

Errors here may lead to the production of ATP or redox cofactors from nothing ​2​ and 

are detrimental to the performance of the model when using FBA ​6​.  

4) Annotation tests maintain that a model is equipped according to the community 

standards with MIRIAM-compliant cross-references ​42​, that all primary IDs belong to 

the same namespace as opposed to being fractured across several namespaces, 

and that components are described semantically with Systems Biology Ontology 

terms ​43​. A lack of explicit, standardized annotations complicates the use, 

comparison, and extension of GEMs, and thus strongly hampers collaboration ​3,6,44​. 
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A detailed list of all the test in memote is available at 

https://github.com/opencobra/memote/wiki. 

 

In addition to the core tests, researchers may supply experimental data from gene 

perturbation studies from a range of input formats (CSV, TSV, XLS or XLSX). Gene 

perturbation studies, especially gene essentiality studies are useful to refine GEM 

reconstructions by allowing researchers to identify network gaps and by providing a basis for 

model validation ​45​, as well as providing grounds for a hypothesis about an organism’s 

physiology ​46​.  
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To constrain the model concerning the experimental conditions underlying the supplied data, 

researchers may optionally define a configuration file (.yml) in which they can set the 

medium, FBA objective, and known regulatory effects. Without memote, this would typically 

be done through the use of custom scripts, which can vary significantly depending on the 

researcher writing them. Moreover, scripts tend to suffer from software rot if they are not 

actively maintained after publication ​25​. The use of configuration files instead of scripts 

avoids software rot since the configuration files do not require dependencies other than 

memote, which is likely to be maintained in the future. In conjunction, setting up a 

version-controlled model repository not only allows researchers to publish a ‘default’ 

unspecific GEM of the investigated organism, but also reproducible instructions on how to 

obtain a model that is specific to the organism in a defined experimental context including, 

and validated against the data supporting this context. This formulaic approach of deriving a 

GEM into a condition-specific form supports Heavner and Price’s ​3​ call for more transparency 

and reproducibility in metabolic network reconstruction. 
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Figure 3: ​Experimental tests can be tailored to a specific condition through the use of 

one or several configuration files (configs)​. (a) To validate GEMs against experimental 

data measured in specific conditions, researchers usually write their scripts which constrain 

the model. This is problematic as scripts can vary a lot and they are, unless actively 

maintained, susceptible to software rot. (b) With memote, user-defined configuration files 

replace scripts, which allows the experimental validation of GEMs to be unified and 

formalized. Bundling the model, configuration files, and experimental data within a 

version-controlled repository (indicated by the ​* ​) supports cohesive releases. 
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Discussion  

By providing a performance benchmark based on community guidelines and 

commonly-referenced SOPs, memote facilitates informed model reconstruction and quality 

control. The tests within memote cover semantic and conceptual requirements which are 

fundamental to SBML3FBC and constraint-based modeling, respectively. They are 

extensible to allow the validation of a model’s performance against experimental data and 

can be executed as a stand-alone tool or integrated into existing reconstruction pipelines. 

Capitalizing on robust workflows established in modern software development, memote 

promotes openness and collaboration by granting the community tangible metrics to support 

their research and to discuss assumptions or limitations openly. 

 

The concept of having a set of defined metabolic model tests is not dependent on the 

implementation in memote presented herein. In fact, for some platforms, it may be more 

desirable to implement these tests separately as this could streamline the user experience. 

However, an independent, central, community-maintained library of tests and a tool to run 

them offers 1) an unbiased approach to quality control as the tests are continuously 

reviewed by the community, 2) a long-lived resource as the project is independent of 

individual funding sources, 3) flexibility as updates can be propagated rapidly and 4) 

consistent results as the codebase is unified. To encourage integration as opposed to 

duplication, memote provides a python API as well as being available as a web-service. We 

plan to make memote available in the Department of Energy’s Knowledge Base ​47​ as an app 

and integrate it with the BiGG Database ​33​, BioModels ​31​, and the RAVEN toolbox ​48​. The 

memote test suite plug-in for OptFlux ​49​ will approximately be released with version 3.4 

scheduled for mid July 2018. 
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The variety of constraint-based modeling approaches and the fundamental differences 

between various organisms compound the assessment of GEMs. For instance, authors may 

publish metabolic networks, which are constrained to reflect one experimental condition or 

publish unconstrained metabolic databases, which need to be initialized before simulation. 

Both can be encoded in SBML. With having a scored test section, we attempt to normalize 

each type of model such that they become comparable. Despite memote’s code itself being 

unit tested, it is difficult to anticipate all edge cases ​a priori.​ Also, memote depends on 

external resources such as MetaNetX ​12​ and ​identifiers.org ​ ​50​ that are likely to change over 

time. Subsequently, individual users may identify potential false-positive and false-negative 

results. Hence, we recommend to approach the report with scrutiny and encourage users to 

reach out to the authors to report any errors. 

 

The tests that memote offers only apply to stoichiometric models. However, the underlying 

principles and individual tests behind memote may apply to models of metabolism and 

expression (ME-models) ​51​, kinetic ​52​, or even systems pharmacological models ​53​. 

 

The cloud-based distributed version control for GEMs encoded as single SBML files 

supported by memote is only one possible implementation approach for version control and 

collaboration on stoichiometric models. For instance, the reconstruction and modeling 

software Pathway Tools internally stores organism data in the form of a database, which can 

be queried and altered through the provided guided user interface and access forms ​54​. 

AuReMe, follows a similar approach, by allowing users to interact with a database through 

automatically generated wikis ​55​. While databases offer greater capacity and speed than 

single, large data files, the programmatic or form-based interaction required for databases 

may not be most immediately accessible to a broad community. 
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In the future, with respect to rising big data streams, memote ought to be extended to 

provide support for tests based on multi-omics data. Moreover, to distribute all files of a 

model repository together, i.e., the model, supporting data and scripts, these could be 

automatically bundled into one COMBINE archive file ​56​, additionally including SED-ML 

documents which further describe relevant simulation experiments ​57​.  

 

The greater flexibility and awareness of community-driven, open-source development and 

the trend towards modular approaches exhibited by the solutions that were put forth in the 

field of systems biology ​44​, motivate us to keep the development of memote open. We 

believe that a robust benchmark can only come to fruition when actively supported by the 

whole community and thus call for interested experts to involve themselves, be it through 

testing our tool, discussing its content or improving its implementation. We intend to keep 

extending memote with additional tests and functionality. 
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