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Abstract

We present a simple model for coherent, spatially correlated chaos in a recurrent neural network. Networks

of randomly connected neurons exhibit chaotic fluctuations and have been studied as a model for capturing

the temporal variability of cortical activity. The dynamics generated by such networks, however, are spatially

uncorrelated and do not generate coherent fluctuations, which are commonly observed across spatial scales of the5

neocortex. In our model we introduce a structured component of connectivity, in addition to random connections,

which effectively embeds a feedforward structure via unidirectional coupling between a pair of orthogonal modes.

Local fluctuations driven by the random connectivity are summed by an output mode and drive coherent activity

along an input mode. The orthogonality between input and output mode preserves chaotic fluctuations even

as coherence develops. In the regime of weak structured connectivity we apply a perturbative approach to10

solve the dynamic mean-field equations, showing that in this regime coherent fluctuations are driven passively

by the chaos of local residual fluctuations. Strikingly, the chaotic dynamics are not subdued even by very

strong structured connectivity if we add a row balance constraint on the random connectivity. In this regime

the system displays longer time-scales and switching-like activity reminiscent of “Up-Down” states observed in

cortical circuits. The level of coherence grows with increasing strength of structured connectivity until the15

dynamics are almost entirely constrained to a single spatial mode. We describe how in this regime the model

achieves intermittent self-tuned criticality in which the coherent component of the dynamics self-adjusts to yield

periods of slow chaos. Furthermore, we show how the dynamics depend qualitatively on the particular realization

of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading

eigenvalue can yield chaos with broken symmetry. We examine the effects of network-size scaling and show that20

these results are not finite-size effects. Finally, we show that in the regime of weak structured connectivity,

coherent chaos emerges also for a generalized structured connectivity with multiple input-output modes.

Author Summary

Neural activity observed in the neocortex is temporally variable, displaying irregular temporal fluctuations at every

accessible level of measurement. Furthermore, these temporal fluctuations are often found to be spatially correlated25

whether at the scale of local measurements such as membrane potentials and spikes, or global measurements such

as EEG and fMRI. A thriving field of study has developed models of recurrent networks which intrinsically generate

irregular temporal variability, the paradigmatic example being networks of randomly connected rate neurons which

exhibit chaotic dynamics. These models have been examined analytically and numerically in great detail, yet

until now the intrinsic variability generated by these networks have been spatially uncorrelated, yielding no large-30

scale coherent fluctuations. Here we present a simple model of a recurrent network of firing-rate neurons that

intrinsically generates spatially correlated activity yielding coherent fluctuations across the entire network. The

model incorporates random connections and adds a structured component of connectivity that sums network activity

over a spatial “output” mode and projects it back to the network along an orthogonal “input” mode. We show that
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this form of structured connectivity is a general mechanism for producing coherent chaos.35

Introduction

Firing-rate fluctuations and irregular spiking are ubiquitous in the neocortex[28, 3]. Furthermore this temporal

variability is often observed to be correlated across spatial scales ranging from local cortical circuits to the entire

brain: in local cortical circuits both in membrane potential fluctuations [40] and on the level of spiking [27, 4, 20, 21],

in the coherency measured in brain-wide EEG signals [19, 1], and in the global signal observed across all voxels in40

fMRI measurements [26, 14, 18].

A class of theoretical models has successfully accounted for temporal variability via internally generated chaotic

dynamics of recurrent networks, whether through excitation-inhibition balance in spiking models[38, 23] or the more

abstract models of rate chaos in randomly connected networks[30]. Yet a key emergent feature of these models is45

the decorrelation of neural activity such that the macroscopic, population activity remains nearly constant in time.

Population-wide coherence or synchrony can be generated in a variety of ways for example by introducing spatial

modes with self-excitation, but this comes at a cost of drowning out the chaotic fluctuations and yielding fixed

points [35]. Indeed a major challenge to theorists has been to produce network models which generate spatially

coherent, temporally irregular fluctuations which can account for broad spatial correlations observed in experiments.50

Two recent studies have shown that excitation-inhibition balance networks can generate spatially modulated cor-

relations [25, 6]. In both of these studies the correlations are driven by common input from an external source,

and the average correlation across the network remains small. It remains an open question whether a network can

internally generate correlated fluctuations that are coherent across the entire network.55

The chaotic dynamics of a network of randomly connected firing-rate neurons has been well-studied [30, 12]. In

such a network each individual neuron’s firing rate is given by a non-linear function of its input, which is in turn

a weighted sum of the firing rates of all other neurons in the network. The network exhibits a phase transition

from a fixed point to chaotic activity in which the randomness of the weights reverberates uncorrelated fluctuations60

throughout the network. Typically in this chaotic regime pairwise correlations are small and no coherent fluctua-

tions emerge. Here we extend this model by adding a low-rank structured component of connectivity to the random

connections. The structured connectivity sums the fluctuations along one spatial mode and projects them along

a second, orthogonal mode yielding coherent fluctuations without drowning out the individual neuron variability

which continues to drive the chaotic dynamics. A previous work studied a specific example of this structure and65

focused primarily on analyzing the non-chaotic regime[8]. Here we focus on the chaotic regime and show that
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this form of structured connectivity together with random connections provides a basic mechanism for internally

generating coherent fluctuations.

Results70

We study a network of N neurons in which the connectivity between neurons has two components: a random

component, J, and a rank-1 structured component, M = J1√
N
ξνT , an outer product of a pair of orthogonal vectors

both of which have elements of O (1) and norm
√
N , with strength parameter J1. We restrict the elements of ξ to

be binary, ξi = ±1, which will be important for some of the results to come, and we will comment on when this

restriction can be relaxed. We can think of the row vector, νT , as an “output mode” performing a read-out of the75

network activity, and the column vector, ξ, as a corresponding “input mode” along which the output mode activity

is fed back to the network (Fig 1A).
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Figure 1. Random Network with Structured Connectivity Generates Coherent Chaos. (A) Network
schematic showing neurons connected via random matrix J and rank-one structured connectivity. The structured
component is represented schematically as a feed-forward loop with drive through the output mode, ν, and
feedback through the input mode, ξ. In our model these two vectors are orthogonal. The standard deviation
of the random component is given by g√

N
and the strength of the structured component is J1√

N
. (B) Sample

network dynamics without structured component, i.e. J1 = 0, colored traces show a random collection of ten
neural activity patterns, φj , black trace shows the coherent mode activity, φ̄ = 1

N ξTφ. (C) Sample dynamics for
J1 = 1. Coherent mode displays substantial fluctuations. (D) Coherence, χ (definition in text), as a function of
the strength of structured connectivity component, J1 for small values of J1. Simulation and theory (valid in the
weak structured connectivity regime - J1 � g) shown for both g = 1.5 and g = 2. Bars show standard deviation
over 60 realization of the random connectivity. (E) Passive coherent chaos. With weak structured connectivity
fluctuations of the coherent mode follow the fluctuations of the independent residual components. Normalized
autocorrelation of the coherent component of the current, q̄ (τ), in red circles. Average normalized autocorrelation
of the residuals, qδ (τ), in blue ’x’s. Both are averaged over 60 realizations of the random connectivity with
J1 = 0.1. Prediction from theory in black. N = 4000 and g = 2 in all panels unless stated otherwise.

The random component of the connectivity is given by the matrix J consisting of identically distributed independent

Gaussian elements with mean 0 and variance g2

N , where g is an O (1) parameter.

80

The state of each neuron is defined by its synaptic current, hi (t), with its firing rate given by φi ≡ φ (hi (t)), where

φ is a sigmoidal function. For some later results it will be necessary to assume that φ has a first derivative that

is an even function. We therefore assume here for concreteness φ (h) = tanh (h) unless otherwise noted, and we

comment on when this assumption can be relaxed.

85

The dynamics of the synaptic current vector, h, is given by

dh

dt
= −h + Jφ +

J1√
N

ξνTφ (1)
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We have scaled the strength of the structured connectivity such that when the scaling-parameter J1 ∼ O (1) the con-

tribution of the structure to individual synapses is of the same order of magnitude as the typical random connection.

We will be particularly interested in the coherent activity and the coherent current, i.e. the spatial overlap of both90

the firing rate and the synaptic current with the input mode. These are defined respectively as

φ̄ ≡ 1

N
ξTφ, h̄ ≡ 1

N
ξTh, (2)

We define the measure of spatial coherence as the fraction of the total power of the network current hi that is

shared along the input mode, ξ :

χ ≡

√ 〈
h̄2
〉

1
N

∑
i 〈h2

i 〉
(3)

where 〈 〉 represents average over time. This is a useful measure as it varies from 0 to 1, and will yield χ = 1/
√
N

for entirely independent, uncoupled fluctuations, and χ = 1 for complete synchrony along ξ.95

Without the structured component, i.e. J1 = 0, the network exhibits a phase transition at g = 1 from a zero fixed

point to chaos[30]. In the chaotic state the randomness of the connectivity decorrelates the input current and yields

an asynchronous state in which neurons fluctuate with negligible correlations such that both φ̄ and h̄ are nearly

constant in time, and χ ≈ 1√
N

(Fig 1B).100

Setting J1 = 1, we observe significant correlations along the input mode, such that the coherent mode activity, φ̄,

fluctuates significantly. For this network with N = 4000 we find the coherence χ ≈ 0.4, which is about 25 times

larger than is observed in the asynchronous state. (Fig 1C).

105

In order to analyze this system we decompose the dynamics of the synaptic currents into coherent component, h̄,

and the vector of residuals currents, δh = h− h̄ξ. We also decompose the activity into its coherent component, φ̄,

and vector of residual activity, δφ = φ − φ̄ξ. Because of the orthogonality between input and output mode, the

output mode ignores the coherent component, φ̄, and projects only the activity of the residuals: νTφ = νT δφ.

110

By averaging the dynamic equations 1 over the input mode, ξ, we can write decomposed dynamics for the residual

synaptic current vector and for the coherent current:

dδh

dt
= −δh + Ĵφ (4)

dh̄

dt
≈ −h̄+

J1√
N

νT δφ (5)
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where the effective connectivity matrix in the residual dynamics (discussed more fully in Methods) is

Ĵ ≡

(
I− ξξT

N

)
J (6)

which projects the output of J into the (N − 1) dimensional subspace orthogonal to ξ. This guarantees that the115

decomposed dynamics satisfy the constraint ξT δh = 0. For most of what follows this constraint can be ignored as

it contributes only O
(

1√
N

)
to each synaptic current. Nevertheless it plays a role later and we introduce it here

for completeness. We have, however, ignored the small projection of the random connectivity along the coherent

mode (ξ
T

N Jφ ∼ O
(

1√
N

)
). Note that even in this approximation, the nonlinearity of φ in these equations couples

the coherent and residual degrees of freedom.120

In order to attempt to solve the approximate system we could assume that h̄ (t) fluctuates according to some

known random process and then consider the dynamics of the δhi with the firing rate of individual units as given

by φ
(
δhi (t) + ξih̄ (t)

)
. However, for general J1 we are unable to analytically close the loop and self-consistently

compute the statistics of h̄ (t).125

Weak Structured Connectivity Yields Passive Coherent Chaos

In order to proceed analytically, we take a perturbative approach, assuming J1 � 1. In this regime we assume the

fluctuations in h̄ (t) are Gaussian and we turn to computing the autocorrelations of both the coherent component

∆̄ (τ) ≡
〈
h̄ (t) h̄ (t+ τ)

〉
(7)

and of the residuals,130

∆δ (τ) ≡ 〈δhi (t) δhi (t+ τ)〉 . (8)

For small J1 we assume that the coherent current is small (h̄ � 1) and therefore in the dynamics of the residual

currents (Eqn 4) we approximate
∑
j Jijφj ≈

∑
j Jijφ (δhj). The result is that to leading order the autocorrelation

of the residuals is given by the zeroth-order (J1 = 0) autocorrelation. That is, the residual currents fluctuate as

independent Gaussian processes almost identically to the situation without structured connectivity. These residual

fluctuations are summed over the output mode yielding substantial fluctuations in νT δφ (recall, νi ∼ O (1)). These135

in turn drive Gaussian fluctuations in the coherent mode and we show in Methods that its autocorrelation is given

to first-order by

∆̄ (τ) ≈
(
J1

g

)2

∆δ (τ) (9)
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That is, to leading order the autocorrelation of the coherent component is simply a scaled version of the local,

residual autocorrelation.

140

We verify this prediction numerically in Fig 1E for J1 = 0.1 showing the normalized autocorrelations, q̄ (τ) = ∆̄(τ)
∆̄(0)

and qδ (τ) = ∆δ(τ)
∆δ(0) as well as the prediction from theory. Qualitatively this means that in this regime chaos is driven

by the emergent fluctuations in the local synaptic current similar to in the J1 = 0 case, and that the coherent com-

ponent can be said to absorb these fluctuations passively along the input mode, ξ.

145

In this regime then, the coherence is given simply by

χ =

√
∆̄ (0)

∆̄ (0) + ∆δ (0)
≈ J1

g
(10)

Numerically, we find that this approximation provides a good description of the system’s state for up to J1/g ≈ 0.2

(Fig 1D).

We can understand the coherent chaos in this regime qualitatively: the residual synaptic currents driven by the ran-150

dom connectivity fluctuate as uncorrelated Gaussian processes, and the resulting independent fluctuations in firing

rates will be summed over the output mode, ν, which projects to the input mode, ξ, driving coherent fluctuations in

h̄ (t). If the two modes, ξ and ν had substantial overlap then the coherent fluctuations along ξ would drive positive

feedback through ν driving the neurons to a fixed point. The orthogonality of these modes effectively embeds a

feedforward structure from the output mode, ν, to the input mode, ξ, within the recurrent connectivity. This155

enables the persistence of stable fluctuations along the input mode, ξ, which do not feedback to ν, thus preventing

either saturation or oscillations.

Importantly, in the regime of passive coherence we can relax the restrictions on ξ and φ: Our results here hold for

any smooth, sigmoidal non-linearity and for any ξ which is norm
√
N and orthogonal to ν. In fact approximate160

orthogonality is sufficient in this regime: structured connectivity consisting of an outer product of two randomly

chosen vectors will generate mildly coherent fluctuations.

Random Connectivity with “Row Balance”

We observe that as J1 increases to values of O (1), the network displays significant variability in the dynamics165

from realization to realization. The coherent mode autocorrelation function, ∆̄ (τ), for example, is no longer self-

averaging (Fig 2A). As we increase system size, N , we find that the realization-to-realization variability in ∆̄ (0)
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saturates to a finite value (Fig 2B). Moreover, when J1 ? 1 we observe realization-dependent transitions out of

chaos to either fixed points or limit cycles (Fig 2C).

170

Figure 2. Row Balance Preserves Chaos, and Increases Coherence. (A) Full coherent mode autocorre-
lation, ∆̄ (τ) of 60 individual realizations. Thick black line shows average over realizations. Network with random
connectivity J without row balance exhibits significant difference between realizations (B) Coherent mode vari-
ance, ∆̄ (0), as a function of network size for 300 individual realizations. Gray line shows average and gray region
with black boundary shows one standard deviation over realizations. Without row balance the standard deviation
(over realizations) saturates to a finite value as the network size increases, indicating that the variability between
realizations is not a finite-size effect. (C) Without row balance a network with moderate structured connectivity
(J1 = 2.5) exhibits a fixed point. (D)-(F) Same as (A)-(C) respectively, but network has “row balance” random
connectivity, J̃ = J− JξξT

N . (D) Individual realizations of ∆ (τ) are all very close to the average. (E) With row
balance the standard deviation of ∆ (0) over realizations shrinks with N , suggesting that the variability between
realizations is a finite-size effect. (F) Same realization of J as in (C), but with row balance. Chaos is preserved.
(G)-(H) Networks without row balance in blue, with row balance in red (G) Fraction of realizations (out of 30
realizations) that lead to chaotic dynamics, as a function of structural connectivity, J1. Row balance keeps nearly
all realizations chaotic. (H) Coherence, χ, as a function of J1computed for the realizations from (E). Row balance
increases coherence. Error bars display standard deviation. Full line shows all realizations, dashed line displays
average coherence restricted to the chaotic realizations. J1 = 0.2, g = 2, and N = 4000 for all panels unless
otherwise noted.

The reason for this realization dependence is that as J1 increases and the fluctuations in the coherent mode grow,

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/350801doi: bioRxiv preprint 

https://doi.org/10.1101/350801
http://creativecommons.org/licenses/by-nc-nd/4.0/


feedback is generated through the interaction between the random connectivity, J, and the input and output modes,

ξ and ν. First of all, J maps the coherent activity back along the input mode with a small realization-dependent

component which we ignored in Eqn 5 driving feedback directly to the coherent current, h̄. Secondly, J maps

the coherent activity along the the residuals in a realization-dependent direction biasing the residual fluctuations175

δh. This direction in turn will have realization-dependent component along the output mode, ν, and therefore the

coherent activity may additionally drive feedback by pushing the residual fluctuations along the output mode. See

Methods for more details.

To suppress the strong realization dependence of the dynamics, we refine the random connectivity matrix by defining180

J̃ ≡ J− J
ξξT

N
(11)

This subtracts from each row of J its weighted average along the input mode. This “row balance” subtraction has

been previously observed to remove realization-dependent outliers from the eigenspectrum of the full connectivity

matrix [22, 34].

We find here that row balance suppresses realization-to-realization variability in the nonlinear chaotic dynamics,185

for example reducing the variability in the autocorrelation of the coherent mode, ∆̄ (τ) (Fig 2D). We observe that

with row balance this variability drops as a function of increasing system size, suggesting (although not proving)

that the dynamics are now self-averaging in the limit of large N , at least for these values of J1 (Fig 2E).

The impact of row balance on the chaotic dynamics can be understood by noting that the resulting connectivity190

matrix, J̃, now has a null-space, and the input mode, ξ, lies within it (J̃ξ = 0). The result of row balance then is

to ensure that the random connectivity matrix filters out any coherent activity fluctuations, φ̄ (t):

J̃φ =

(
J− J

ξξT

N

)(
φ̄ξ + δφ

)
= Jδφ (12)

This prevents the coherent mode activity from driving feedback to the dynamics of the coherent current (Methods).

Interestingly, we find that row balance allows chaotic fluctuations to persist for larger values of J1, whereas without195

row balance the majority of realizations exhibit fixed points or limit cycles for J1 ? 3 (Fig 2F-G). Furthermore,

the chaotic dynamics are more coherent with row balance than without (Fig 2H). As the structured connectivity is

made stronger row balance appears to enable the dynamics to grow increasingly coherent even as chaotic fluctua-

tions persist.

200
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Row Balance Yields Self-Tuned Coherent Chaos

When we increase the strength of structured connectivity, J1, we find that with row balance the network yields

chaotic dynamics which are strikingly coherent and display switching-like macroscopic activity (Fig 3A). In con-

trast to the case of weak structured connectivity, the coherent mode dynamics are no longer passively driven by the

fluctuations in the residual synaptic currents. This is evidenced by the normalized autocorrelation of the coherent205

mode, q̄ (τ), which is no longer close to the normalized residual autocorrelation, qδ (τ), but rather has qualitatively

different dynamics including longer time-scales (Fig 3B as compared to Fig 1E).

Figure 3. Strong Structured Connectivity with Row Balance Generates High Coherence Even as
Chaos Persists. (A) Sample activity of 10 randomly chosen neurons, φj , and coherent mode activity, φ̄, in
black. Strong structured connectivity with row balance subtraction to the random component of connectivity
yields chaotic activity that is highly coherent with switching-like behavior. (B) Normalized autocorrelation of
coherent mode, q̄ (τ), in red. Average normalized autocorrelation of the residuals, qδ (τ), in blue. Shaded regions
show standard deviation over 25 initial conditions of the same connectivity. Strong structured connectivity yields
coherent mode dynamics that are qualitatively different from those of the residuals. J1 = 15.8 for both (A) and
(B), compare to Fig 1C and Fig 1E, respectively. (C) Coherence, χ, as a function of J1 is independent of network
size. Coherence appears to approach 1 as J1 is increased demonstrating that chaos persists even as fluctuations in
the residuals shrink (See also Fig S4). Coherence is averaged over 30 realizations of the connectivity for each N ,
excluding the few fixed points and limit cycles that occur for larger J1 (2 out of 30 or less for the largest values
of N). (D) Largest Lyapunov exponent as a function of J1. Thick line shows average over 10 realizations, small
dots show values for individual realizations, and shaded region is standard deviation. All but a small fraction
of realizations are chaotic, even in the region where χ > 0.9. N = 4000 and g = 2 in all panels unless noted
otherwise.

We find that the coherence, χ, increases steadily as a function of the strength of structured connectivity, J1, and

notably it is independent of system size. (Fig 3C).210
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To check whether this highly coherent state is chaotic, we calculate the largest Lyapunov exponent and verify that the

dynamics are indeed chaotic for a vast majority of realizations even as the fluctuations are highly coherent (Fig 3D).

We now examine the qualitative changes in the chaotic state of the network with row balance as J1 increases.215

We observe that for J1 . 1 the fluctuations are unimodal with an approximate Gaussian shape. The temporal

fluctuations are dominated by a single time constant as with zero J1 (Fig 4A-B). On the other hand, for larger

values of J1 the fluctuations deviate dramatically from Gaussian and instead become sharply bimodal (Fig 4A).

Figure 4. Self-Tuned Coherent Chaos. (A)-(B) Comparison between weak structured connectivity (Left:
J1 = 0.8) and stronger structured connectivity (Right: J1 = 15.8). Both with N = 4000. (A) Histogram
of values of the coherent mode current, h̄ (t). Mild structured connectivity yields coherent fluctuations with a
peak at zero and a distribution that appears not far from Gaussian. For stronger structured connectivity the
histogram is clearly non-Gaussian and highly bimodal. (B) Top: Sample activity of 10 randomly chosen neurons,
φi (t) and coherent mode activity, φ̄ (t). Middle: Speed of network during same epoch of activity, defined as the

per-neuron norm of the rate-of-change vector, i.e.

√
1
N

∑
i

(
dhi
dt

)2

. Bottom: Instantaneous population variance

of the residual currents δhi (t). For mild structured connectivity, φ̄ (t) fluctuates around zero (top), speed is
roughly constant throughout the trial (middle), residual currents maintain large variance throughout (bottom).
On the other hand, for stronger structured connectivity, there is state-switching between bouts of high and low
coherent-mode activity (top), these same bouts are associated with vanishing speed (middle), and with small
residual currents (bottom). (C) Statistical mode (most frequent value) of

∣∣h̄∣∣ as a function of J1. The results
indicate a crossover to self-tuned coherent chaos, defined by the bimodal peaks of

∣∣h̄∣∣ reaching a constant value.

The crossover occurs very rapidly and independently of N . Dashed line shows h̄c = φ′−1
(

1
g

)
(D) The statistical

mode of
∣∣h̄∣∣ as a function of g with fixed J1 = 10 and N = 8000. Dashed line shows h̄c = φ′−1

(
1
g

)
. g = 2 in all

other panels.

Furthermore, we find that with larger values of J1 the network exhibits intermittent switching between two different220

values of h̄ (Fig 4B, top right). We observe that the dynamics at both of these values of h̄ are qualitatively distinct
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as reflected by the speed of the dynamics and the level of coherence. We define the speed of the dynamics as the

norm of the vector of first time-derivatives per neuron:

√
1
N

∑
i

(
dhi
dt

)2

. Similar measures have been used to find

fixed points and slow dynamics in highly non-linear dynamics [32]. We observe that the two distinct values of h̄

are both associated with vanishing speed (Fig 4B, middle right). Additionally they are associated with very high225

levels of coherence, i.e. small residuals as quantified by the population variance, 1
N

∑
i (δhi (t))

2 (Fig 4B, bottom

right). Evidently, in the network with larger values of J1 there are two distinct states with slow dynamics and high

levels of coherence, and the network switches rapidly between these two. In contrast, with mild structured con-

nectivity both the speed and the variance of the residuals remain roughly constant throughout the trial (Fig 4B, left).

230

To gain insight into the emergence of the switching dynamics, we examine the most frequent value of
∣∣h̄ (t)

∣∣ as a

function of J1 and we find that there is a rapid crossover from a state with unimodal fluctuations around zero, to

a state with bimodal peaks and that the most frequent value of
∣∣h̄ (t)

∣∣ saturates quickly with J1 and then remains

constant (Fig. 4C). What is the nature of this regime? And what determines the two values of h̄ that come to

dominate the dynamics?235

Because the bouts of slow dynamics are associated with small residuals, we assume δhi � 1 and approximate

φ (t) ≈ φ̄ (t) ξ + φ′
(
h̄ (t)

)
δh. Note that we have made use of the fact that ξi = ±1 and that φ is an odd function.

Because ξ is in the null-space of the row-balanced connectivity (J̃φ =Jδφ, as discussed above) the residual dynamics

(Eqn 4) become240

dδh

dt
= −δh + φ′

(
h̄
)
Ĵδh (13)

We observe that in these linearized dynamics the coherent mode current, h̄ (t), plays the role of a dynamic gain via

the slope of the transfer function, φ′.

In the linearized dynamics we turn to the eigenvectors, u(k), of Ĵ and decompose the residual dynamics according

to δh =
∑
k cku

(k). Given an instantaneous value of h̄, the independent dynamics of the eigenmodes are245

dck
dt

=
(
−1 + φ′

(
h̄
)
λk
)
ck (14)

where λk is the kth eigenvalue of Ĵ. (We show in Methods that Ĵ has the same eigenvalues as J̃)

The leading eigenvalue, λ1, has real part approximately equal to g. If h̄ is small then φ′
(
h̄
)
≈ 1 and there are many

modes that diverge exponentially. If h̄ is large (either positive or negative) then φ′
(
h̄
)
≈ 0 and then all the modes

decay exponentially. However, there are two critical values of h̄ which yield marginal and therefore slow dynamics250
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for the leading mode, c1. These are the values, h̄c, for which the slope of the transfer function is equal to 1
g :

h̄c = φ′−1

(
1

g

)
(15)

If h̄ (t) ≈ h̄c and the residuals are small then the time constant of fluctuations in the leading eigenmode,
(
1− φ′

(
h̄
)
g
)−1,

are very long.

Indeed we find that the most frequent value of
∣∣h̄ (t)

∣∣ as a function of g fits the curve hc (g) very well (Fig. 4D).255

We conclude that the switching between two states each with slow dynamics and a high level of coherence observed

in Fig 4B reflects a regime of self-tuned coherent chaos in which the coherent mode self-adjusts to a critical value

so that the dynamics of the small residuals are near-marginal, giving rise to slow dynamics. The above linearized

dynamics (Eqn 13) are not exact and therefore non-linear interactions eventually destabilize the system and pre-260

cipitate a state-switch. Nevertheless, the linearized dynamics dominate the dynamics of the small residuals during

the bouts of high coherence.

As observed in Fig 4C, when we increase J1, the most frequent value of
∣∣h̄ (t)

∣∣ rapidly increases until it saturates

at a value very near to φ′−1
(

1
g

)
. Moreover, we find that this crossover to the regime of self-tuned coherent chaos265

occurs at moderate values of J1 (on the order of g), independently of network size.

Notice the crucial role of row balance in facilitating self-tuned coherent chaos: row balance filters out the direct

contribution of the coherent mode activity to the dynamics of the residuals and enables the coherent mode to act

as a dynamic gain. The coherent mode then self-adjusts to cancel the leading eigenvalue of Ĵ and yield bouts of270

slow, highly coherent dynamics.

We note that we can loosen the constraint on the symmetry of the transfer function and allow any smooth sigmoidal

transfer function if we restrict the input mode to be uniform, ξi = 1 for all i. We show an example of the self-tuned

coherent chaotic state for a non-symmetric transfer function in Fig S1.275

Symmetry breaking in the self-tuned chaotic regime and transition to fixed point

The example of Fig. 4A illustrates dynamics which reside in the positive and negative coherent states with equal

frequency, maintaining the hi → −hi symmetry of the underlying dynamic equations. We observe that in may

realizations this symmetry is violated at the single trial level for sufficiently strong J1, as demonstrated in Fig. 5A280
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Figure 5. Realization-Dependent Symmetry Breaking in the Self-Tuned Chaotic Regime. (A)
Sample traces of coherent mode current, h̄ (t), (top) and histogram of values of h̄ (t) (bottom) from a connectivity
realization with real eigenvalue for J1 = 40, 60, 80 increasing from left to right. Dynamics exhibit pronounced
asymmetry. (B) Absolute value of the time-average coherent mode current,

∣∣〈h̄〉∣∣, as a function of J1. Each
colored line represents a single connectivity realization, averaged over 10 initial conditions. For many individual
realizations,

∣∣〈h̄〉∣∣ is significantly non-zero over a large range of values of J1, while still not arriving at fixed point
value (displayed by dashed line). We display the 37 realizations with real leading eigenvalue out of 100 total
realizations from this set of trials. Thick black line shows average over those realizations. N = 8000 for all panels.

We measure the asymmetry in a single trial as the absolute value of the time-averaged coherent activity,
∣∣〈h̄〉∣∣, and

we find that asymmetry grows gradually with J1 throughout the chaotic regime, and at different rates for different

realizations (Fig 5B).

285

As is evident in Fig. 5B, for many realization the level of asymmetry increases with J1 until it reaches a maximal

value of
∣∣〈h̄〉∣∣ =

∣∣h̄c∣∣ =
∣∣∣φ′−1

(
1
g

)∣∣∣(dashed line). At this point, the system spends all the time at one of the possible

states, suggesting a transition to fixed point.

Indeed, as has been previously reported by Garcia Del Molino et al [8], realizations of Ĵ that have a real leading290

eigenvalue (see also Methods) yield a fixed point equation for the above linearized dynamics (Eqns 13):

c∗1
(
1− φ′

(
h̄∗
)
λ1

)
= 0 (16)

The fixed point requires h̄∗ = h̄c = φ′−1
(

1
g

)
so that all but the leading eigenmode decay to zero, and the resulting

fixed point for c∗1 is marginally stable.

Indeed, we find that realizations of Ĵ with a real leading eigenvalue undergo a transition to a fixed point upon295

sufficient increase of J1. Similar to the preceding chaotic state, the fixed point is highly coherent, with very small

residuals. Furthermore, it exhibits the hallmarks of the self-tuned coherent state: the value of the coherent mode

is close to φ′
(
h̄∗
)

= 1
g , the residuals are aligned with the leading eigenvector of Ĵ, and the the leading eigenvalue
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of the Jacobian matrix at the fixed point is close to zero (Fig S2).

300

Oscillatory fluctuations in self-tuned chaos and transition to limit cycle

The above symmetry breaking and transition to fixed point is observed only for some of the realizations of J. In most

of the other cases, rather than symmetry breaking, we observe an increased oscillatory component in the chaotic

dynamics. This is reflected in the presence of a large second peak in the normalized autocorrelation function, q̄ (τ)

(Fig 6A).305

Figure 6. Realization-Dependent Oscillatory Imprint on the Self-Tuned Chaotic Regime. (A) Sample
traces h̄ (t) (top), and normalized autocorrelation q̄ (τ) (bottom) of coherent mode current for a connectivity
realization with complex eigenvalue for J1 = 25, 30, 35 increasing from left to right. Dynamics exhibit pronounced
oscillatory power and the autocorrelation exhibits a pronounced peak near the same frequency that will dominate
the limit cycle for larger J1. (B) Height of second peak of the autocorrelation of the coherent mode input as a
function of J1. Each colored line represents a single connectivity realization, averaged over 10 initial conditions.
For many realizations, there is a significant second peak in the autocorrelation over a long range of values of J1

well before a limit cycle is reached. We display the 63 realizations which had complex leading eigenvalue out of
100 in this set of trials. Thick black line shows average over those realizations. (C) Observed period of oscillatory
chaos vs phase of leading eigenvalue for 181 realizations from which we were able to measure an oscillatory period
with chaotic fluctuations (out of 196 realizations with complex leading eigenvalue in this set of trials. In order to
confine to realizations and values of J1 that yielded chaos, we restrict to those with second peak of autocorrelation
less than 0.8. These had average height of second peak over all realizations: 0.5). Dotted line shows prediction
from theory: 2π

Phase(λ1) . The bulk of realizations are very well predicted although a notable fraction are not. The
median error of prediction was 7.75 (average period over these realizations: 231, std: 212). N = 8000 for all
panels.

The origin of these oscillations can be traced to the nature of the leading eigenvalues of Ĵ. As also reported in

[8] and elaborated in Methods, if the leading eigenvalue of Ĵ, λ1, is complex then there is no fixed point solution.

Instead we assume in this case that h̄ (t) undergoes a limit cycle with period T and find the solution for c1 (t):

c1 (t) = c1 (0) exp (−t+ Φ (t)λ1) (17)

where Φ (t) =
´ t

0
ds φ′

(
h̄ (s)

)
.310
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Requiring that this yield a limit cycle solution for c1 (t) with period T yields

T = 2π
Reλ1

Imλ1
(18)

and this additionally requires that the period-average of φ′
(
h̄ (t)

)
to be equal to the critical value 1

g .

Indeed, we observe that in the case of a Ĵ with complex leading eigenvalue, most realizations exhibit oscillatory315

fluctuations. The height of the second peak in the autocorrelation, q̄ (τ), grows gradually with J1 with a realization-

dependent rate (Fig 6B). Furthermore, for most individual realizations the period of the dominant oscillatory peak

in the autocorrelation, even within the chaotic regime, is well-predicted by the above theoretical prediction for T

(Eqn 18, Fig 6C).

320

For for indivdual realizations, there is a sufficiently large J1 beyond which the second peak of q̄ (τ) reaches 1

and the dynamics transition to a pure limit cycle (Fig S3). We note that some realizations with a real leading

eigenvalue also exhibit oscillatory components in their chaotic dynamics for certain values of J1, which we presume

relate to complex subleading eigenvalues, but these do not exhibit a transition to pure limit cycle (data not shown).

325

Realization-dependence and system-size scaling of the transition out of chaos

We now consider the critical value, Jc1 , of the strength of structured connectivity that yields a transition out of

chaos. In contrast to the case without row balance, we find that in the row-balanced network the transition out of

chaos occurs at values of J1 scaling at least as
√
N . However, the particular value of Jc1 varies considerably across330

realizations (Fig S2 and S3).

The case of a real leading eigenvalue λ1 ≈ g and the associated transition to fixed point provides a starting point

for analyzing the transition out of chaos (a similar argument is made in the Methods for the case of complex

leading eigenvalue). In the limit of small residual currents, δhi � 1, the fixed point equation for the coherent mode335

current (5) is h̄∗ = φ′
(
h̄∗
)
J1√
N
νT δh∗. Applying the fixed point requirements derived above that φ′

(
h̄∗
)

= 1
g and

δh = c∗1u
(1), where u(1) is the leading eigenvector of Ĵ, we find (as also reported in [8]) that

c∗1 =

√
Ngφ′−1

(
1
g

)
J1νTu(1)

(19)
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Equation 19 suggests that Jc1 scales as inverse of the overlap between the leading eigenvector, u(1), and the output

mode, ν . Indeed, we show numerically that the critical value Jc1 for fixed g is negatively correlated with
∣∣νTu(1)

∣∣
(Fig 7A).340

Figure 7. Sufficiently Strong Structure Yields Transition Out of Chaos Despite Row Balance: (A)
Scatterplot of the logarithm of transitional value of J1 vs the absolute value of the projection of the output mode,
ν, on the leading eigenvector, u(1) for 300 connectivity realizations with N = 8000. r2 = 0.29. (B) Fraction of
realizations displaying chaotic activity as a function of the rescaled structured connectivity: J1

N . With this scaling
the curve appears to be independent of N .

We next ask how Jc1 scales with system size. Because the above fixed point assumes δhi = c1u
(1)
i � 1 where u(1)

has norm 1, we must have c1 be no larger than O (1). Since the typical value of
∣∣νTu(1)

∣∣ is O (1) we would naively

expect that the typical transition might occur for Jc1 ∼
√
N . However, we observe numerically that the fraction of345

realizations exhibiting chaotic dynamics for a given value of J1 appears to scale as J1
N and not as J1√

N
as expected

(Fig 7B). For finite N chaos appears to be lost for some Jc1 ∼ Nα with α ∈ [1/2, 1], and the particular Jc1 is highly

realization-dependent. An analytical derivation of the actual value of Jc1 requires a more comprehensive study of

the network’s stability.

350

From our numerical work it appears that in the limit of large system size chaos persists for all values of J1,

for almost all realizations. Indeed for a network with N = 16000, for example, we increase J1 up to values around

100 and observe that chaos persists for most realizations and coexists with a very high degree of spatial coherence.

The coherence measure, χ, reaches values higher than 0.96 even as fluctuations persist (Fig S4). Thus we conjecture

that in the limit N → ∞, for almost all realizations, increasing J1 indefinitely will yield self-tuned coherent chaos355

with χ→ 1.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/350801doi: bioRxiv preprint 

https://doi.org/10.1101/350801
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multiple Modes of Coherence

We generalize our model in order to construct a network with multiple modes of coherent activity. In this extension

we take the structural component, M, to be a low-rank matrix comprised of the sum of outer products of pairs of360

vectors which are all mutually orthogonal:

M = J0

d∑
k=1

wk√
N

ξ(k)ν(k)T (20)

where we have introduced a parameter J0 that controls the overall strength of the structured connectivity, and a

set of parameters wk satisfying
∑d
k=1 w

2
k = 1 that determine the relative weight of the different modes.

We can extend our schematic representation and think of each row vector ν(k)T as a separate output mode connected365

in a feed-forward-like manner to the input mode, ξ(k), (Fig 8A) and then decompose the dynamics into the residual

dynamics identical to the above (Eqn 4) and the dynamics of the coherent activity along each separate input mode:

dh̄(k)

dt
= −h̄(k) +

J0wk√
N

ν(k)Tφ (21)

where each separate coherent current is given by h̄(k) ≡ 1
N ξ(k)Th.
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Figure 8. Coherent Chaos Along Multiple Modes. (A) Schematic of network with three coherent modes
displaying effective output modes, ν(k), and input modes, ξ(k), each of which are orthogonal to all others. (B)
Matrix of Pearson correlation coefficients between firing rates, φi, of pairs of neurons in a network with three
coherent modes and J1 = 1. (C) Sample activity trace displaying sample single neuron activities and in thicker
lines, three coherent mode activities, φ̄(k). (D) Generalized coherence, χ(k), as a function of J1 for 2, 3, 4 modes
in the regime of passive coherence. Dashed line displays theory. (E) Sample activity traces display extreme
coherence for two coherent modes. (F) Generalized coherence for two coherent modes (in blue) as a function of
J1 extends to near complete coherence, while chaos persists. Compare network with one coherent mode (in black
dashed line). Bar shows standard deviation over 100 realizations. For panels (B), (C), (E) N = 2000. For panels
(D) and (F) N = 4096.

The analytical results found above for the regime of passive coherence can be directly extended to the case of370

multiple modes. In particular, in the limit where J0 � 1, the separate coherent modes are independent of each

other and driven passively by the residual fluctuations (Fig 8C) such that

∆̄(k) (τ) ≈ J2
0

g2
w2
k∆δ (τ) (22)

where ∆̄(k) (τ) =
〈
h̄(k) (t) h̄(k) (t+ τ)

〉
is the autocorrelation function of the kth coherent mode.

The resulting covariance matrix, Cij ≡ 〈φiφj〉, has a low-rank structure which is shaped by the input modes (Fig375
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8B). In particular, by Taylor expanding φi around δhi:

Cij ≈

〈(
φ (δhi) + φ′ (δhi)

∑
k

h̄(k)ξ
(k)
i

)(
φ (δhj) + φ′ (δhj)

∑
k

h̄(k)ξ
(k)
j

)〉
(23)

Since the residuals are on average uncorrelated and the distinct input modes are orthogonal, we find using Eqn 22

that to leading order:

C ≈ [φ′]
2
J ∆δ (0)

J2
0

g2

d∑
k=1

w2
kξ

(k)ξ(k)T (24)

We generalize our measure of coherence to measure the d-dimensional coherence, or the fraction of total power

which is shared along the d input mode directions:380

χ(d) ≡

√√√√√√
d∑
k=1

〈(
h̄(k)

)2〉
1
N

∑
i 〈h2

i 〉
(25)

and we find that for Jk � g and finite d

χ(d) ≈ J0

g
(26)

Numerically, this prediction holds well for up to J0
g = 0.2 for at least up to d = 4 as we show in Fig 8D, and we

expect it to hold for larger d as well.

We note that in the regime of passive coherence, just as in the case of a single coherent mode, we can relax the385

restrictions on ξ(k) and φ: Our results hold for ξ(k) any norm
√
N vector orthogonal to ν(j) ∀j and ξ(j) j 6= k, and

also for φ any sigmoidal function.

In addition, we can generalize row balance by subtracting the weighted row-average for each input mode such that

every ξ(k) will reside in the null space of the new connectivity matrix, J̃(d):390

J̃(d) ≡ J− J
1

N

d∑
k=1

ξ(k)ξ(k)T (27)

For d > 2 this generalized row balance does not appear to preserve chaotic fluctuations and instead fixed points or

limit cycles appear for J0 ∼ O (1) .

Intriguingly, for d = 2 we observe that with generalized row balance the chaotic regime persists as the structured

connectivity is strengthened and the dynamics become increasingly coherent. The dynamics display switching-like395

activity in which at any time one of the two coherent modes appears to be near the critical value hc while the other

mode is near zero (Fig 8E). It appears that the generalized coherence approaches 1 while chaos persists (Fig 8F)
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such that we conjecture that just as in the case of d = 1, here too in the large N limit χ(2) → 1 as J0 →∞.

Discussion400

Coherent fluctuations are prevalent in cortical activity ranging in spatial scale from shared variability in membrane

potential and spiking in local circuits to global signals measured across the scalp via EEG or across voxels via

fMRI [40, 27, 1, 14]. Constructing a model that intrinsically generates coherent fluctuations has been a challenge

to theorists.

405

We have studied the intrinsic generation of coherent chaotic dynamics in recurrent neural networks. Our model

consists of rate-based neurons whose recurrent connections include a structured component in addition to random

connections. The structured component is a low-rank connectivity matrix consisting of outer products between

orthogonal pairs of vectors which allow local fluctuations to be summed along an output mode, amplified and pro-

jected to an input mode resulting in coherent fluctuations. The orthogonality of input and output mode effectively410

embeds a purely feedforward structure within the recurrent connectivity, thus avoiding feedback of the coherent

fluctuations along the input mode.

In the regime where the structured component is weak, the local synaptic currents are effectively uncoupled from

the coherent mode activity and their dynamics are similar to that of a random network with no structured compo-415

nent at all. The local fluctuations are summed by the structured component of connectivity to drive the coherent

mode, which follows those fluctuations in a passive manner. In this regime of passive coherent chaos we derive a

perturbative dynamical mean-field theory following [30, 12] which shows that the coherence grows linearly with the

ratio of the strength of structured connectivity to the random connectivity. We show that this analysis extends to

multiple modes of coherent activity yielding a finite-rank covariance pattern for the coherent fluctuations.420

For moderate strength of structured connectivity the network exhibits significant realization-dependence and most

realizations transition to either a fixed point or a limit cycle. A realization-dependent theory of these transitions is

beyond the scope of this work. We add a row-balance constraint, placing the input mode in the null-space of the

random connectivity matrix, and we observe that this constraint preserves chaos, reduces the variability between425

realizations, and increases the level of coherence.

With row balance, increased strength of structured connectivity yields a crossover to a distinct regime of self-

tuned coherent chaos. In this regime the network undergoes Up-Down-like switching between two states each of
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which are characterized by slow, highly coherent dynamics. We show how row balance facilitates this regime by430

enabling the coherent mode to act as a dynamic gain to the dynamics of the residual currents. Consequently,

intermittent marginal dynamics emerge as the coherent mode self-adjusts to one of two critical values. Interestingly

the crossover to this self-tuned coherent regime happens for moderate strength of structured connectivity, indepen-

dently of network size.

435

In the regime of self-tuned coherent chaos, realization-dependent qualitative differences begin to emerge with in-

creasing strength of structured component, J1. For realizations of the row-balanced random connectivity with real

leading eigenvalue, symmetry-breaking emerges such that individual initial conditions yield trajectories that spend

more time near one of the critical values of the coherent mode than the other. For realizations with complex leading

eigenvalue, oscillatory fluctuations begin to emerge. The frequency of these oscillations is well predicted by the440

phase of the leading eigenvalue. Note that we have not addressed the question of the necessary scaling of J1 for the

emergence of realization-dependence in the chaotic regime for the limit of large system size.

As structured connectivity is further strengthened chaos persists even as coherence continues to increase until the

dynamics are dominated almost entirely by the one dimensional fluctuations of the coherent mode. For a finite445

network, above some critical strength of the structured component the system converges to either a fixed point or

a limit cycle, depending on the leading eigenvalue of the row-balanced random connectivity. Our numerical work

suggests that the critical strength of structured connectivity grows with the system size, most likely scaling as

Jc1 ∼ N (at least as Jc1 ∼
√
N). Hence we conjecture that for the scaling of the strength of structured connectivity

presented here, as the network size diverges coherent chaos persists independent of J1 for most realizations, and450

the level of coherence can be brought arbitrarily close to 1.

Importantly, in the regime of weak structured connectivity and passive coherence some of the assumptions of our

model can be loosened. First, in this regime row balance on the random connectivity is not necessary. Additionally,

we need not require the input mode be binary but rather any general pair of orthogonal vectors can serve as input455

and output mode. Moreover we can loosen the restriction on orthogonality: a random pair of vectors can be used

without qualitative impact on the dynamics presented here because the contribution of the realization-dependent

overlap between the two vectors in this regime will be negligible relative to the typical contribution from the full-

rank random connectivity, J.

460

On the other hand, achieving self-tuned and highly coherent chaos requires the network be finely-tuned to a high

degree. The orthogonality of the input and output modes is not enough in order to achieve highly coherent chaos

because of interactions between the random and structured components of connectivity. We therefore constrain the
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random component to satisfy row balance by ensuring that the input mode of the structured connectivity be in the

null-space of the random component of connectivity. In addition to row balance, the self-tuned coherence regime465

depends on the choice of the single-neuron transfer function and input-mode vector. In the case where the transfer

function is an odd function, such as tanh used throughout the main text, the input mode can be any binary vector.

Otherwise, high coherence is achieved only for a uniform input mode, ξi = 1∀i. In the latter case, the theory

developed here predicts coherent fluctuations that switch between two non-symmetric values of the coherent mode,

corresponding to the two points where where the slope of the transfer function equals 1/g, and we have verified this470

numerically (Fig S1).

An interesting question is whether the particular structure of the connectivity matrix in our model can be achieved

by a biologically plausible synaptic learning rule. Prior studies of sequence generation have constructed learning

rules that yield connectivity which is comprised of outer-products of random vectors [29, 33] and these could form475

the basis for learning the necessary orthogonal rank-one structure. Plausible learning rules for yielding balanced

excitation-inhibition dynamics [39, 15, 13] could potentially provide a foundation for learning row balance. It is

thus plausible that the constraints of our model can be achieved by an appropriate synaptic learning, especially

for the more robust regime of mild coherence. On the other hand, it is unclear to us whether the high degree of

fine tuning required for the self-tuned coherence regime can be achieved by a biologically plausible learning rule.480

Investigating candidates of appropriate learning rules for generating coherent chaos, is beyond the scope of this work.

In the case of a uniform input mode the model can be constructed as an excitation-inhibition network, for example

with half the neurons defined as excitatory by setting νi = 1 and the other half defined as inhibitory via νi = −1

(or a larger inhibitory value to compensate for a smaller fraction of inhibitory neurons). From this perspective the485

coherent fluctuations, in particular in the regime of passive coherence, can be understood within the framework of

dynamic excitation-inhibition balance [38]. In this case the pair of balance equations are degenerate and constrain

only the mean excitatory population rate to be nearly equal the inhibitory rate, but otherwise leave the overall

mean rate unconstrained. Local residual fluctuations yield only small differences in mean population rates, thus

leaving the balance satisfied, but these small differences drive significant coherent fluctuations because of the strong490

balanced connectivity. In the general setting of excitation-inhibition balance the pair of balance equations fully

determine the mean rates to leading order and no coherent fluctuations are possible without introducing shared

fluctuations in the external drive. We note that excitation-inhibition networks in the literature have sometimes been

constructed yielding degenerate balance equations. As we have shown here, such choices have dramatic impact on

the dynamics and the results should not be assumed to be generalizable.495

In parallel to our study a pre-print has been published which explores a very similar model[10]. The authors observe
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a similar phenomenon as the self-tuned coherence studied here, and attempt to explain it by an iterative numerical

solution of locally Gaussian dynamic mean-field equations. They do not make the role of row balance clear in

their analysis. In contrast, we have focused on analytical solutions in the limit of both weak and strong structured500

connectivity, deriving a perturbative dynamic mean-field solution for the regime of weak structure and passive

coherence. As we have shown here row balance is critical for moderate structure and self-tuned coherent chaos.

Additionally we have shown that a full understanding of the properties of the highly coherent regime requires a

realization-dependent mean-field analysis. In particular, we have explained that the leading eigenvalue of the row-

balanced random connectivity matrix impacts qualitative features of the chaotic dynamics, yielding either broken505

symmetry or oscillatory fluctuations. Furthermore the critical strength of structured connectivity that leads to a

transition to either fixed point or limit cycle is correlated with the extent of overlap between the leading eigenvector

and the output mode.

As mentioned in the main text and introduction, a previous study also explored the case of a single orthogonal E-I510

structured component[8]. They derived the fixed point and limit cycle solutions which we reviewed here, but did

not focus on the chaotic regime and they did not discuss the role of network size in the transition out of chaos. Our

focus here was on the chaotic regime, both the emergence of coherence for small structured connectivity and the

imprint of the non-chaotic regime on the chaotic dynamics for moderate structured connectivity.

515

A separate study has claimed to observe coherent activity in excitation-inhibition networks of spiking neurons [37].

A study of the dynamics of spiking neurons is beyond the scope of our work, although we would conjecture that

coherent activity would arise with orthogonal, rank-one E-I structure in that setting as well.

Previous work has shown how shared inputs from external drive can drive correlated fluctuations in excitation-520

inhibition networks [6, 25]. In our current work, in the context of rate neurons, we show that such correlated

fluctuations can be generated internally by a recurrent network without external drive. In order to avoid either

saturation or pure oscillations the coherent activity mode must not drive itself through a feedback loop. In order to

achieve this it is necessary that the structured component embed an effectively-feedforward projection between a

pair of orthogonal modes. In parallel, Darshan et al [5] have developed a theory for internally generated correlations525

in excitation-inhibition networks of binary units. The underlying principle is similar: the recurrent connectivity

embeds a purely feedforward structure.

We note that the structured component of connectivity in our network is non-normal. The dynamics of non-normal

matrices have drawn a fair amount of interest with suggested functional impact on working memory [7, 9] and am-530

plification [17]. Non-normal matrices embed feedforward structure within recurrent connectivity, and the resulting
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dynamics even in a linear system are not fully determined by the eigenspectrum but depend on the structure of the

corresponding eigenvectors[36]. It has been shown that E-I networks are generally non-normal, and that rank one

E-I structure amplifies small differences between excitatory and inhibitory rates driving a large common response

[17, 11]. This amplification is related to the way in our network, small fluctuations of the residuals are summed535

along the output mode and drive coherent fluctuations along the input mode in the regime of passive coherence,

but these fluctuations are internally driven by the non-linear dynamics whereas the dynamics in those previous

studies were linear. As pointed out in [2], a structured component such as in our model is purely feedforward and

can be considered an extreme case of non-normality as it has only zero eigenvalues and therefore all the power in

its Schur decomposition is in the off-diagonal. The results here depend on this property and cannot be extended to540

connectivity with only partial feedforward structure.

Rate model dynamics with a rank-one structured component have been studied in depth recently [24, 16]. Since

these works focused on time-averaged activity and not fluctuations they did not observe coherent activity in the

case of an outer product of a pair of orthogonal vectors as studied here. These works also differed in that the545

strength of the structured connectivity was scaled as 1/N. This scaling is similar to our limit of weak structured

connectivity, J1 � 1, and guarantees that dynamic mean-field theory holds in the limit of large system size, but in

that scaling coherent fluctuations will appear only as a finite-size correction.

It has been previously observed [22] and then proven [34] that adding an orthogonal outer-product to a random550

matrix generates realization-dependent outliers in the eigenspectrum, and furthermore that these outliers are be

removed by row balance. It has been previously observed that performing such a subtraction has significant impact

on the resulting dynamics [8, 31]. Yet the relationship between the change in eigenspectrum and the dynamics has

not been made clear beyond the basic observations regarding the stability of a fixed-point at zero. Here we suggest

that the impact of row balance on the chaotic dynamics is not directly related to the eigenspectrum but that this555

adjustment should be thought of as effectively subtracting the coherent-mode activity from each individual neuron,

thus -preventing feedback loops to the coherent mode. We show that row balance enables the emergence of slow

residual dynamics with the coherent mode playing the role of dynamic gain, and that it is crucial for the emergence

of self-tuned chaos and highly coherent dynamics.

560

In conclusion we have presented a simple model which generates coherent chaos in which macroscopic fluctuations

emerge through the interplay of random connectivity and a structured component that embeds a feedforward

connection from an output mode to an orthogonal input mode.
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Methods

Exact Decomposed Dynamics and Row Balance565

We write the full dynamics without row balance:

dh

dt
= −h + Jφ +

J1√
N

ξνTφ (28)

and we define

h̄ ≡ 1

N
ξTh φ̄ ≡ 1

N
ξTφ (29)

δh ≡ h− h̄ξ δφ = φ− φ̄ξ (30)

Applying these definitions to the full dynamics (and noting that νTφ = νT δφ), the exact coherent mode dynamics

are570

dh̄

dt
= −h̄+

J1√
N

νT δφ +
ξT

N
Jφ (31)

and by subtracting these from the full dynamics of h, the decomposed dynamics are:

dδh

dt
= −δh + Jφ− ξξT

N
Jφ = −δh + Ĵφ (32)

where Ĵ ≡
(
I− ξξT

N

)
J as introduced in the main text.

We observe that the constraint ξT δh = 0 must be satisfied automatically by the residual dynamics (Eqn 32),

and this can be confirmed by verifying that575

d
(
ξT δh

)
dt

= −
(
ξT δh

)
(33)

In the regime where J1 � 1 the φj are nearly uncorrelated and therefore ξT

N Jφ ∼ O
(

1√
N

)
and can be ignored.

In the regime with strong structured connectivity we must consider this term in Eqn 31. To that end we write

φ = φ̄ξ + δφ and also write the transformation of the input mode via the random matrix as580

Jξ = a‖ξ + ξ⊥ (34)

where a‖ is a realization-dependent scalar and ξ⊥ is a realization-dependent vector orthogonal to ξ. That yields

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2018. ; https://doi.org/10.1101/350801doi: bioRxiv preprint 

https://doi.org/10.1101/350801
http://creativecommons.org/licenses/by-nc-nd/4.0/


coherent mode dynamics
dh̄

dt
= −h̄+

J1√
N

νT δφ + a‖φ̄+
ξT

N
Jδφ (35)

and residual dynamics
dδh

dt
= −δh + Ĵδφ + φ̄ξ⊥ (36)

As J1 increases and the fluctuations in the coherent activity, φ̄ (t), drive feedback in two ways. First of all, J maps

the coherent activity back along the input mode driving direct feedback to the coherent current h̄ via the term a‖φ̄.585

Secondly, J maps the coherent activity in a realization-dependent direction, ξ⊥, orthogonal to the input mode.

This drives the residual activity fluctuations δh via the term φ̄ξ⊥, and this biasing of the residual fluctuations may

in turn generate feedback to the coherent current through the output mode via νT δφ.

590

Both of these feedback terms are realization dependent, and both of them are canceled via the row balance sub-

traction

J̃ ≡ J− J
ξξT

N
(37)

which yields exact coherent mode dynamics

dh̄

dt
= −h̄+

J1√
N

νT δφ +
ξT

N
Jδφ (38)

and residual dynamics
dδh

dt
= −δh + Ĵδφ (39)

And in this case the residual dynamics are again uncorrelated so that ξT

N Jδφ ∼ O
(

1√
N

)
and can again be ignored595

in the coherent mode dynamics.

Note that φ̄ no longer drives feedback to either the residual or the coherent dynamics. Nevertheless the dynamics

are still coupled in both directions as δφ depends on h̄.

600

Perturbative Dynamic Mean-Field Theory in the Limit of Weak Structured Connec-

tivity

We derive the dynamic mean-field equations in the limit of small J1 using a perturbative approach. We write the

mean-field dynamics of the residuals as
dδhi
dt

= −δhi + ηi (40)
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and the coherent component as605

dh̄

dt
= −h̄+ J1m (41)

where ηi andm are assumed to be uncorrelated, mean-zero Gaussians. For general J1 the assumption of Gaussianity

fails, therefore we assume J1 � 1.

The autocorrelation of ηi is given by

[〈ηi (t) ηi (t+ τ)〉] =

∑
j,k

JijJik 〈φj (t)φk (t+ τ)〉

 (42)

where we have introduced [] as the notation for averaging over realizations. We assume that φj is independent of610

Jij and so the terms j 6= k have average zero over realizations and we get

[〈ηi (t) ηi (t+ τ)〉] = g2C (τ) (43)

where

C (τ) ≡ [〈φj (t)φj (t+ τ)〉] (44)

The autocorrelation of m is given by615

[〈m (t)m (t+ τ)〉] =
J2

1

N

∑
j,k

νjνkφj (t)φ (t+ τ)

 (45)

And again the j 6= k terms fall in the realization average so that

[〈m (t)m (t+ τ)〉] = J2
1C (τ) (46)

Next we define the autocorrelation of the residuals

∆δ (τ) ≡ [〈δhi (t) δhi (t+ τ)〉] (47)

and the autocorrelation of the coherent current

∆̄ (τ) ≡
[〈
h̄ (t) h̄ (t+ τ)

〉]
(48)
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and we can follow previous work [30, 12] and write the dynamic mean-field equations for ∆δ (τ) as620

(
1− ∂2

∂τ2

)
∆δ (τ) = g2C (τ) (49)

and for ∆̄ (τ) as (
1− ∂2

∂τ2

)
∆̄ (τ) = J2

1C (τ) (50)

Next we note that for J1 � g we assume that
∣∣h̄∣∣ � 1 so we have φi = φ

(
δhi + ξih̄

)
≈ φ (δhi) + ξiφ

′ (δhi) h̄.

Therefore we have that to leading order625

C (τ) ≈ [〈φ (δhi (t))φ (δhi (t+ τ))〉] (51)

and then following previous results [30, 12] we can write this to leading order as an integral over Gaussians:

C (τ) ≈
∞̂

−∞

Dz

 ∞̂

−∞

Dxφ
(√

∆δ (0)−∆δ (τ)x+
√

∆δ (τ)z
)2

(52)

Note that it is possible to compute the sub-leading correction term as well, but for our purposes this is unnecessary.

We suffice it to observe that to leading order, the self-consistency equation for ∆δ (τ) (Eqn 49) reduces to the iden-

tical equation for that of a random network without structured component (J1 = 0)[30], and that ∆̄ (τ) contributes

only to the sub-leading correction. Following [30, 12] then Eqn 49 can be solved yielding ∆δ (τ) ≈ ∆0 (τ), where630

∆0 (τ) is the autocorrelation when J1 = 0.

The dynamic equation for ∆̄ (τ) is identical to that for ∆δ (τ) except with J1 in place of g, so we conclude that the

resulting leading order autocorrelation of the coherent mode is

∆̄ (τ) ≈ J2
1

g2
∆0 (τ) (53)

Thus for J1 � g fluctuations in the coherent input are driven passively by the random source which is generated635

self-consistently by the residual fluctuations, and the resulting autocorrelation of the coherent mode is simply a

scaled version of the autocorrelation of the residuals.

It is worth noting that for J1 ∼ g the assumption of Gaussianity is broken due to the cross-correlations between

the φj .640
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Analysis of Fixed Points and Limit Cycles in the Limit of Strong Structured Connec-

tivity

In the limit of large J1 we assume δhi � 1, and approximate φj ≈ φ
(
ξj h̄
)

+ φ′
(
h̄
)
δhj , where we have made use

of the symmetry of the transfer function and the binary restriction on ξj . Note that this linearization clearly holds645

without symmetric transfer function for the case of uniform ξj = 1 as well.

Following the exact decomposition above (Eqns 32 and 31)this yields dynamical equations:

dδh

dt
= −δh + φ′

(
h̄
)
Ĵδh (54)

dh̄

dt
= −h̄+

J1√
N
φ′
(
h̄
)
νT δh + φ′

(
h̄
) ξT
N

Jδh (55)

Note that the leading term of the linearization, φ
(
ξih̄
)

= ξiφ
(
h̄
)
has fallen from all terms, so that in this regime650

the coupling between residuals and coherent mode has been greatly simplified: The residuals serve as the input

while the coherent mode acts as a dynamic gain. This reflects the important role of the orthogonality of ν and ξ

on the one hand, and the row balance subtraction we made to the random connectivity, both of which ensure that

the coherent mode does not drive a feedback loop.

655

In this regime h̄ acts as a dynamic gain on the local synaptic currents through φ′
(
h̄
)
. Given h̄ the equation for the

residual currents is linear and therefore their dynamics can be decomposed in the eigenbasis of the matrix

Ĵ ≡ PξJ (56)

where Pξ = I − ξξT

N is the projection matrix onto the the subspace orthogonal to ξ. We observe a fine-point not

noted in [8]: Had we ignored the constraint ξT δh = 0 then the residual dynamics would have been determined by

J and its eigenvalues, and these are not the same as those of Ĵ.660

We claim that Ĵ = PξJ and J̃ = JPξ have the same eigenvalues. If λ is an eigenvalue J such that the asso-

ciated eigenvector u is orthogonal to ξ, then clearly u is also an eigenvector of both Ĵ and J̃ with the same

eigenvalue λ. Otherwise λ is an eigenvalue of both Ĵ and J̃ if and only if (J− λI)−1
ξ = u is orthogonal to ξ. In

this case it can be readily verified that u is an eigenvector of Ĵ, and Ju = λu + ξ is an eigenvector of J̃. Thus we665

note also that the eigenvectors of Ĵare orthogonal to ξ (except potentially for one eigenvector with zero eigenvalue).
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We write the eigenvectors as u(i) with Ĵ · u(i) = λiu
(i). Writing the vector of residual current as δh =

∑
i ciu

(i)

yields dynamics
dci
dt

=
(
−1 + φ′

(
h̄
)
λi
)
ci (57)

The only (marginally) stable, non-zero fixed point is achieved with c1 6= 0 and ci = 0 for all i > 1. And the670

fixed-point equation is

c∗1
(
1− φ′

(
h̄
)
λ1

)
= 0 (58)

This fixed point only exists if λ1 is real, and yields a fixed-point requirement for h̄∗:

h̄∗ = φ′−1

(
1

λ1

)
≈ φ′−1

(
1

g

)
(59)

In order to close the loop we turn to the fixed point equation for the coherent dynamics. Ignoring the term

φ′
(
h̄
)

ξT

N Jδh, which yields an O
(

1√
N

)
correction we find:

h̄∗ =
J1√
N
φ′
(
h̄
)
νT δh∗ (60)

which in turn, using δh∗ = c1u
(1), yields a solution to leading order for c1: c∗1 =

√
Nh̄∗λ1

J1νTu(1) , as reported in [8].675

If λ1 is complex there is no fixed point but rather a limit-cycle solution to the dynamics of the complex-valued c1

exists with δh (t) = Re
[
c1 (t)u(1)

]
, and ci = 0 for all other eigenmodes. Assuming h̄ (t) is periodic with period T ,

we can separate variables and integrate Eqn 57 in order to find c1 (t) is given by680

c1 (t) = c1 (0) exp (−t+ λ1Φ (t)) (61)

for t ≤ T , where Φ (t) =
´ t

0
ds φ′

(
h̄ (s)

)
. Writing c1 (0) =

∣∣c01∣∣ exp (iθ0) and using Reλ1 ≈ g, this gives

c1 (t) =
∣∣c01∣∣ exp (−t+ gΦ (t)) exp (i (θ0 + Imλ1Φ (t))) (62)

A limit cycle in phase with h̄ (t) means c1 (T ) = c1 (0) and this requires that both gΦ (T ) = T and also Im [λ1] Φ (T ) =

2π. From the first requirement we find that the average value of φ′ over a period must be the critical value:

〈
φ′
(
h̄
)〉

=
Φ (T )

T
=

1

g
. (63)
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And combining the second requirement yields an expression for the period (Eqn 18, as reported in [8] as well):

T = 2π
Reλ1

Imλ1
(64)

We can further write a self-consistency expression for h̄ (t) by taking c1 (t) as given by Eqn 62 and integrate over685

the coherent mode dynamics:

dh̄

dt
= −h̄+ Re

[
J1√
N

νTu(1)c1 (0)φ′
(
h̄ (t)

)
exp (−t+ λ1Φ (t))

]
(65)

which yields

h̄ (t) = h̄ (0) exp (−t) + Re

[
J1√
N

νTu(1)

λ1
c1 (0) exp (−t+ λ1Φ (t))

]
(66)

Without loss of generality we assume that h̄ (0) = h̄c = φ′−1
(

1
g

)
, then

h̄c ≈ c01
J1

∣∣νTu(1)
∣∣

√
Ng

cos
(
θ0 + Im

(
νTu(1)

))
(67)

This is analogous to the fixed point equation for h̄∗ and c∗1. In both cases the requirement that δhi = c1u
(1)
i � 1

requires that c1 be maximally O (1) and motivates our conjectures about the realization-dependence and system-size690

scaling of the transition out of chaos. In particular, we expect and confirm numerically that the critical value of J1

for transition to either fixed point or limit cycle is inversely proportional to
∣∣νTu(1)

∣∣ and grows with network size

(see main text and Fig 7).

In the case of complex leading eigenvalue, simulations confirm that a projection of the full synaptic current dynamics695

into the coherent mode and the leading eigenvector plane (consisting of real and imaginary parts of u(1)) accounts

for well over 0.99 of the total variance. Even restricting ourselves to the variance of the residuals, δhi, we find that

0.98 of the variance is restricted to the leading eigenvector plane (Fig S3).

For N = 4000 we simulate 219 realizations of random connectivity with complex leading eigenvalue and find that700

for sufficiently large J1 all but one of these realizations yield highly oscillatory dynamics with period predicted

nearly perfectly by theory (Fig S3).

We note that in the limit of large N we expect that the typical size of the imaginary component of the leading eigen-

value, λ1, shrinks such that the typical period grows. These longer period oscillations are characterized by square-705

wave-like shape in which the dynamics of the coherent component slows around the critical value h̄c = φ−1
(

1
Reλ1

)
,

which is identical to the fixed-point value of h̄ when λ1 is real. (Fig S3)
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The fraction of realizations with real leading eigenvalue in the large N limit has not been calculated analyti-

cally to our knowledge. We find numerically that this fraction appears to saturate roughly around 3
10 for N & 8000.710

Lyapunov Exponent, Limit Cycles, and Fixed Points

In order to calculate the largest Lyapunov exponent, we begin with a point h0 along the trajectory of the dynamics

and we solve concurrently for the dynamics of the trajectory, h (t) with h (0) = h0, and for a randomly chosen

perturbation, η (t). The trajectory h (t) yields the time-dependent Jacobian matrix for each point along the715

trajectory:

Jij (t) = −1 + Jijφ
′ (hj (t)) (68)

We choose a random unit-norm vector η (0) = η0 and iterate the linearized dynamics of the perturbation:

dη

dt
= J η (69)

The largest Lyapunov exponent is given by

lim
t→∞

1

t
log ‖η (t)‖ (70)

In practice we iterate 69 until t = 5000, that is, 5000 times the intrinsic time-scale of the dynamics, and we renor-

malize η (t) at intervals of t = 100n for n = {1, 2, ..., 50}.720

We classify fixed points numerically by a threshold on the fluctuations of the coherent input: std
(
h̄ (t)

)
≤ 5x10−4.

We classify limit cycles by a threshold on the second peak of the normalized coherent autocorrelation: qpeak ≥ 0.9.

725

We confirm that all of the trials with negative Lyapunov exponent were categorized as either fixed points or limit

cycles. A small fraction of trials classified as limit cycles had positive Lyapunov exponents but with the largest one

0.0043.
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Supporting Information Legends

Figure S1 (see Fig 4). Self-Tuned Coherent Dynamics With Non-Symmetric Transfer Function. (A)825

We use a non-symmetric transfer function φ (h) = (1 + exp−βh)
−p with β = 4 and p = 1

2 . (B) Activity trace

of coherent activity φ̄ (t) in black and 10 randomly chosen neurons φi (t) displays coherent switching between slow

states. (C) Histogram of values of coherent current, h̄, displays bimodality with peaks near the critical values

predicted by theory where φ′
(
h̄
)

= 1
g . Simulations for N = 2000 and g = 2 with row balance.

830

Figure S2 (see Fig 5). Real Leading Eigenvalues Yield Fixed Points. (A) Sample chaotic dynamics for

J1 = 0.1. (B) Sample dynamics of same connectivity realization as in (A) but with J1 = 1. (C) Scatterplot of

all h∗i at fixed point, plotted against individual components of the leading eigenvector, u1
i . Red dot is value of

coherent mode at FP. Black dashed line is FP value predicted from theory. (D) Value of coherent mode at FP,

h̄∗, as a function of the standard deviation of the random connectivity, g. Black line is prediction from theory:835

h̄c = sech−1
(

1√
g

)
. (E) Phase diagram for a single realization with real leading eigenvalue. Colormap shows the

absolute value of the mean coherent current over a single trial,
∣∣〈h̄〉∣∣ which is close to zero when the network is

chaotic and non-zero when at a fixed point. The bar below shows the fixed point value predicted by theory, h̄c, which

is independent of J1. (F) Stability eigenvalue at fixed point, i.e. leading eigenvalue of the Jacobian, −1+ J̃ijφ
′ (h∗j),

as a function of J1 for a specific realization of the random connectivity. The fixed point exhibits marginal stability840

independent of J1. Networks in all panels have row balance. N = 4000.

Figure S3 (see Fig 6). Complex Leading Eigenvalues Yield Limit Cycles. (A) Top: Sample chaotic dy-

namics for J1 = 0.25. Bottom: Autocorrelation of coherent mode shows oscillatory ringing. (B) Same connectivity

realization as (A) but with J1 = 2. Dashed pink line in top panel is prediction from solving the three-dimensional845

dynamics. Autocorrelation shows near-perfect oscillations. (C) Projection of the full dynamics of (B) onto coherent

mode and the real and imaginary parts of the leading eigenvector. These three dimensions account for more than

0.99 of the total variance of the dynamics. Gray projection onto the leading eigenvector plane accounts for 0.98

of the variance of the residual currents. (D) Scatterplot of period of oscillations plotted against the phase of the

leading eigenvalue, Imλ1

Reλ1
, of J̃, for 219 different realizations of the random connectivity. Black line shows prediction850

from theory, T = 2πReλ1

Imλ1
. (E) Phase diagram for a single connectivity realization with complex leading eigenvalue.

Colormap shows the second peak of the normalized autocorrelation of the coherent mode. Networks in all panels

have row balance. N = 4000

Figure S4 (see Fig 3). Near Perfect Coherence as Strength of Structured Connectivity is Increased.855

(A) Plot of coherence, χ, vs strength of structured connectivity, J1, for networks of size N = 16000 with row

balance. Dots display average over realizations, bars display standard deviation. Only chaotic realizations included
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(those not found to be at a fixed point or a limit cycle - see methods). More than 20 realizations per value of J1.

For J1 = 100, 22 out of 30 realizations were chaotic and the average coherence among these realizations was 0.963.

860
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