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Abstract

Malaria, dengue, Zika, and other mosquito-borne diseases continue to pose a major 1

global health burden through much of the world, despite the widespread distribution of 2

insecticide-based tools and antimalarial drugs. The advent of CRISPR/Cas9-based gene 3

editing and its demonstrated ability to streamline the development of gene drive 4

systems has reignited interest in the application of this technology to the control of 5

mosquitoes and the diseases they transmit. The versatility of this technology has also 6

enabled a wide range of gene drive architectures to be realized, creating a need for their 7

population-level and spatial dynamics to be explored. To this end, we present MGDrivE 8

(Mosquito Gene Drive Explorer): a simulation framework designed to investigate the 9

population dynamics of a variety of gene drive architectures and their spread through 10

spatially-explicit mosquito populations. A key strength of the MGDrivE framework is 11

its modularity: a) a genetic inheritance module accommodates the dynamics of gene 12

drive systems displaying user-defined inheritance patterns, b) a population dynamic 13

module accommodates the life history of a variety of mosquito disease vectors and insect 14

agricultural pest species, and c) a landscape module accommodates the distribution of 15

insect metapopulations connected by migration in space. Example MGDrivE 16

simulations are presented to demonstrate the application of the framework to 17

CRISPR/Cas9-based homing gene drive for: a) driving a disease-refractory gene into a 18

population (i.e. population replacement), and b) disrupting a gene required for female 19

fertility (i.e. population suppression), incorporating homing-resistant alleles in both 20

cases. We compare MGDrivE with other genetic simulation packages, and conclude 21

with a discussion of future directions in gene drive modeling. 22

Introduction 23

The advent of CRISPR/Cas9-based gene editing technology and its application to the 24

engineering of gene drive systems has led to renewed excitement in the use of 25

genetics-based strategies to control mosquito vectors of human diseases and insect 26

agricultural pests [1–3]. Applications to control mosquito-borne diseases have gained the 27

most attention due to the major global health burden they pose through much of the 28

world and the difficulty of controlling them using currently-available tools. For malaria, 29
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recent declines in transmission have been seen following the wide-scale distribution of 30

bed nets and antimalarial drugs [4]; however, model-based projections suggest that 31

additional tools will be required to eliminate the disease from highly-endemic areas [5]. 32

For dengue, there is also a need for novel vector control strategies, as the disease is rising 33

in global prevalence and there is currently no cure or vaccine available that is effective 34

against all four serotypes [6]. The recent demonstration of a CRISPR-based gene drive 35

system in Drosophila [7], followed months later by a Zika outbreak in Brazil [8], has 36

prompted development of gene drive technology for Aedes aegypti, the primary mosquito 37

vector of Zika, dengue, and Chikungunya, as well as broad development targeting other 38

mosquito species, such as the Anophelines which transmit malaria. 39

The ease of gene editing afforded by the discovery of CRISPR has also led to 40

significant versatility in terms of the gene drive systems that are now realizable [3, 9]. 41

Prior to the advent of CRISPR, homing endonuclease genes (HEGs) were envisioned to 42

cleave a specific target site lacking the HEG and to be copied to this site by serving as a 43

template for homology-directed repair (HDR), effectively converting a heterozygote into 44

a homozygote and biasing inheritance in favor of the HEG [10]. These dynamics have 45

been demonstrated for a HEG targeting a synthetic target site in the main African 46

malaria vector, Anopheles gambiae [11], and steps have also been taken towards 47

engineering an alternative approach in which the HEG is located on the Y chromosome 48

and cleaves the X chromosome in multiple locations, biasing inheritance in its favor as it 49

induces an increasingly male sex bias in the population [12]. A vast range of additional 50

approaches for biasing inheritance are now being proposed, including several 51

threshold-dependent systems that may permit confineable and reversible 52

releases [13–15], and remediation systems that could be used to remove effector genes 53

and possibly entire drive systems from the environment in the event of unwanted 54

consequences [16]. For instance, an ERACR system (Element for the Reversal of the 55

Autocatalytic Chain Reaction) has been proposed that consists of a homing system with 56

a target site corresponding to the original drive system, essentially removing the original 57

drive as it homes into it, and utilizing the Cas9 of the first drive thus also removing this 58

through the homing process [17,18]. 59

Understanding how these systems are expected to behave in real ecosystems requires 60

a flexible modeling framework that can accommodate a range of inheritance patterns, 61

specific details of the species into which the constructs are to be introduced, and details 62

of the landscape through which spatial spread would occur. To this end, we present 63

MGDrivE (Mosquito Gene Drive Explorer): a flexible simulation framework designed to 64

investigate the population dynamics of a variety of gene drive systems and their spread 65

through spatially-explicit populations of mosquito species and other insect species. A 66

key strength of the MGDrivE framework is its modularity. A genetic inheritance 67

module allows the inheritance dynamics of a wide variety of drive systems to be 68

accommodated. An independent population dynamic module allows the life history of a 69

variety of mosquito disease vectors and insect agricultural pests to be accommodated. 70

Thirdly, a landscape module accommodates the distribution of insect metapopulations 71

in space, with movement through the resulting network determined by dispersal kernels. 72

The model can be run in either a deterministic or stochastic form, allowing the chance 73

events that occur at low population or genotype frequencies to be simulated. 74

What separates MGDrivE from other gene drive modeling frameworks is its ability 75

to simulate a wide array of user-specified inheritance-modifying systems at the 76

population level within a single, computationally efficient framework that also 77

incorporates mosquito life history and landscape ecology. Other frameworks exist that 78

have been designed for more general purposes and applied to specific questions related 79

to gene drive (Table 1) – for instance, Eckhoff et al. [19] used the EMOD malaria model 80

to simulate the spread of homing-based gene drive systems through spatial populations 81

November 21, 2018 2/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/350488doi: bioRxiv preprint 

https://marshalllab.github.io/MGDrivE/
https://marshalllab.github.io/MGDrivE/
https://marshalllab.github.io/MGDrivE/
https://doi.org/10.1101/350488
http://creativecommons.org/licenses/by-nc-nd/4.0/


of An. gambiae. EMOD is open source and a powerful modeling framework; but 82

significant effort is required from users to redefine genetic control strategies, mosquito 83

life history parameters and landscape details. Magori et al. [20] created Skeeter Buster 84

by extending the CIMSiM (container-inhabiting mosquitoes simulation model) 85

model [21] to incorporate genetic inheritance and spatial structure. The Skeeter Buster 86

framework captures the most pertinent mosquito ecology considerations, but is not open 87

source and can only simulate a handful of genetic control strategies [22]. The SLiM 88

genetic simulation framework [23] is capable of modeling the spread of a large variety of 89

user-defined gene drive systems through metapopulations; however, it is not currently 90

capable of accommodating life history ecology and overlapping generations. 91

Table 1. Comparison of spatially-explicit gene drive models.

Inheritance Patterns Life History Ecology
Spatial and landscape
details

Software

MGDrivE
Very flexible, can be
user-specified

Egg-larva-pupa-adult,
density-dependence at
larval stage, not
responsive to
environmental
variables at present

Metapopulations
distributed in space,
connected by
migration

R package, open source

EMOD [19]
Homing-based gene
drive, could be
extended with effort

Egg-larva-pupa-adult,
density-dependence at
larval stage, responsive
to environmental
variables

Populations arranged
on a grid, each
representing 1 km2,
connected by
migration

Java Script Open
Notation (JSON) feeds
into executable file,
open source

Skeeter Buster [22]

Homing-based gene
drive, release of insects
carrying a conditional
lethal, etc., cannot be
user-specified

Egg-larva-pupa-adult,
density-dependence at
larval stage, responsive
to environmental
variables

Households and
containers modeled
explicitly, connected
by migration

Executable file, not
open source

SLiM [23]
Very flexible, can be
user-specified

Discrete generations,
no life history at
present

Can model either
connected
metapopulations or
cells on a grid

Scripting environment
with graphical user
interface, open source

In this paper, we describe the key components of the MGDrivE framework – namely, 92

the genetic inheritance, mosquito life history and landscape/metapopulation modules. 93

We then provide a demonstration of the application of the framework to CRISPR-based 94

homing gene drive systems for: a) driving a disease-refractory gene into a population 95

(i.e. population replacement), and b) disrupting a gene required for female fertility (i.e. 96

population suppression), incorporating homing-resistant alleles. We conclude with a 97

discussion of future applications of genetic simulation packages in the field of gene drive 98

modeling. 99

Design and Implementation 100

The MGDrivE framework is a genetic and spatial extension of the lumped age-class 101

model of mosquito ecology [24] modified and applied by Deredec et al. [25] to the spread 102

of homing gene drive systems, and by Marshall et al. [26] to population-suppressing 103

homing systems in the presence of resistant alleles. The framework incorporates the egg, 104

larval, pupal and adult life stages, with egg genotypes determined by maternal and 105
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paternal genotypes and the allelic inheritance pattern. In MGDrivE, by treating the 106

lumped age-class model equations in a variable-dimension tensor algebraic form, the 107

population dynamic equations can be left unchanged while modifying the dimensionality 108

of the tensor describing inheritance patterns, as required by the number of genotypes 109

associated with the drive system. Spatial dynamics are then accommodated through a 110

metapopulation structure in which lumped age-class models run in parallel and 111

migrants are exchanged between metapopulations at defined rates. These operations are 112

accommodated by the tensor modeling framework, and full details of this framework are 113

provided in the S1 File. 114

The core simulation framework is being developed in R 115

(https://www.r-project.org/) with certain routines in Rcpp for computational 116

speed. By combining the tensor modeling framework with object-oriented programming, 117

the genetic, life history and spatial components of the model are able to be separated 118

into “modules” to facilitate ease of modification. Within this architecture, each module 119

may be conveniently altered independently of the others. For instance: a) a range of 120

gene drive systems may be explored for a given mosquito species in a given landscape, 121

b) one species may be substituted for another, provided its sequence of life history 122

events is comparable, and c) gene drive spread may be modeled through a range of 123

landscapes, while leaving the rest of the model untouched. We now describe the three 124

distinct modules of the MGDrivE framework – inheritance, life history and spatial 125

structure – in more detail. 126

Modules 127

1. Genetic Inheritance The fundamental module for modeling gene drive dynamics 128

is that describing genetic inheritance. In MGDrivE, this is embodied by a 129

three-dimensional tensor referred to as an “inheritance cube” (Figure 1). Each gene 130

drive system has a unique R file containing the three-dimensional inheritance cube. The 131

first and second dimensions of the inheritance cube refer to the maternal and paternal 132

genotypes, respectively, and the third dimension refers to the offspring genotype. The 133

cube entries for each combination of parental genotypes represent the proportion of 134

offspring that are expected to have each genotype, and should sum to one, as fitness 135

and viability are accommodated separately. 136

The R function that builds the inheritance cube may receive a number of 137

user-defined input parameters. For a homing-based drive system, for instance, the list of 138

input parameters should include the homing efficiency, the rate of in-frame resistant 139

allele generation and the rate of out-of-frame or otherwise costly resistant allele 140

generation [26–28]. In-frame resistant alleles are those for which the coding frame of the 141

target site is not altered, leading to minimal fitness effects, while out-of-frame resistant 142

alleles disrupt the coding frame and hence function of the target site, leading to 143

significant fitness effects. These parameter values should be used to populate the entries 144

of the inheritance cube. Input parameters also include those associated with organisms 145

having each genotype – for instance, genotype-specific: a) fertility rates, b) male mating 146

fitness, c) sex bias at emergence, d) adult survival rates, and e) male and female 147

pupatory success. These parameters feed into the mosquito life history module, that 148

will be described next, and modify the tensor equations in that module in order to 149

produce the desired biological effect. Finally, a “viability mask” is applied to the 150

offspring genotypes to remove unviable genotypes from the population. 151

At the time of publication, the MGDrivE package includes inheritance cubes for: a) 152

standard Mendelian inheritance, b) homing-based drive intended for population 153

replacement or suppression [26,27,29,30], c) Medea (a maternal toxin linked to a 154

zygotic antidote) [31], d) other toxin-antidote-based underdominant systems such as 155

UDMEL [13, 15, 32], e) reciprocal chromosomal translocations [14, 33], f) Wolbachia [34], 156
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Fig 1. Inheritance module. Genetic inheritance is embodied by a three-dimensional
tensor referred to as an inheritance cube (left), here depicted for a CRISPR/Cas9-based
homing construct. Maternal and paternal genotypes are depicted on the x and y-axes
and offspring genotypes on the z-axis, with slices of the cube pertaining to each
offspring genotype shown to the right. The inheritance pattern shown deviates from
standard Mendelian inheritance such that, in the germline of Hh parents, the majority
of wild-type (h) alleles are converted into homing (H) alleles, while a small proportion
are converted into in-frame resistant (R) and out-of-frame resistant alleles (B). For the
example pictured, the frequency of accurate homing given cleavage in Hh heterozygotes
is 98%, with the remaining 2% of wild-type alleles being converted to either in-frame
(1%), or out-of-frame (1%) resistant alleles. Offspring genotype frequencies for each
parental cross are depicted according to the shading scale (right).

and g) the RIDL system [35] (release of insects carrying a dominant lethal gene). 157

Details of each of these systems are provided in the user documentaion at 158

https://marshalllab.github.io/MGDrivE/docs/reference/. 159

2. Mosquito Life History The mosquito life history module follows from the 160

lumped age-class model of Hancock and Godfray [24] adapted by Deredec et al. [25]. In 161

this model (depicted in Figure 2), the insect life cycle is divided into four stages – egg 162

(E), larva (L), pupa (P) and adult (M for male and F for female). In MGDrivE, each 163

life stage is associated with a genotype. Adult females mate once and produce batches 164

of eggs from the sperm of the same male, so they obtain a composite genotype upon 165

mating (their own and that of the male they mate with). Egg genotypes are then 166

determined by the parental genotypes and inheritance pattern as provided in the genetic 167

inheritance module. The adult equilibrium population size, N, in a given habitat patch 168

is used to determine the carrying capacity of that patch for larvae, K, which in turn 169

determines the degree of additional density-dependent mortality at the larval stage in 170

that patch. Following Deredec et al. [25], this is described by an equation of the form: 171

f(L) = α/(α+ L)1/TL , where L is the number of larvae in the patch, TL is the 172

duration of the larval stage, and α is a parameter describing the strength of density 173

dependence. Further details on the mathematical formulation of the lumped-age class 174

model and its generalization to an arbitrary number of genotypes using tensor algebra 175

are provided in the S1 File. 176

The MGDrivE framework currently applies to any species having an 177

egg-larva-pupa-adult life history and for which density-dependent regulation occurs at 178
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Fig 2. Mosquito life history module. Life history is modeled according to an egg
(E)-larva (L)-pupa (P)-adult (M for male, F for female) life cycle in which density
dependence occurs at the larval stage and autonomous mobility occurs at the adult
stage. Genotypes are tracked across all life stages and are represented by the subscript
i ∈ {1, ..., g}. E.g. Mi represents the number of adult males having the ith genotype,
and so on for other life stages and genotypes. Females are modeled as mating once upon
emergence and hence obtain a composite genotype - their own and that of the male they
mate with. Egg genotypes are determined by the adult female’s composite genotype and
the inheritance pattern, which is specific to the gene drive system under consideration.

the larval stage. Switching between species can be achieved by altering the parameter 179

values that describe this module when initializing an MGDrivE simulation. The input 180

variables for this module currently include: a) the number of eggs produced per adult 181

female per day, b) the durations of the egg, larval and pupal juvenile life stages, c) the 182

daily mortality risk for the adult life stage, and d) the daily population growth rate (in 183

the absence of density-dependent mortality). The daily density-independent mortality 184

risks for the juvenile stages are assumed to be identical and are chosen for consistency 185

with the daily population growth rate. Default life history parameter values are shown 186

in Table 2 for three species of interest: a) An. gambiae, the main African malaria 187

vector, b) Ae. aegypti, the main vector of dengue and Zika virus, and c) Ceratitis 188

capitata, a worldwide agricultural crop pest. In some cases, life history parameters will 189

be modified in genotype-specific ways by the gene drive construct, and such 190

modifications are efficiently accommodated within this framework via tensor operations. 191

A noteworthy limitation of the current version of the modeling framework is that 192

equilibrium population size remains constant over time, which prevents the user from 193

determining the optimal seasonal timing of a release. This limitation will be addressed 194

in the next released version of MGDrivE. 195

3. Landscape The landscape module describes the distribution of mosquito 196

metapopulations in space, with movement through the resulting network determined by 197

dispersal kernels. Metapopulations are randomly mixing populations for which the 198

equations of the lumped age-class model apply. The resolution of the metapopulations 199

(in terms of size) should be chosen according to the dispersal properties of the insect 200
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Parameter Symbol Ae. aegypti An. gambiae C. capitata
Egg production per female (day−1) β 20 [36] 32 [37] 20 [38]

Duration of egg stage (days) TE 5 [39] 1 [37] 2 [38]
Duration of larval stage (days) TL 6 [39] 13 [37] 6 [38]
Duration of pupa stage (days) TP 4 [39] 1 [37] 10 [38]

Daily population growth rate (day−1) rM 1.175 [40] 1.096 [41] 1.031 [42]
Daily mortality risk of adult stage (day−1) µM , µF 0.090 [43–45] 0.123 [41] 0.100 [46]

Table 2. Life history module parameter values for three species of interest
(at a temperature of 25 Celsius).

species of interest and the research question being investigated. Ae. aegypti mosquitoes, 201

for instance, are thought to be relatively local dispersers, often remaining in the same 202

household for the duration of their lifespan [47]. For modeling the fine-scale spread of 203

gene drive systems in this species, metapopulations the size of households may be 204

appropriate. An. gambiae mosquitoes, on the other hand, are thought to display 205

moderate dispersal on the village scale and infrequent inter-village movement [48]. This 206

would suggest villages as an appropriate metapopulation unit; however other levels of 207

aggregation are also possible, in both cases, depending on the level of resolution 208

required from the simulations and the computational power available to the user. 209

Once the metapopulation size has been decided upon and the metapopulations have 210

been enumerated, MGDrivE accepts a list of coordinates and equilibrium adult 211

population sizes associated with each. In the resulting network structure, nodes 212

represent randomly-mixing metapopulations and edges represent movement of 213

mosquitoes from one metapopulation to any other in the network (Figure 3). Movement 214

between metapopulations is limited to the adult life stage. By default, movement rates 215

between metapopulations are derived from a zero-inflated exponential dispersal kernel, 216

the degree of zero-inflation and mean dispersal distance of which may be defined by the 217

user. That said; the movement kernel may be expanded arbitrarily to account for 218

barriers to movement such as roads [47] and other factors without altering the 219

overarching model structure. Movement rates between nodes are then used to calculate 220

a matrix of node transition probabilities, which is incorporated in the tensor algebraic 221

model formulation described in the S1 File. 222

Finally, with the inheritance, life history and landscape modules in place, any type 223

of release can be simulated by increasing the number of insects having the released sex 224

and genotype at a specific metapopulation and time. As demonstrated in the following 225

software use example, input variables are provided for: a) release size, b) number of 226

releases, c) time of first release, d) time between releases, e) metapopulation of release, 227

and f) sex and genotype of released insects. 228

Deterministic vs. Stochastic Simulations 229

Simulations in MGDrivE can be run either in deterministic or stochastic form. 230

Deterministic simulations are faster and less computationally intensive; however, 231

stochastic simulations capture the probabilistic nature of chance events that occur at 232

low population sizes and genotype frequencies. For instance, a stochastic model is 233

required to understand the chance of population elimination following releases of insects 234

carrying a population-suppressing homing system in the context of rarely generated 235

resistant alleles [26]. In the stochastic implementation of MGDrivE, daily egg 236

production follows a Poisson distribution, offspring genotype follows a multinomial 237

distribution informed by parental genotypes and the inheritance pattern of the gene 238

drive system, mate choice follows a multinomial distribution determined by adult 239

genotype frequencies, and survival and death events follow binomial distributions at the 240
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Fig 3. Landscape module. Insects are distributed as metapopulations, here depicted
by nodes, each having their own coordinates and population size. Movement between
metapopulations is derived from a defined dispersal kernel and is depicted here by edges
between nodes. The example “tale of two cities” scenario allows both spread within and
between communities to be explored. Here, nodes are colored according to their
community (as detected by the DBSCAN clustering algorithm [49]), with sizes
proportional to their “betweenness centrality” - a measure of their connectedness to
other nodes in terms of number of shortest paths that flow through them [50].

population level. When interpreting stochastic models, many simulations should be run 241

to understand the range of outputs possible for a given model realization. 242

Two Example MGDrivE Simulations 243

To demonstrate how the MGDrivE framework can be used to initialize and run a 244

simulation of a gene drive system through a network of connected metapopulations, we 245

describe the application of the package to two CRISPR/Cas9-based homing gene drive 246

strategies: a) driving a disease-refractory gene into a population [7], and b) disrupting a 247

gene required for female fertility and hence suppressing a population [30]. In both cases, 248

we consider a population of Ae. aegypti mosquitoes having the bionomic parameters 249

provided in Table 2 and distributed through the network landscape depicted in Figure 3. 250

To demonstrate the functionality of the MGDrivE package, we model the population 251

November 21, 2018 8/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/350488doi: bioRxiv preprint 

https://marshalllab.github.io/MGDrivE/
https://marshalllab.github.io/MGDrivE/
https://doi.org/10.1101/350488
http://creativecommons.org/licenses/by-nc-nd/4.0/


replacement strategy (i.e. replacing the population with a disease-refractory one) using 252

the deterministic implementation, and model the population suppression strategy using 253

the stochastic implementation. The stochastic implementation is more relevant to 254

population suppression as it can capture rare resistant allele generation and the 255

possibility of population extinction. In both cases, we include the generation of in-frame 256

and out-of-frame or otherwise costly resistant alleles [28,51] and parameterize the gene 257

drive model based on recently engineered constructs [7, 30]. 258

1. Population Replacement We begin by modeling a CRISPR/Cas9-based homing 259

construct similar to that engineered by Gantz et al. [7]. This was the first 260

CRISPR-based homing construct demonstrated in a mosquito disease vector – namely, 261

Anopheles stephensi, the main urban malaria vector in India. For this construct, homing 262

and resistant allele generation were shown to occur at different rates in males and 263

females, and there were large fitness reductions associated with having the homing 264

construct. We consider a homing efficiency of 90% in males and 50% in females – i.e. 265

90% of wild-type (h) alleles are converted to homing (H) alleles in the germline of Hh 266

males, and 50% of h alleles are converted to H alleles in the germline of Hh females. A 267

third of the remaining h alleles in Hh individuals are converted to in-frame resistant 268

alleles (R), and the remainder are converted to out-of-frame or otherwise costly resistant 269

alleles (B) due to error-prone copying during the homing process [51]. Female fecundity 270

and male mating fitness are reduced by 25% per H or R allele and by 50% per B allele. 271

Fig 4. Workflow of an MGDrivE simulation.

The code for this simulation (Code samples 1-3) can be entered directly in R, and the 272

details of the various functions used are described in the online documentation available 273

at https://marshalllab.github.io/MGDrivE/docs/reference/. The general workflow for 274

the simulation is shown in Figure 4. We begin by loading the MGDrivE package in R 275

and choosing the working and output directories. The output directory should be a 276

dedicated directory for MGDrivE simulation output, to avoid interfering with other files. 277

We then choose between the deterministic and stochastic implementation of the model 278
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framework – in this case the deterministic version. Next, we specify the bionomic 279

parameters of the species we are modeling – in this case, Ae. aegypti, whose default life 280

history parameters are provided in Table 2. Following this, we define the landscape 281

through which we will model the spread of the drive system. We begin by loading a 282

CSV file containing the coordinates (longitude and latitude) of the metapopulations in 283

Figure 3. A function is then applied that computes daily movement rates between each 284

of the metapopulations based on a zero-inflated exponential dispersal kernel, the 285

parameters for which we provide. Equilibrium adult population sizes can be provided 286

for each of the metapopulations; however in this case, we assume these are identical 287

across all metapopulations and provide a single population size (Code sample 1). 288

289

1 # LOAD AND SET UP PACKAGES ####################### 290

2 library(MGDrivE) 291

3 ## MGDrivE can be set up to run in stochastic/deterministic mode 292

4 MGDrivE.Setup(stochasticityON=TRUE) 293

5 simulationTime= 5000 294

6 ## Set to one for the deterministic version 295

7 repetitions= 100 296

8 # SET UP MOSQUITO LIFE HISTORY ################### 297

9 bioParameters=list( 298

10 beta=20, popGrowth =1.175 , muAd =.09, 299

11 tEgg=5, tLarva=6, tPupa=4, 300

12 ) 301

13 # SET UP LANDSCAPE ############################### 302

14 distancesMatrix=as.matrix( 303

15 read.csv( 304

16 "./GeoLandscapes/ATaleOfTwoCities_Distances.csv", 305

17 sep=",", header=FALSE 306

18 ) 307

19 ) 308

20 lifespanNonMigratoryProbability =.90 309

21 movementKernel=calc_HurdleExpKernel( 310

22 distancesMatrix , 311

23 MGDrivE :: kernels$exp_rat , 312

24 calculateZeroInflation( 313

25 lifespanNonMigratoryProbability , 314

26 bioParameters$muAd 315

27 ) 316

28 ) 317

29 patchPops=rep(50, sitesNumber) 318
319

Code sample 1. Loading the package and setting up the life history and landscape
modules.

With our life history and landscape modules defined and parameterized, we now 320

specify the gene drive system and release strategy we intend to model (Code sample 2). 321

We use a pre-specified inheritance cube function, “Cube HomingDrive()”, that models 322

the inheritance pattern of a homing-based gene drive system. The input options for this 323

function can be seen by typing “?Cube HomingDrive()” at the command prompt. We 324

specify the sex-specific homing rates, resistant allele generation rates, and 325

genotype-specific fitness effects as described earlier based on the construct engineered 326

by Gantz et al. [7]. We then specify the release scheme by generating a list containing: 327

a) the release size, b) number of releases, c) time of first release, and d) time between 328

releases. This is then incorporated into a vector also specifying the inheritance cube and 329

the sex and genotype of the released insects. Finally, the metapopulations in which the 330

release takes place are specified. With the simulation framework now fully specified, the 331
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model is now ready to run (Code sample 3). 332

333

1 # SET UP INHERITANCE / GENE DRIVE ################ 334

2 ### A. Replacement Drive 335

3 sH=sR=.25 336

4 sB=.50 337

5 eM=0.9 338

6 eF=0.5 339

7 driveCube=Cube_HomingDrive( 340

8 eM=eM ,eF=eF , 341

9 rM=(1/3)*(1-eM), bM=(2/3)*(1-eM), 342

10 rF=(1/3)*(1-eF), bF=(1/3)*(1-eF), 343

11 s=c( 344

12 "WW"=1, "WH"=1-sH , "WR"=1-sR , "WB"=1-sB , 345

13 "HH"=1-2*sH , "HR"=1-sH -sR , "HB"=1-sH -sB , 346

14 "RR"=1-2*sR , "RB"=1-sR -sB , 347

15 "BB"=1-2*sB 348

16 ), 349

17 eta=c( 350

18 "WW"=1, "WH"=1-sH , "WR"=1-sR , "WB"=1-sB , 351

19 "HH"=1-2*sH , "HR"=1-sH -sR , "HB"=1-sH -sB , 352

20 "RR"=1-2*sR , "RB"=1-sR -sB , 353

21 "BB"=1-2*sB 354

22 ) 355

23 ) 356

24 ### B. Suppression Drive 357

25 sHet =.9 358

26 eM=eF =0.999 359

27 driveCube=Cube_HomingDrive( 360

28 eM=eM ,eF=eF, 361

29 rM=(1/3)*(1-eM), bM=(2/3)*(1-eM), 362

30 rF=(1/3)*(1-eF), bF=(1/3)*(1-eF), 363

31 s=c( 364

32 "WW"=1,"WH"=1-sHet ,"WR"=1,"WB"=1-sHet , 365

33 "HH"=0,"HR"=1-sHet ,"HB"=0, 366

34 "RR"=1,"RB"=1-sHet , 367

35 "BB"=0 368

36 ) 369

37 ) 370

38 # SET UP RELEASES ############################### 371

39 patchReleases=replicate( 372

40 n=sitesNumber , 373

41 expr={list(maleReleases=NULL ,femaleReleases=NULL)}, 374

42 simplify=FALSE 375

43 ) 376

44 releasesParameters=list( 377

45 releasesStart =100, releasesNumber =5, 378

46 releasesInterval =2*( 379

47 bioParameters$tEgg+bioParameters$tLarva+bioParameters$tPupa 380

48 ), 381

49 releaseProportion =2*round(mean(patchPops)) 382

50 ) 383

51 maleReleasesVector=generateReleaseVector( 384

52 driveCube=driveCube , 385

53 releasesParameters=releasesParameters , 386

54 sex="M" 387

55 ) 388

56 for(i in 6:6){patchReleases [[i]]$maleReleases=maleReleasesVector} 389
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390

Code sample 2. Setting up the inheritance/gene drive module and defining the
release scheme. Here, code is shown for both: A) homing-based replacement drive, and
B) suppression drive. Only one of these should be selected when running the simulation.

391

1 # PREPARE THE FOLDERS ########################### 392

2 folderNames=list() 393

3 for(i in 1: repetitions){ 394

4 folderName=paste0(outputDirectory ,str_pad(i,4,"left","0")) 395

5 dir.create(folderName) 396

6 folderNames=c(folderNames ,folderName) 397

7 } 398

8 # RUN THE MODEL ################################# 399

9 for(i in 1: repetitions){ 400

10 outputFolder=folderNames [[i]] 401

11 netPar=Network.Parameters( 402

12 runID=i, simTime=simulationTime , 403

13 nPatch=sitesNumber , beta=bioParameters$beta , 404

14 muAd=bioParameters$muAd , popGrowth=bioParameters$popGrowth , 405

15 tEgg=bioParameters$tEgg , tLarva=bioParameters$tLarva , 406

16 tPupa=bioParameters$tPupa , AdPopEQ=patchPops 407

17 ) 408

18 network=Network$new( 409

19 networkParameters=netPar , driveCube=driveCube , 410

20 patchReleases=patchReleases , migrationMale=movementKernel , 411

21 migrationFemale=movementKernel , directory=outputFolder 412

22 ) 413

23 network$oneRun () 414

24 network$reset() 415

25 } 416
417

Code sample 3. Preparing output folders and running the model. It is recommended
to store simulation files for each run in its own separate folder.

2. Population Suppression As a second example, we demonstrate the application 418

of the MGDrivE package to model a population suppression homing construct similar to 419

that engineered by Hammond et al. [30]. For this construct, the homing system targets 420

a gene required for female fertility, causing females lacking the gene (those having the 421

genotypes HH, HB and BB) to be infertile, and inducing a large fecundity reduction of 422

90% in females only having one functioning copy of the gene (those having the 423

genotypes Hh, HR, hB and RB). The homing efficiency is very high – 99.9% in both 424

males and females – with a third of the remaining h alleles in Hh individuals being 425

converted R alleles and the remainder being converted to B alleles. This is similar to 426

the first CRISPR-based homing construct demonstrated in An. gambiae, although with 427

a higher homing efficiency that could be achieved through guide RNA multiplexing [26]. 428

Lines of code that differ for this system are shown in Code sample 2. We choose the 429

stochastic implementation of the model framework this time, and while the same 430

inheritance cube function applies, it’s parameters differ – namely, homing and resistant 431

allele generation rates, and genotype-specific fitness effects. 432

Output Analysis 433

In the current version of MGDrivE, simulation results are output as CSV files, which 434

enables the user to analyze results in any platform of their choice – R, Python, 435

November 21, 2018 12/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/350488doi: bioRxiv preprint 

https://marshalllab.github.io/MGDrivE/
https://marshalllab.github.io/MGDrivE/
https://www.r-project.org/
https://www.python.org/
https://doi.org/10.1101/350488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mathematica, etc. What the user decides to plot will depend on the number of possible 436

genotypes, whether the male-to-female ratio is altered, whether the population is 437

suppressed, and the spatial structure of the landscape through which drive occurs. If 438

the number of genotypes is large, for instance, then allele abundance may provide a 439

more manageable output than that of genotypes. 440

In Figure 5, we display a potential visualization scheme produced in Mathematica 441

for the population replacement and suppression simulations described above 442

(additionally, videos for both simulations running in the spatial networks can be 443

accessed in the supplementary information: S1 Video and S2 Video). As there are four 444

alleles for both systems (the homing allele, H, the wild-type allele, h, and the two 445

resistant alleles, R and B), we depict their abundance in the Figures 5A and 5B and 446

their frequency in Figures 5C and 5D, with time on the horizontal axis and 447

metapopulation number on the vertical axis. For population replacement (Figures 5A 448

and 5C), we see the gene drive system (H) spread through the population, and the 449

in-frame resistant allele (R) accumulate to a small extent. This occurs because the R 450

allele has neither a fitness cost nor benefit relative to the H allele once it has saturated 451

the population, while the B allele is selected against due to its inherent selective 452

disadvantage. For population suppression (Figures 5B and 5D), we see the gene drive 453

system (H) spread through the population at the same time as it induces suppression 454

due to its impact on female fertility. Eventually, we see an in-frame resistant allele (R) 455

emerge and spread into the population due to its selective advantage over both the 456

wild-type and homing alleles. Also visible in Figure 5 is the slightly extended time it 457

takes for both homing systems to spread through the second population cluster visible 458

in the metapopulation landscape depicted in Figure 3. 459

Availability and Future Directions 460

As of the date of publication, we are releasing MGDrivE version 1.0 (“Rise and Shine”), 461

available at our permanent github repository at: 462

https://github.com/MarshallLab/MGDrivE. The source code is available under the 463

GPL3 License and is free for other groups to modify and extend as needed. 464

Mathematical details of the model formulation are available in the S1 File, and 465

documentation of all MGDrivE functions are available at the project’s github repository 466

at https://marshalllab.github.io/MGDrivE/docs/reference/. To run the 467

software, we recommend using R version 3.4.4 or higher. 468

We are continuing development of the MGDrivE software package, and welcome 469

suggestions and requests from the research community regarding future directions. The 470

field of gene drive has been moving extremely quickly, especially since the discovery of 471

CRISPR-based gene editing, and we intend the MGDrivE package to provide a flexible 472

tool capable of modeling novel inheritance-modifying constructs as they are proposed 473

and become available. Future functionality that we intend to incorporate into the 474

software includes: a) “shadow drive”, in which the Cas9 enzyme is passed on to the 475

offspring even if the gene expressing it is not [51], b) life history models encompassing a 476

more diverse range of insect disease vectors and agricultural pests, and c) populations 477

that vary in size seasonally or in response to environmental drivers such as temperature 478

and rainfall. The incorporation of environmental drivers will allow both seasonal trends 479

and short-term fluctuations to be accommodated within the same framework. 480

Alongside our population-based model, we are also developing a corresponding 481

individual-based model that is capable of modeling multi-locus systems for which the 482

number of possible genotypes exceeds the number of individuals in the population. This 483

will enable us to efficiently model confineable systems such as daisy-drive involving 484

several loci [27], and multiplexing schemes in which a single gene is targeted at multiple 485
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Fig 5. Example MGDrivE simulations for CRISPR-based homing
constructs. In both cases, an Aedes aegypti population is simulated having the
bionomic parameters in Table 2 and distributed through the landscape depicted in
Figure 3. Deterministic simulations are denoted by solid lines in panels A and B, while
stochastic simulations are denoted by thin lines, each corresponding to the output of a
single simulation, and dotted lines, corresponding to the mean of 100 stochastic
simulations. A. A population replacement homing construct that drives a
disease-refractory gene into the population is simulated having a homing efficiency of
90% in males and 50% in females. Wild-type (h) alleles that are not converted to
homing (H) alleles in the germline of Hh heterozygotes are cleaved and converted to
either in-frame (R) or out-of-frame (B) resistant alleles. Female fecundity and male
mating fitness are reduced by 25% per H or R allele and by 50% per B allele. A single
release of 100 HH females at node 6 is modeled. As the homing allele (blue) is driven
into the population, the wild-type allele (red) is eliminated, and the in-frame resistant
allele (purple) accumulates to a population frequency of 17%. Stochasticity slightly
slows the allele frequency trajectories, on average, and introduces variability around the
mean output. B. A population suppression homing construct that interferes with a gene
required for female fertility is simulated having a homing efficiency of 99.9% in both
females and males. Wild-type alleles that are not converted to homing alleles in the
germline of Hh heterozygotes are cleaved and converted to either in-frame or
out-of-frame resistant alleles. Females without a copy of the h or R allele are infertile,
while females having only one copy of the h or R allele have a 90% fecundity reduction.
Five releases of 100 HH females at node 6 are modeled. As the homing allele (blue) is
driven into the population, it suppresses the population due to its impact on female
fertility. Eventually, an in-frame resistant allele (purple) emerges and leads the
population to rebound due to its selective advantage over both wild-type and homing
alleles. In the deterministic model output, the in-frame resistant allele spreads to
fixation; however in the stochastic model output, the homing allele is sometimes lost
from the population and, as a result, the selective advantage of the in-frame resistant
allele is lost, causing it to equilibriate at a lower population frequency. Stochasticity
also significantly slows the mean allele frequency trajectories, as well as introducing
variability around the mean. C-D. Here, population frequencies of the wild-type,
homing and in-frame resistant alleles are shown in each metapopulation over time for a
deterministic model of the population replacement construct (panel C) and a stochastic
simulation of the population suppression construct (panel D). Out-of-frame resistant
alleles are omitted due to their low frequencies in both simulations. Dashed vertical
lines represent the beginning and end of the releases.

locations with separate guide RNAs to reduce the rate of resistant allele formation [52]. 486
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Supporting information 487

S1 Video. Population replacement use example. A visualization of the 488

homing-based population replacement simulation. 489

S2 Video. Population suppression use example. A visualization of the 490

homing-based population suppression simulation. 491

S1 Text. Introduction to the modeling framework. A description of the 492

mathematical equations that govern the inheritance, life history and landscape modules. 493
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1 Introduction

The advent of CRISPR/Cas9-based gene editing technology and its application to the engineering of gene
drive systems has led to renewed excitement in the use of genetics-based strategies to control mosquito vectors
of human diseases and insect agricultural pests. Applications to control mosquito-borne diseases have gained
the most attention due to the major global health burden they pose through much of the world [1,2] and
the difficulty of controlling them using currently-available tools [3]. The recent engineering of a gene drive
system in Drosophila suzukii [4], a major insect agricultural crop pest, and the difficulty of controlling insect
crop pests using existing tools, has led to growing enthusiasm for the application of these tools to other insect
species too.

The versatility of this technology has also enabled a wide range of gene drive architectures to be realized
[5]. Prior to the advent of CRISPR, homing endonuclease genes (HEGs) were envisioned to cleave a specific
target site lacking the HEG and to be copied to this site by serving as a template for homology-directed
repair, effectively converting a heterozygote into a homozygote and biasing inheritance in favor of the HEG
[6]. A vast range of additional approaches for biasing inheritance are now being proposed, including several
threshold-dependent systems that may permit confineable and reversible releases [7], and remediation systems
that could be used to remove effector genes and possibly entire drive systems from the environment in the
event of unwanted consequences [8].

Understanding how these systems are expected to behave in real ecosystems requires a flexible modeling
framework that can accommodate a range of inheritance patterns, specific details of the species into which the
constructs are to be introduced, and details of the landscape through which spatial spread would occur. To
this end, we present MGDrivE (Mosquito Gene Drive Explorer): a flexible simulation framework designed
to investigate the population dynamics of a variety of gene drive systems and their spread through spatially-
explicit populations of mosquito species and other insect species.

A key strength of the MGDrivE framework is its modularity [Figure 1]. A genetic inheritance module
allows the inheritance dynamics of a wide variety of drive systems to be accommodated. An independent
population dynamic module allows the life history of a variety of mosquito disease vectors and insect agri-
cultural pests to be accommodated. Thirdly, a landscape module accommodates the distribution of insect
metapopulations in space, with movement through the resulting network determined by dispersal kernels.
The model can be run in either a deterministic or stochastic form, allowing the chance events that occur at
low population or genotype frequencies to be simulated.
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Figure 1: Interaction of the inheritance, life history and landscape components of the MGDrivE modeling
framework. The inheritance module (left) informs the distribution of egg genotypes given two parent geno-
types. The life history module describes the population dynamics of the mosquito life stages (top, center).
The landscape module (right & lower center) describes movement of mosquitoes between metapopulations
in which the population dynamic equations apply.

What separates MGDrivE from other models is its basis in a parsimonious set of mathematical equations
that accommodate these three modules and can be efficiently modified to accommodate a wide array of
genetics-based systems, insect species and landscapes of interest. This is achieved by treating the population
dynamics within a variable-dimension tensor algebraic framework. As different genetics-based systems are
modeled, the dimensionality of the equations changes; but the population dynamic equations remain the
same. In the following sections, we describe this tensor-modeling framework in more detail.

2 Notation

We begin by defining some of the notation conventions we will follow for the written description of the model.

• As our framework is based on tensor operations, we will use overlines to denote tensor dimension.

• As our framework is based on discrete-time difference equations, we will use subscript square brackets
to indicate time (measured in days). E.g., L[t−1] denotes the genotype-specific larval population size at
time (or day) t− 1.

• Matrices follow a “row-first” indexing order. I.e. row i, column j.

• Hadamard products (◦) denote operations for which entries are multiplied entry-by-entry. These oper-
ations apply to tensors, matrices and vectors that have the same dimensionality.
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• Cross products (×) represent standard matrix/vector multiplication.

• Outer products (⊗) between two vectors, a and b (a⊗ b), produce matrices, c, whose entries are given
by cij = ai · bj .

• We use a dot (·) to denote scalar multiplication.

3 Inheritance module

3.1 Inheritance cubes

The fundamental module for modeling gene drive dynamics is that describing genetic inheritance. In MG-

DrivE, this is embodied by a three-dimensional tensor, Ih, referred to as an “inheritance cube”. Each gene
drive system has a unique R file containing the three-dimensional inheritance cube. The first and second
dimensions of the inheritance cube refer to the maternal and paternal genotypes, respectively, and the third
dimension refers to the offspring genotype. The cube entries for each combination of parental and offspring
genotypes represent, for each parental pairing, the proportion of offspring that are expected to have each
genotype. For a given set of parents, these entries should sum to one, as fitness and viability are accommo-
dated separately. Handling this within a tensor framework allows an arbitrary number of genotypes to be
efficiently accommodated while maintaining the same population dynamic equations.

3.2 Maternal and paternal genotypes

Before describing how inheritance is implemented within the MGDrivE framework, we first describe how
genotype information is accommodated for female and male adults. Adult females and males are treated dif-
ferently in this framework, since it is assumed that female mosquitoes only mate once, while male mosquitoes
may mate throughout their lifetime. Males therefore have their own genotype, indexed in vector form by i,
while females have a composite genotype consisting of their own genotype, i, and the genotype of the male
with whom they mated, j.

For a genetic system consisting of g genotypes, the number of adult males having each genotype is denoted
by the vector, M , the ith entry of which (Mi) denotes the number of adult males having the ith genotype.
I.e.:

M =


M1

M2

M3

...
Mg

 .

In the population dynamic framework, this genotype indexing notation is consistent throughout.

As adult females have a composite genotype, the number of adult females having each composite genotype

is denoted by the matrix, F , the ith row of which denotes the adult female’s own genotype, and the jth column
of which denotes the male with whom they mated. The entry in the ith row and jth column of this matrix
(Fij) denotes the number of adult females having the ith genotype and having mated with an adult male
having the jth genotype, i.e.:

F =


F11 F12 F13 · · · F1g

F21 F22 F23 · · · F2g

F31 F32 F33 · · · F3g

...
...

...
. . .

...
Fg1 Fg2 Fg3 · · · Fgg

 .
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3.3 Calculating the expected distribution of offspring genotypes

In the population dynamic framework, the inheritance cube, Ih, is encountered when eggs are laid by mated
females. Included in the calculation of the number of eggs laid per day having each genotype are:

• the number of adult females having each mated genotype, F ,

• the fecundity of adult females having each genotype, β · s, where β represents the number of eggs
produced per day per wild-type female, and s is a vector of genotype-specific multipliers for each
female’s own genotype,

• the “inheritance cube” tensor, Ih, as described earlier, and

• a “viability mask” tensor, Λ, which removes eggs from the pool that are unviable due to the specific
combination of maternal, paternal and offspring genotypes.

This latter feature is particularly relevant for toxin-antidote-based gene drive systems such as Medea [9], for
which wild-type offspring of heterozygous mothers are unviable as they don’t have the antidote to the toxin
deposited in the embryo by the mother.

The number of eggs having the ith genotype that are oviposited at time t, Ei,[t], is then given by:

Ei,[t] = 11×n ×

(
β · (sn×1 ⊗ 1n×1) ◦ F[t] ◦ Ih(, , i) ◦ Λ(, , i)

)
× 1n×1 ,

where Ih(, , i) and Λ(, , i) represent the slices of the inheritance cube, Ih, and viability mask tensor, Λ,
corresponding to the offspring genotype, i. This calculation may be repeated for all offspring genotypes,
i ∈ {1, ..., g}, to produce the corresponding vector, E[t]. This equation demonstrates the flexibility afforded
by the tensor framework, as the equation strucure can be maintained while the dimensionality is changed
according to the needs of the inheritance-biasing system.

3.4 Currently-available inheritance cubes

In version 1.0 of MGDrivE, the following inheritance cubes are provided:

• Cube Mendelian: Standard Mendelian inheritance

• Cube HomingDrive: Homing-based drive with in-frame and out-of-frame/costly resistance alleles

• Cube Homing1RA: Homing-based drive with one type of resistance allele

• Cube ImmunizingReversalMF: Homing-based immunizing reversal drive

• Cube MEDEA: Medea (Maternal Effect Dominant Embryonic Arrest)

• Cube oneLocusTA: Single-locus version of UDMEL

• Cube twoLocusTA: Two-locus version of UDMEL

• Cube KillerRescue: Killer-rescue system for transient gene drive

• Cube ReciprocalTranslocations: Reciprocal chromosomal translocations

• Cube Wolbachia: Wolbachia

• Cube RIDL: RIDL (Release of Insects carrying a Dominant Lethal gene)
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4 Life history module

4.1 Lumped age-class model

The equations for the life history module of MGDrivE follow from the lumped age-class model of Hancock
and Godfray [10] adapted by Deredec et al. [11], and later by Marshall et al. [5] to describe the spread of
a homing-based drive system with resistance alleles through a density-dependent population. In this model,
a daily time step is used, and the mosquito life cycle is divided into four life stages - egg, larva, pupa, and
adult (both female and male) - denoted by the subscripts “E”, “L”, “P”, “M” and “F”, respectively.

The daily, density-independent mortality rates for the juvenile stages are assumed to be identical (µE =
µL = µP ) and are chosen for consistency with the population growth rate in the absence of density-dependent
mortality, RM . I.e.:

µL = 1−

(
2 ·RM · µM

β · (1− µM )

)1/(TE+TL+TP )

.

Here, µM denotes the mortality rate of adult male (and female) mosquitoes, and TE , TL and TP denote the
duration of the egg, larval and pupal life stages. The probability of surviving any of the juvenile stages in a
density-independent setting, θx, is given by:

θx = (1− µx)Tx ,

where x ∈ {E,L, P}; however additional density-dependent mortality, 1 − f(L), occurs at the larval stage.
We use a density-dependent equation of the following form to model this:

f(L[t]) =

(
α

α+ (L[t],1×g × 1g×1)

)1/TL

,

where α is a parameter influencing the strength of density-dependence. The α parameter is chosen to produce
the desired equilibrium density of adult mosquitoes in the population, Neq. I.e.:

α =

(
β · θE ·Neq

2 · (RM − 1)

)
·

(
1− (θL/RM )

1− (θL/RM )1/TL

)
.

Of note, the daily population growth rate, rM , is related to the population growth rate per generation, RM ,
according to:

RM = (rM )G,

where G is the mosquito generation time, and is given by:

G = TE + TL + TP +
1

µM
.

4.2 Population dynamics of each life stage

With this framework in place, the dynamics of the population can be described by equations for the number
of larvae and adults belonging to each genotype at time t. The number of larvae at time t is needed to
determine the strength of density-dependence and, partitioned by genotype, is given by:

L[t] = L[t−1] · (1− µL) · f(L[t−1]) + E[t−TE ] · θE − E[t−TE−TL] · θE · θL ·
TL∏
i=1

f(L[t−i]) .
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Here, the first term accounts for survival of larvae (denoted at time t by L[t]) from one day to the next,
the second term accounts for newly hatching eggs having each genotype, and the third term accounts for
development of larvae into pupae for larvae having each genotype.

Adult females and males are treated slightly differently in this framework since it is assumed that female
mosquitoes only mate once, soon after emergence, while male mosquitoes may mate throughout their lifetime.
The number of adult males having each genotype at time t is given by:

M[t] = (M[t−1] · (1− µM )) ◦ ωM +NE
[t] ◦ (1g×1 − φg×1) ◦ ωM +MR

[t] .

Here, the first term accounts for survival of adult males (denoted at time t by M[t]) from one day to the next,
the second term accounts for development of pupae into adult males, and the third term accounts for males
released into the population at time t. Some new terms have been introduced here:

• ωM is a genotype-specific multiplier on the daily survival probability for adult males (1 corresponds to
default survival/no additional mortality, 0.5 corresponds to a 50% reduction in daily survival)

• φ represents the proportion of emerging adult mosquitoes that are female (0.5 corresponds to equal
numbers of females and males, where as 0.75 corresponds to a ratio of 3 emerging females to 1 emerging
male)

Additionally, NE
[t] represents the number of emerging adults (female and male) at time t, neglecting the

genotype-specific multiplier on adult survival on the day or emergence:

NE
[t] = (E[t−TE−TL−TP ] · θE · θL ·

TL∏
i=1

f(L[t−i−TP ]) · θP ) ◦ ξ · (1− µM ),

where ξ is a genotype-specific multiplier on pupal survival representing pupatory success (1 corresponds to
default pupatory success, 0.5 corresponds to a 50% reduction in pupatory success).

Females, on the other hand, are assumed to mate only once, and on the same day they emerge. As far as
offspring are concerned, they therefore have attributes for both their own genotype and the genotype of the
male with whom they mated. The number of adult females having each genotype at time t is given by:

F[t] = (F[t−1] · (1− µF )) ◦ (ωF,g×1 ⊗ 1g×1) +

(
NE

[t] ◦ φ ◦ ωF + FR
[t]

)
⊗
(

η ◦M[t−1]

(M[t−1],1×g × 1g×1)

)
,

Here, the first term accounts for survival of adult females (denoted at time t by F[t]) from one day to the
next, the first term in the first set of large brackets accounts for development of pupae into adult females, the
second term in the first set of large brackets accounts for adult females released into the population at time
t, and the term in the second set of large brackets accounts for mating of newly emerging and released adult
females with adult males having each genotype. Wild-type adult female mortality is set equal to wild-type
adult male mortality, i.e. µF = µM .

A new term has been introduced here, η, which represents the mating competitiveness of each male
genotype, relative to wild-type (1 corresponds to equal mating competitiveness as compared to a wild-type
male, while 0.5 corresponds to half the mating competitiveness of a wild-type male). A term corresponding
to relative fecundity of females having each genotype relative to wild-type females, s, is described in the
“Inheritance module” in the equation for E[t] (the number of eggs having each genotype that are oviposited
at time t).

4.3 Releases of adult females and males

Releases of adult females and males are accommodated within this framework through the FR
[t] and MR

[t]

vectors, which denote the number of adult females and males, having each genotype, released into the
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population at time t. The MGDrivE software package includes flexible functionality to allow releases at
regular or irregular intervals and with different genetic compositions (so long as the released genotypes are
included in the inheritance cube).

5 Landscape module

The landscape module describes the distribution of mosquito metapopulations in space, with movement
through the resulting network determined by dispersal kernels. Metapopulations are randomly mixing pop-
ulations for which the equations of the lumped age-class model apply, the size of which should be chosen
according to the dispersal properties of the insect species of interest and the research question being inves-
tigated. Once this has been decided upon, MGDrivE accepts a list of coordinates and equilibrium adult
population sizes associated with each.

In the resulting network structure, nodes represent randomly-mixing metapopulations and edges repre-
sent movement of mosquitoes from one metapopulation to any other in the network. Movement between
metapopulations is limited to the adult life stage. By default, movement rates between metapopulations are
derived from a zero-inflated exponential dispersal kernel such that, for metapopulations i and j a distance
dij apart, the rate of movement between the metapopulations is:

τij =

{
p0 , j = i

(1− p0) e−λ·dij

(
∑n
j=1 e−λ·dij )−1

, j 6= i
.

Here, n represents the number of metapopulations in the landscape, p0 represents the probability that a
mosquito remains in the same metapopulation per unit time, and λ represents the mean dispersal distance,
conditional upon movement. For a given origin, i, the dispersal kernel entries, τ(i, ), sum to 1. Computing
τij for all combinations of origins and destinations produces a transition matrix, τ . If dispersal is sex-specific,
then there is a transition matrix for adult females, τF , and males, τM . Dispersal kernels may be defined with
arbitrary complexity by the user.

Movement of mosquitoes between metapopulations is computed at the end of each time step. Until
this point in the document, we have been describing population dynamics at a single node; however, to
accommodate all nodes on a landscape, we increase the dimensionality of our matrix/vector for the number
of adult females and males having each genotype at time t to also include the metapopulation number. The
number of adult males having each genotype in each metapopulation at time t, following migration, is then
given by:

M[t],n×g ← τM,n×n ×M[t],n×g ,

and the equivalent number for adult females, considering also the genotype of the male with whom they
mated, is given by:

F[t],n×g×g ← τF,n×n × F[t],n×g×g .

Here, the first dimension of the matrix, M[t],n×g, and tensor, F[t],n×g×g, represents the metapopulation,
i ∈ {1, ..., n}, the second dimension represents the genotype, j ∈ {1, ..., g}, and the third dimension (for adult
females) represents the genotype of the male mate, k ∈ {1, ..., g}. The matrix/tensor cross product effectively
sums migrating mosquitoes of a given (mated) genotype from all nodes across the network, including the origin
node, based on the predictions of the dispersal kernel. The resulting numbers are used for the implementation
of the inheritance and life history population dynamics in the next time step.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/350488doi: bioRxiv preprint 

https://doi.org/10.1101/350488
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Stochastic simulations

Simulations in MGDrivE can be run either in deterministic or stochastic form, with stochasticity being able
to be switched on or off in several parts of the model. In the stochastic implementation of the model:

• Daily egg production for adult females having a given genotype is Poisson-distributed, with mean

equal to the number of adult females having that genotype, F[t], multiplied by their genotype-specific
fecundity (daily egg production rate), β · s.

• Offspring genotypes are distributed according to a Multinomial distribution, with probabilities deter-

mined by the relevant entries of the inheritance cube, Ih, and viability mask, Λ, for a given mated
maternal genotype.

• Offspring sex is distributed according to a Binomial distribution, with probabilities determined by the
offspring genotypes and their genotype-specific sex ratios, φ.

• Female choice of male mate follows a Multinomial distribution, with probabilities of choosing each
male mate determined by their mating competitiveness, η, and genotype frequencies in the population,
M[t−1]/(M[t−1],1×g × 1g×1).

• Daily survival at all life stages and pupatory success all follow Binomial distributions at the population
level, with probabilities equal to rates provided in the population dynamic equations.

• Destination choice for migrating mosquitoes follows a Multinomial distribution, with probabilities taken
from the relevant row of the metapopulation transition matrix, τF for females and τM for males. An
option is also available for destination choice to follow a Dirichlet distribution, the “concentration
parameter” of which allows for greater variance in movement than permitted by the Multinomial dis-
tribution.
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