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 2 

Abstract 18 

Auditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus 19 

from the population of evoked neural activity. Reconstructing speech from the human auditory cortex 20 

creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and 21 

has been shown to be possible in both overt and covert conditions. However, the low quality of the 22 

reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) 23 

applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent 24 

advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct 25 

closed-set intelligible speech from the human auditory cortex. We investigated the dependence of 26 

reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the 27 

acoustic representation that is used as the target of reconstruction, including auditory spectrogram and 28 

speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high 29 

neural frequency ranges. Our results show that a deep neural network model that directly estimates the 30 

parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and 31 

objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method 32 

which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the 33 

efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI 34 

systems, which not only can restore communications for paralyzed patients but also have the potential to 35 

transform human-computer interaction technologies.  36 

 37 

Introduction 38 

Auditory stimulus reconstruction is an inverse mapping technique that finds the best approximation of 39 

the acoustic stimulus from the population of evoked neural activity. Stimulus reconstruction was originally 40 

proposed as a method to study the representational properties of the neural population 1–5 because this 41 

method enables the intuitive interpretation of the neural responses in the stimulus domain. 42 

Reconstructing speech from the neural responses recorded from the human auditory cortex6, however, 43 

opens up the possibility of using this technique as a speech brain-computer interface (BCI) to restore 44 

speech in severely paralyzed patients (for a review, see these references7–9). The ultimate goal of a speech 45 

neuroprosthesis is to create a direct communication pathway to the brain with the potential to benefit 46 

patients who have lost their ability to speak, which can result from a variety of clinical disorders leading 47 

to conditions such as locked-in syndrome10,11. The practicality of using speech decoding methods in a 48 

neuroprosthetic device to restore speech communication was further supported by studies showing 49 
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successful decoding of speech during both overt and covert (imagined) conditions 12–16. These studies 50 

showed successful decoding of imagined articulations13,14, imagined word repetition15, and silent reading 51 

of speech16 from auditory cortical areas, including the superior temporal gyrus (STG). While previous 52 

studies have established the feasibility of reconstructing speech from neural data, the quality of the 53 

reconstructed audio so far has been too low to merit subjective evaluation. For this reason, the 54 

reconstructed sounds in previous studies have been evaluated only using objective measures such as 55 

correlation or recognition accuracy3,6,8,13,17–25. The low quality of the reconstructed sound is currently a 56 

major limiting factor in actualizing speech BCI systems7.  57 

The acoustic representation of the stimulus that is used as the decoding target can significantly 58 

impact the quality and accuracy of reconstructed sounds. Previous studies have used magnitude 59 

spectrogram (time-frequency representation)3,20, speech envelope21,22, spectrotemporal modulation 60 

frequencies6,13,23, and discrete units such as phonemes and phonetic categories8,17,24,25 and words18,19. 61 

Using discrete units can be advantageous by allowing for discriminative training. However, decoding 62 

discrete representations of speech such as phonemes eliminates the paralinguistic information such as 63 

speaker features, emotion, and intonation. In comparison, reconstructing continuous speech provides the 64 

possibility of real-time, continuous feedback that can be delivered to the user to promote coadaptation 65 

of the subject and the BCI algorithm26,27 for enhanced accuracy. A natural choice is to directly estimate 66 

the parameters of a speech synthesizer from neural data, but this has not been attempted previously 67 

because the process requires a highly accurate estimation of several vocoder parameters, which is hard 68 

to achieve with traditional machine-learning techniques.  69 

To advance the state-of-the-art in speech neuroprosthesis, we aimed to increase the intelligibility 70 

of the reconstructed speech by combining recent advances in deep learning28 with the latest innovations 71 

in speech synthesis technologies. Deep learning models have recently become the dominant technique 72 

for acoustic and audio signal processing29–32. These models can improve reconstruction accuracy by 73 

imposing more complete constraints on the reconstructed audio by better modeling the statistical 74 

properties of the speech signal3. At the same time, nonlinear regression can invert the nonlinearly 75 

encoded speech features in neural data33,34 more accurately.  76 

We examined the effect of three factors on the reconstruction accuracy: 1) the regression 77 

technique (linear regression versus nonlinear deep neural network), 2) the representation of the speech 78 

intended for reconstruction (auditory spectrogram versus speech vocoder parameters), and 3) the neural 79 

frequency range used for regression (low frequency versus high-gamma envelope) (Fig. 1A). Our results 80 

showed that a deep neural network model that uses all neural frequencies to directly estimate the 81 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2018. ; https://doi.org/10.1101/350124doi: bioRxiv preprint 

https://doi.org/10.1101/350124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 4 

parameters of a speech vocoder achieves the highest subjective and objective scores, both for 82 

intelligibility and the quality of reconstruction in a digit recognition task. These results represent an 83 

important step toward successful implementation of the next generation of speech BCI systems.  84 

 85 

Results 86 

Neural recordings: We used invasive electrocorticography (ECoG) to measure neural activity from five 87 

neurosurgical patients undergoing treatment for epilepsy as they listened to continuous speech sounds. 88 

Two of the five subjects had high-density subdural grid electrodes implanted in the left hemisphere with 89 

coverage primarily over the superior temporal gyrus (STG), and four of the five subjects had depth 90 

electrodes with coverage of Heschl’s gyrus (HG). All subjects had self-reported normal hearing. Subjects 91 

were presented with short continuous stories spoken by four speakers (two females, total duration: 30 92 

minutes). To ensure that the subjects were engaged in the task, the stories were randomly paused, and 93 

the subjects were asked to repeat the last sentence.  94 

The test data consisted of continuous speech sentences and isolated digit sounds. We used eight 95 

sentences (40 seconds total) to evaluate the objective quality of the reconstruction models. The sentences 96 

were repeated six times in random order, and the neural data was averaged over the six repetitions to 97 

reduce the effect of neural noise on comparison of reconstruction models (see Supp. Fig. 1 for the effect 98 

of averaging). The digit sounds were used for subjective intelligibility and quality assessment of 99 

reconstruction methods and were taken from a publicly available corpus, TI-4635. We chose 40 digit 100 

sounds (zero to nine), spoken by four speakers (two females) that were not included in the training of the 101 

models. Reconstructed digits were used as the test set to evaluate subjective intelligibility and quality of 102 

the models. Two ranges of neural frequencies were used in the study. Low-frequency (0–50 Hz) 103 

components of the neural data were extracted by filtering the neural signals using a lowpass filter. The 104 

high-gamma envelope36 was extracted by filtering the neural signals (70 to 150 Hz)  and calculating the 105 

Hilbert envelope37.  106 

 107 

 108 

  109 
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Regression models: The input to the regression models was a sliding window over the neural data with a 110 

duration of 300 ms (Fig. 1B), and the hop size of 10 ms. The duration of the sliding window was chosen to 111 

maximize reconstruction accuracy (supp. Fig. 2). We compared the performance of linear and nonlinear 112 

regression models to reconstruct the stimulus from the neural signals. The linear regression finds a linear 113 

mapping between the response of a population of neurons to the stimulus representation3,6. This method 114 

effectively assigns a spatiotemporal filter to each electrode estimated by minimizing the mean-squared-115 

error (MSE) between the original and reconstructed stimulus. 116 

The nonlinear regression model was implemented using a deep neural network (DNN). We 117 

designed a deep neural network architecture with two stages: 1) feature extraction and 2) feature 118 

summation networks38–40 (Fig. 1B). In this framework, a high-dimensional representation of the input 119 

(neural responses) is first calculated, which results in mid-level features (output of the feature extraction 120 

network). These mid-level features are then input to the feature summation network to regress the 121 

output of the model (acoustic representation). The feature summation network in all cases was a two-122 

layer fully connected network (FCN) with regularization, dropout41, batch normalization42, and 123 

nonlinearity between each layer. For feature extraction, we compared the efficacy of five different 124 

network architectures for auditory spectrogram and vocoder reconstruction (Methods, Supp. Table 1 for 125 

details of each network). Specifically, we found that the fully connected network (FCN), in which no 126 

constraint was imposed on the connectivity of the nodes in each layer of the network to the previous 127 

layer, achieved the best performance for reconstructing the auditory spectrogram. However, the 128 

combination of the FCN and a locally connected network (LCN), which constrains the connectivity of each 129 

node to only a subset of nodes in the previous layer, achieved the highest performance for the vocoder 130 

representation (Supp. Tables 4, 5). In the combined FCN+LCN, the outputs of the two parallel networks 131 

are concatenated and used as the mid-level features (Fig.1B).  132 

 133 

 134 

 135 

 136 
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141 
Figure 1. Schematic of the speech reconstruction method. (A) Subjects listened to natural speech 142 

sentences. The population of evoked neural activity in the auditory cortex of the listener was then used 143 

to reconstruct the speech stimulus. The responsive electrodes in an example subject are shown in red. 144 

High and low frequency bands were extracted from the neural data. Two types of regression models and 145 

two types of speech representations were used, resulting in four combinations: linear regression to 146 

auditory spectrogram (light blue), linear regression to vocoder (dark blue), DNN to auditory spectrogram, 147 

and DNN to vocoder (dark red). (B) The input to all models was a 300 ms sliding window containing both 148 

low frequency (LF) and the high-gamma envelope (HG). The DNN architecture consists of two modules: 149 

feature extraction and feature summation networks. Feature extraction for auditory spectrogram 150 

reconstruction was a fully connected neural network (FCN). For vocoder reconstruction, the feature 151 

extraction network consisted of an FCN concatenated with a locally connected network (LCN). The feature 152 

summation network is a two-layer fully connected neural network (FCN). (C) Vocoder parameters consist 153 

of spectral envelope, fundamental frequency (f0), voicing, and aperiodicity (total of 516 parameters). An 154 

autoencoder with a bottleneck layer was used to reduce the 516 vocoder parameters to 256. The 155 

bottleneck features were then used as the target of reconstruction algorithms. The vocoder parameters 156 

were calculated from the reconstructed bottleneck features using the decoder part of the autoencoder 157 

network.  158 

 159 

 160 
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Acoustic representations: We used two types of acoustic representation of the audio as the target for 161 

reconstruction: auditory spectrogram and speech vocoder. The auditory spectrogram was calculated 162 

using a model of the peripheral auditory system43,44, which estimates a time-frequency representation of 163 

the acoustic signal on a tonotopic frequency axis. The reconstruction of the waveform from the auditory 164 

spectrogram is achieved using an iterative convex optimization procedure43 because the phase of the 165 

signal is lost during this procedure.  166 

For speech vocoder, we used a vocoder-based, high-quality speech synthesis algorithm 167 

(WORLD45), which synthesizes speech from four main parameters: 1) spectral envelope, 2) f0 or 168 

fundamental frequency, 3) band aperiodicity, and 4) a voiced-unvoiced (VUV) excitation label (Fig. 1C). 169 

These parameters are then used to re-synthesize the speech waveform. This model can reconstruct high-170 

quality speech and has been shown to outperform other methods including STRAIGHT46. The large 171 

numbers of the parameters in the vocoder (516 total) and the susceptibility of the synthesis quality on 172 

inaccurate estimation of parameters however pose a challenge. To remedy this, we first projected the 173 

sparse vocoder parameters onto a dense subspace in which the number of parameters can be reduced, 174 

which allows better training with a limited amount of data. We used a dimensionality reduction technique 175 

that relies on an autoencoder (AEC)47(Fig. 1C), which compresses the vocoder parameters into a smaller 176 

space (encoder, 256 dimensions, Supp. Table 3) and subsequently recovers (decoder) the original vocoder 177 

parameters from the compressed features (Fig. 1C). The compressed features (also called bottleneck 178 

features) are used as the target for the reconstruction network. By adding noise to the bottleneck features 179 

before feeding them to the decoder during training, we can make the decoder more robust to unwanted 180 

variations in amplitude, which is necessary due to the noise inherently present in the neural signals. The 181 

autoencoder was trained on 80 hours of speech using a separate speech corpus (Wall Street Journal l48). 182 

During the test phase, we first reconstructed the bottleneck features from the neural data, and 183 

subsequently estimated the vocoder parameters using the decoder part of the autoencoder (Fig. 1C). The 184 

reconstruction accuracy of individual vocoder parameters with a neural network shows varied 185 

improvement over the linear model, where pitch estimation is improved the most (%157.2), followed by 186 

aperiodicity (%18.5), spectral envelope (%6.2), and voiced-unvoiced parameter (%0.15, Supp. Fig. 3).  187 

Figure 2B shows the example reconstructed auditory spectrograms from each of the four 188 

combinations of the regression models (linear regression and DNN) and acoustic representation (auditory 189 

spectrogram and vocoder). Comparison of the auditory spectrograms in Figure 2A shows that 1) the 190 

overall frequency profile of the speech utterance is better preserved by the DNN compared to the linear 191 

regression model, and 2) the harmonic structure of speech is recovered only in the DNN-Vocoder model. 192 
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These observations are shown more explicitly in Figure 2B, where the magnitude power of frequency 193 

bands is shown during an unvoiced (t = 1.4 sec) and a voiced speech sound (t = 1.15 sec, shown with 194 

dashed lines). The frequency profile of original and reconstructed auditory spectrograms during the 195 

unvoiced sound shows a more accurate reconstruction of low and high frequencies for the DNN models 196 

(Fig. 2B left, comparison of blue and red plots). The comparison of frequency profiles during the voiced 197 

sound (Fig. 2B, right) reveals the recovery of speech harmonics only in the DNN-Vocoder model 198 

(comparison of top and bottom plots). 199 

 200 
Figure 2. Deep neural network architecture (A) An original auditory spectrogram of a speech sample is 201 

shown on top. The reconstructed auditory spectrograms of the four models are shown below. (B) 202 

Magnitude power of frequency bands during an unvoiced (t = 1.4 sec) and a voiced speech sound (t = 1.15 203 

sec, shown with dashed lines in A) for original (top) and the four reconstruction models. 204 
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Subjective evaluation of the reconstruction accuracy: We used the reconstructed digit sounds to assess 207 

the subjective intelligibility and quality of the reconstructed audio. Forty unique tokens were 208 

reconstructed from each model, consisting of ten digits (zero to nine) that were spoken by two male and 209 

two female speakers. The speakers that uttered the digits were different from the speakers that were 210 

used in the training, and no digit sound was included in the training of the networks. We asked 11 subjects 211 

with normal hearing to listen to the reconstructed digits from all four models (160 tokens total) in a 212 

random order. Each digit was heard only once. The subjects then reported the digits (zero to nine, or 213 

uncertain), rated the reconstruction quality using the mean opinion score (MOS49, on a scale of 1 to 5), 214 

and reported the gender of the speaker (Fig. 3A).  215 

Figure 3B shows the average reported intelligibility of the digits from the four reconstruction 216 

models. The DNN-vocoder combination achieved the best performance (75% accuracy), which is 67% 217 

higher than the baseline system (Linear regression with auditory spectrogram). Fig. 3B also shows that the 218 

reconstructions using DNN models are significantly better than the linear regression models (68.5% vs. 219 

47.5%, paired t-test, p<0.001). Figure 3C shows that the subjects also rated the quality of the 220 

reconstruction significantly higher for the DNN-vocoder system than for the other three models (3.4 vs. 221 

2.5, 2.3, and 2.1, unpaired t-test, p<0.001), meaning that the DNN-vocoder system sounds closest to 222 

natural speech. The subjects also accurately reported the gender of the speaker significantly higher than 223 

chance for the DNN-vocoder system (80%, t-test, p<0.001) while the performance for all other methods 224 

were at chance (Fig. 3D). The higher intelligibility and quality scores for the DNN-Voc system was 225 

consistently observed in all the ten listeners (Supp. Fig. 4). This result indicates the importance of accurate 226 

reconstruction of harmonics frequencies for identifying speaker dependent information, which are best 227 

captured by the DNN-Voc model.  228 

Finally, Figure 3E shows the confusion patterns in recognizing the digits for the four models, confirming 229 

again the advantage of the DNN based models, and the DNN vocoder in particular. As shown in Figure 3E, 230 

the discriminant acoustic features of the digit sounds are better preserved in the DNN-Voc model, 231 

enabling the listeners to correctly differentiate them from the other digits. Linear regression models, 232 

however, failed to preserve these cues, as seen by the high confusion among digit sounds. The confusion 233 

patterns also show that some errors were associated with the shared phonetic features, for example the 234 

confusion between digits one and nine (sharing ‘ey’ phoneme), or four and fine (sharing the initial fricative 235 

/f/ phoneme.  This result suggests a possible strategy for enabling accurate discrimination in BCI 236 

applications by selecting target sounds with a sufficient acoustic distance between them. The audio 237 

samples from different models can be found online50 and in the supplementary materials.  238 

239 
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 240 
Figure 3. Subjective evaluation of the reconstruction accuracy. (A) The behavioral experiment design 241 

used to test the intelligibility and the quality of the reconstructed digits. Eleven subjects listened to digit 242 

sounds (zero to nine) spoken by two male and two female speakers. The subjects were asked to report 243 

the digit, the quality on the mean-opinion-scale, and the gender of the speaker. (B) The intelligibility score 244 

for each model defined as the percentage of correct digits reported by the subject. (C) The quality score 245 

on the MOS scale. (D) The speaker gender identification rate for each model. (E) The digit confusion 246 

patterns for each of the four models. The DNN vocoder shows the least amount of confusion among the 247 

digits.  248 

 249 

 250 
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Objective evaluation of reconstructed audio. We compared the objective reconstruction accuracy of 252 

reconstructed audio per subject using the extended short time objective intelligibility (ESTOI)51 measure. 253 

ESTOI is commonly used for the intelligibility assessment of speech synthesis technologies and is 254 

calculated by measuring the distortion in spectrotemporal modulation patterns of the noisy speech signal. 255 

Therefore, ESTOI score is sensitive to both inaccurate reconstruction of the spectral profile and the 256 

inconsistencies in the reconstructed temporal patterns. The ESTOI measures were calculated from 257 

continuous speech sentences in the test set. The average ESTOI of the reconstructed speech for all five 258 

subjects (Fig. 4A) confirms the results seen from the subjective tests, which is the superiority of DNN based 259 

models over the linear model, and that of vocoder reconstruction over the auditory spectrogram 260 

(p<0.001, t-test). This pattern was consistent for each of the five subjects in this study, as shown in Fig. 4B 261 

alongside the electrode locations for each subject. While the overall reconstruction accuracy varies 262 

significantly across subjects, which is likely due to the difference in the coverage of the auditory cortical 263 

areas, the relative performance of the four models was the same in all subjects. In addition, averaging the 264 

neural responses over multiple repetitions of the same speech utterance improved the reconstruction 265 

accuracy (Supp. Fig. 1) because averaging reduces the effect of neural noise.  266 

  267 
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 268 
Figure 4. Objective intelligibly scores for different models. (A) The average ESTOI score based on all 269 

subjects for the four models. (B) Coverage and the location of the electrodes and ESTOI score for each of 270 

the five subjects. In all subjects, the ESTOI score of the DNN vocoder was higher than in the other models.  271 
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Reconstruction accuracy from low and high neural frequencies: There is increasing evidence that the low 274 

and high-frequency bands encode different and complementary information about the stimulus52. 275 

Considering that the sampling frequency of the reconstruction target is 100 Hz, we used 0–50 Hz as a low-276 

frequency signal, and the envelope of high gamma (70–150 Hz) as high-frequency band information. To 277 

determine what frequency bands are best to include to achieve maximum reconstruction accuracy, we 278 

tested the reconstruction accuracy in three conditions, when the regression model uses only the high-279 

gamma envelope, a low-frequency signal, or a combination of the two.  280 

To simplify the comparison, we used only the DNN-auditory spectrogram reconstruction model. 281 

We calculated the ESTOI scores of the reconstructed speech sound  using different frequency bands. We 282 

found that the combination of the two frequency bands significantly outperforms the reconstruction from 283 

only one of the frequency bands (Fig. 5A, p<0.001, t-test). This observation is consistent with the 284 

complementary encoding of the stimulus features in the low and high-frequency bands53, which implicates 285 

the advantage of using the entire neural signal to achieve the best performance in speech neuroprosthesis 286 

applications when it is practically possible. 287 

 288 

Effect of the number of electrodes and duration of training data: The variability of the reconstruction 289 

accuracy across subjects (Fig. 4B) suggests an important role of neural coverage in improving the 290 

reconstruction3,6 accuracy. In addition, because some of the noise signal across different electrodes is 291 

independent, reconstruction from a combination of electrodes may lead to a higher accuracy by finding a 292 

signal subspace less affected by the noise in the data54. To examine the effect of the number of electrodes 293 

on the reconstruction accuracy, we first combined the electrodes of all five subjects and randomly chose 294 

N electrodes (N = 1, 2, 4, 8, 16, 32, 64, 128), twenty times for training the individual networks. The average 295 

reconstruction accuracy for each N was then used for comparison. The results shown in Fig. 5B indicate 296 

that increasing the number of electrodes improves the reconstruction accuracy; however, the rate of 297 

improvement decreased significantly.  298 

Finally, because the success of neural network models is largely attributed to training on large 299 

amounts of data28, we examined the effect of training duration on reconstruction accuracy. We used 128 300 

randomly chosen electrodes and trained several neural network models each on a segment of the training 301 

data as the duration of the segments was gradually increased from 10 to 30 minutes. This process was 302 

performed twenty times for each duration by choosing a random segment of the training data, and the 303 

ESTOI score was averaged over the segments. As expected, the results show an increased reconstruction 304 
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accuracy as the duration of the training was increased (Fig. 5C), which indicates the importance of 305 

collecting a larger duration of training data when it is practically feasible.  306 

  307 

Discussion:  308 

We compared the performance of linear and nonlinear (DNN) regression models in reconstructing the 309 

auditory spectrogram and vocoder representation of speech signals. We found that using a deep neural 310 

network model to regress vocoder parameters significantly outperformed the linear regression and 311 

auditory spectrogram representation of speech, and resulted in 75% intelligibility scores on a closed-set, 312 

digit recognition task.  313 

Our results are consistent with those of previous reconstruction studies that showed the 314 

importance of nonlinear techniques in neural decoding55. The previous methods have used support vector 315 

machines13,56, linear discriminant analysis57,58, linear regression3,14,59, nonlinear embedding6, and Bayes 316 

classifiers15. In recent years, deep learning60 has shown tremendous success in many brain-computer 317 

interface technologies61, and our study extended this trend by showing the benefit of deep learning in 318 

speech neuroprosthesis research55.  319 

We showed that the reconstruction accuracy depends on both the number of electrodes and the 320 

duration of the data that is available for training. This is consistent with the findings of studies showing 321 

the superior advantage of deep learning models over other techniques, particularly when the amount of 322 

training data is large28. We showed that the rate of improvement slows down as the number of electrodes 323 

increases. This could indicate the limited diversity of the neural responses in our recording which 324 

ultimately limits the added information that is gained from additional electrodes. Alternatively, increasing 325 

the number of electrodes also increases the complexity and the number of free parameters in the neural 326 

network model. Because the duration of our training data was limited, it is possible that more training 327 

data would be needed before the benefit of additional features becomes apparent. Our experiments 328 

showed that increasing the amount of training data results in better reconstruction accuracy, therefore 329 

recording methods that can increase the amount of data available for the training of deep models are 330 

highly desirable, for example, when chronic recordings are possible in long-term implantable devices such 331 

as the NeuroPace responsive neurostimulation device (RNS) 62.  332 

We showed that the representation of the acoustic signal used as the target of reconstruction has 333 

an important role in the intelligibility and the quality of the reconstructed audio. We used a vocoder 334 

representation of speech, which extends the previous studies that used a magnitude spectrogram (time-335 

frequency representation)3,20, speech envelope21,22, spectrotemporal modulation frequencies6,13,23, and 336 
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discrete units such as phonemes and phonetic categories8,17,24,25 and words18,19. Reconstruction of the 337 

auditory spectrogram, which we also used for comparison, inherently results in suboptimal audio quality 338 

because the phase of the auditory spectrogram must be approximated. The discrete units such as 339 

phonemes enable discriminative training by learning a direct map from the neural data to the class labels, 340 

which is typically more efficient than generative regression models63. The continuous nature of 341 

parameters in acoustic reconstruction however could prove advantageous for BCI applications because 342 

they provide a continuous feedback to the user64, which is crucial for the subject and the BCI algorithm to 343 

coadapt to increase overall effectiveness26,27. Therefore, direct reconstruction of speech synthesis 344 

parameters is a natural choice. This choice however poses a challenge, since the vocoder quality is very 345 

sensitive to the quality of the decoding. As we have reported, reconstructing vocoder parameters resulted 346 

in both the worst (when used with linear regression) and the best (when used with DNN) results. 347 

Therefore, powerful modeling techniques such as deep learning are crucial as more inclusive 348 

representations of the speech signal are used for reconstruction and decoding applications. We proposed 349 

a solution to this problem by compressing the acoustic features into a low-dimensional space and using a 350 

decoder that is robust to the fluctuations of the input. 351 

We found that the combination of low frequency and the envelope of high gamma results in 352 

higher reconstruction accuracy than each frequency band alone. This finding is consistent with those of 353 

studies that have shown the importance of an oscillatory phase65 in addition to the neural firing rate, 354 

which is reflected in the high-gamma frequency band66. Combining both high and low frequencies not 355 

only enables access to the complementary information in each band52,67 but also allows the decoder to 356 

use the information that is encoded in the interactions between the two bands, such as cross-frequency 357 

coupling53. Overall, we observed that better brain coverage, more training data, and combined neural 358 

frequency bands result in the best reconstruction accuracy, which can serve as an upper bound 359 

performance where practical limitations prevent the use of all possible factors, for example, where the 360 

brain coverage is small, or high-frequency neural signals are not accessible such as in noninvasive 361 

neuroimaging methods.  362 

The application of neural speech decoding in neuroprosthesis  is contingent on the similarity of 363 

the underlying neural code in overt and covert (imagined) conditions. Several previous studies have 364 

examined the generalization of decoding techniques from overt to covert speech12–16 and showed the 365 

involvement of the auditory cortical areas, including the superior temporal gyrus (STG) in covert speech 366 

condition. Specifically, informative electrodes for speech decoding were found in Wernicke and the STG 367 

during imagined articulation13,14, covert word repetition15,  and  reading silently16. In addition to imagined 368 
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articulation, an MEG study12 measured the neural activity during actual and imagined hearing conditions 369 

and compared with actual and imagined articulation conditions. This study found that the neural activity 370 

during overt and covert states were more similar in hearing than in articulation condition. Furthermore, 371 

the similarity of the response topographies found in covert and overt hearing suggested a similar neural 372 

code in the two states, which is also consistent with the findings of fMRI studies showing a similar neural 373 

substrate mediating auditory perception and imagery 68–70. It is also worth mentioning that the activation 374 

of the auditory cortex is not specific to speech imagery, as a recent study found simlilar response patterns 375 

also during music perception and imagery71. While these studues have established the feasibility of speech 376 

decoding in covert speech perception and production, further research is needed to devise system 377 

architectures and training procedures that can optimally fine-tune a model to perform and generalize well 378 

in both overt and covert conditions. Furthermore, expanding from the closed-set intelligible speech in this 379 

work to continuous, open-set, natural intelligible speech requires additional research, which will 380 

undoubtedly benefit from a larger amount of training data, higher-resolution neural recording 381 

technologies72, and the adaptation of regression models73 and the subject to improve the BCI system26,27.  382 

In summary, we present a general framework that can be used for speech neuroprothesis 383 

technologies that can result in accurate and intelligible reconstructed speech from the human auditory 384 

cortex. Our approach takes a step toward the next generation of human-computer interaction systems 385 

and more natural communication channels for patients suffering from paralysis and locked-in syndromes.  386 

 387 
Figure 5. Effect of neural frequency range, number of electrodes, and stimulus duration on 388 

reconstruction accuracy. (A) The reconstruction ESTOI score based on high gamma, low frequency, and 389 

high gamma and low frequency combined. (B) The accuracy of reconstruction when the number of 390 

electrodes increases from one to 128. For each condition, 20 random subsets were chosen. (C) The 391 

accuracy of reconstruction when the duration of the training data increases. Each condition is the average 392 

of 20 random subsets.  393 
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Materials and methods: 394 

Participants and neural recording 395 

Five patients with pharmacoresistent focal epilepsy were included in this study. All subjects underwent 396 

chronic intracranial encephalography (iEEG) monitoring at Northshore University Hospital to identify 397 

epileptogenic foci in the brain for later removal. Three subjects were implanted with only stereo-398 

electroencephalographic (sEEG) depth arrays, one with a high-density grid, and one with both grid and 399 

depth electrodes (PMT, Chanhassen, MN, USA). The electrodes showing any sign of abnormal epileptiform 400 

discharges, as identified in the epileptologists’ clinical reports, were excluded from the analysis. All 401 

included iEEG time series were manually inspected for signal quality and were free from interictal spikes. 402 

All research protocols were approved and monitored by the institutional review board at the Feinstein 403 

Institute for Medical Research, and informed written consent to participate in the research studies was 404 

obtained from each subject before electrode implantation. All research was performed in accordance with 405 

relevant guidelines and regulations.  406 

Intracranial EEG (iEEG) signals were acquired continuously at 3 kHz per channel (16-bit precision, 407 

range ± 8 mV, DC) using a data acquisition module (Tucker-Davis Technologies, Alachua, FL, USA). Either 408 

subdural or skull electrodes were used as references, as dictated by recording quality at the bedside after 409 

online visualization of the spectrogram of the signal. Speech signals were recorded simultaneously with 410 

the iEEG for subsequent offline analysis. Two ranges of neural frequencies were used in the study. Low-411 

frequency (0–50 Hz) components of the neural data were extracted by filtering the neural signals using an 412 

FIR lowpass filter. The high-gamma (70–150 Hz) envelope36 was extracted by first filtering the data into 413 

eight frequency bands between 70 and 150 Hz using IIR filters. The envelope of each band was then 414 

obtained using a Hilbert transform. We took the average of envelopes in all frequency bands as the total 415 

envelope which was then resampled to 100 Hz. The high-gamma responses were normalized based on the 416 

responses recorded during a 2-minute silence interval before each recording.  417 

 418 

Brain maps 419 

The electrode positions were mapped to brain anatomy using registration of the post-implant computed 420 

tomography (CT) to the pre-implant MRI via the post-op MRI74. After coregistration, the electrodes were 421 

identified on the post-implantation CT scan using BioImage Suite75. Following coregistration, the subdural 422 

grid and strip electrodes were snapped to the closest point on the reconstructed brain surface of the pre-423 

implantation MRI. We used the FreeSurfer automated cortical parcellation76 to identify the anatomical 424 

regions in which each electrode contact was located within approximately 3 mm resolution (the maximum 425 
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parcellation error of a given electrode to a parcellated area was < 5 voxels/mm). We used Destrieux’s 426 

parcellation because it provides higher specificity in the ventral and lateral aspects of the medial lobe77. 427 

The automated parcellation results for each electrode were closely inspected by a neurosurgeon using the 428 

patient’s coregistered post-implant MRI.  429 

 430 

Stimulus 431 

The speech materials included continuous speech stories recorded in-house by four voice actors and 432 

actresses (duration: 30 min, 11,025 Hz sampling rate). Eight of the sentences (40 seconds) were used for 433 

objective tests and were presented to the patients eight times to improve the signal to noise ratio. The 434 

digit sounds were taken from the TI-46 corpus35. Two female (f2 and f8) and two male (m2 and m5) 435 

speakers were chosen from the corpus, and one token per digit and speaker was used (total of 40 unique 436 

tokens). Each digit was repeated six times to improve the signal to noise ratio of the neural responses. 437 

The speakers that uttered the digits were different from the speakers that narrated the stories.  438 

 439 

Acoustic representation 440 

The auditory spectrogram representation of speech was calculated from a model of the peripheral 441 

auditory system78. The model consists of three stages: 1) a cochlear filter bank consisting of 128 constant-442 

Q filters equally spaced on a logarithmic axis, 2) a hair cell stage consisting of a low-pass filter and a 443 

nonlinear compression function, and 3) a lateral inhibitory network, consisting of a first-order derivative 444 

along the spectral axis. Finally, the envelope of each frequency band was calculated to obtain a time-445 

frequency representation simulating the pattern of activity on the auditory nerve78. The final auditory 446 

spectrogram has a sampling frequency of 100 Hz. The audio signal was reconstructed from the auditory 447 

spectrogram using an iterative convex optimization procedure43. For the vocoder-based speech 448 

synthesizer, we used the WORLD45 (D4C edition) system. In this model, four major speech parameters 449 

were estimated, from which the speech waveform was synthesized: 1) spectral envelope, 2) f0 or 450 

fundamental frequency, 3) band aperiodicity, and 4) voiced-unvoiced (VUV) excitation label. The 451 

dimension of each parameter was automatically calculated by the vocoder method and was based on the 452 

window size and the sampling frequency of the waveform (16 KHz).  453 

 454 

DNN architecture 455 

We used a common deep neural network architecture that consists of two stages: feature extraction and 456 

feature summation38–40 (Fig. 2A). In this framework, a high-dimensional representation of the input is first 457 
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calculated (feature extraction), which is then used to regress the output of the model (feature 458 

summation). The feature summation and feature extraction networks are optimized jointly together 459 

during the training phase. In all models examined, the feature summation step consisted of a two-layer 460 

fully connected network (FCN) with L2 regularization, dropout41, batch normalization42, and nonlinearity 461 

in each layer.  462 

We study five different architectures for the feature extraction part of the network: the fully 463 

connected network (FCN, also known as the multilayer perceptron or MLP), the locally connected network 464 

(LCN) 79, convolutional neural network (CNN) 80, FCN+CNN, and FCN+LCN (for details of each architecture 465 

see Supp. Table 1). In the combined networks, we concatenated the output of two parallel paths, which 466 

were fed into the summation network. For FCN, the windowed neural responses were flattened and fed 467 

to a multilayer FCN. However, in LCN and CNN, all the extracted features were of the same size as the 468 

input, meaning that we did not use flattening, strided convolution, or downsampling prior to the input 469 

layer or between the two consecutive layers. Instead, the final output of the multilayer LCN or CNN was 470 

flattened prior to feeding the output into the feature summation network.  471 

The optimal network structure was found separately for the auditory spectrogram and vocoder 472 

parameters using an ablation study. For auditory spectrogram reconstruction, we directly regressed the 473 

128 frequency bands using a multilayer FCN model for feature extraction (Supp. Table 5). This 474 

architecture, however, was not plausible for reconstructing vocoder parameters due to the high-475 

dimensionality and statistical variability of the vocoder parameters. To remedy this, we used a deep 476 

autoencoder network (AEC) 47 to find a compact representation of the 516-dimensional vocoder 477 

parameters (consisting of 513 spectral envelopes,  pitch,  voiced-unvoiced, and band periodicity) 45. We 478 

confirmed that decoding the AEC features performed significantly better than decoding the vocoder 479 

parameters directly (Supp. Table 2). The structure for the proposed deep AEC is illustrated in Figure 2D. 480 

To carry out decoding, we used a multilayer FCN, in which the number of the nodes changed in a 481 

descending (encoder) and then ascending order (decoder) (Fig. 2C)(supp. Table 6). The bottleneck layer 482 

of such a network (or the output of the encoder part of the pre-trained AEC) can be used as a low-483 

dimensional reconstruction target by employing the neural network model, from which the vocoder 484 

parameters can be estimated using the decoder part of the AEC. We chose the number of nodes in the 485 

bottleneck layer to be 256, because it maximized both the objective reconstruction accuracy (Supp. Table 486 

3), and the subjective assessment of the reconstructed sound. To increase the robustness to unwanted 487 

variations in the encoded features, we used two methods in the bottleneck layer: 1) the hyperbolic 488 

tangent function (tanh) was used as a nonlinearity to control the range of the encoded features, and 2) 489 
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Gaussian noise was added during training prior to feeding into the first layer of the decoder part to make 490 

the decoder robust enough to unwanted changes in amplitude resulting from noises in neural responses. 491 

We confirmed that using additive Gaussian noise in the bottleneck instead of dropout performed 492 

significantly better (paired t-test, p<0.001). It is important that we use the same nonlinearity as the 493 

bottleneck (tanh) in the output of the main network, since the estimations should be in the same range 494 

and space as those in which they were originally coded. The best network architecture for decoding the 495 

vocoder parameters was found to be the FCN+LCN network (Supp. Table 4).  496 

 497 

DNN training and cross validation 498 

The networks were implemented in Keras with a Tensorflow backend81. Initialization of the weights was 499 

performed using a previously proposed method which was specifically developed for deep multilayer 500 

networks with rectified linear units (ReLUs) as their nonlinearities82. It has been shown that using this 501 

method helps such networks converge faster. We used batch normalization 42, nonlinearity, and a dropout 502 

of p=0.3 41 between each layer. We applied an L2 penalty (with a multiplier weight set to 0.001) on the 503 

weights of all the layers in all types of networks (including the AEC). However, we found that using additive 504 

Gaussian noise in the bottleneck of the AEC instead of dropout and regularization performed significantly 505 

better (paired t-test, p<0.001). We used three types of nonlinearities in the networks: 1) LeakyReLU83 for 506 

all layers of AEC except the bottleneck and for all layers of the feature extraction part of the main network, 507 

2) tanh for the output layer of the main network and the bottleneck of the AEC, and 3) the exponential 508 

linear unit (ELU) 84 for the feature summation network. Each epoch of training had a batch size of 256, and 509 

optimization was performed using Adam85 with an initial learning rate of 0.0001, which was reduced by a 510 

factor of two if the validation loss did not improve in four consecutive epochs. Network training was 511 

achieved in 150 epochs and was performed for each subject separately. The loss function was a 512 

combination of MSE and Pearson’s correlation coefficient for each sample: 513 

 514 

1
𝑛
# (𝑦& − 𝑦(&)* −

∑ (𝑦& − 𝑦,&)& (𝑦(& − 𝑦(,&)
-∑ (𝑦& − 𝑦,&)*& ∑ (𝑦(& − 𝑦(,&)*&&

 515 

 516 

in which 𝑦 is the actual label (auditory spectrogram or vocoder features) for that sample and 𝑦( is the 517 

reconstruction from the output layer of the network. The maximum time-lag used was 𝜏/01 = 300 ms 518 

(Supp. Fig. 2). Because of the higher correlated activity between the neural responses of neighboring 519 

electrodes86, it was important to ensure that the networks can model the local structure in the data. 520 
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Because both CNN and LCN use small receptive fields that take local patterns into account, we retained 521 

the spatial organization of the electrode sites in the input to the network, meaning that the electrodes 522 

that were close to each other in the brain were arranged to be close together in the input data matrix. 523 

 524 

Cross validation 525 

We trained both the LR model and the DNN models using cross validation. We used the speech stories for 526 

training all models, and used repeated sentences (separate set from the stories) and digit sounds for 527 

testing. No digit sound was included in the training, and the speakers that uttered the digits were different 528 

from those that read the stories. The autoencoder network (AEC) was trained on a separate speech corpus 529 

(Wall Street Journal, WSJ, 80 hours of read speech) 48. 530 

 531 

Subjective and objective evaluations 532 

We assessed the intelligibility of the reconstructed speech using both subjective and objective tests. For 533 

subjective assessment, 11 participants with self-reported normal hearing listened to the reconstructed 534 

digits using headphones in a quiet environment. Each participant listened to 160 tokens including 10 535 

digits, four speakers, and four models. The participants were asked to report the digit or to select unsure 536 

if the digit was not intelligible. In addition, the participants reported the quality of the reconstructed 537 

speech using a mean opinion score (MOS): 1 (bad), 2 (poor), 3 (fair), 4 (good), and 5 (excellent). The 538 

participants also reported the gender of the speaker. For objective evaluation, we used the ESTOI 539 

measure51 which is a monaural intelligibility prediction algorithm commonly used in speech enhancement 540 

and synthesis research. The range of ESTOI measure is between zero (worst) and one (best).   541 

 542 

543 
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Data availability 544 

The data that support the findings of this study are available upon request from the corresponding author 545 

[NM]. 546 

 547 

Code availability 548 

The codes for performing phoneme analysis, calculating high-gamma envelope, and reconstructing the 549 

auditory spectrogram are available at http://naplab.ee.columbia.edu/naplib.html 87.  550 
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