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ABSTRACT 

Next generation sequencing is widely used to characterize genetic diversity in a sample, yet is 

hindered by its relatively low resolution. Particularly, detecting rare genetic variants in clinical 

samples of viruses is still nearly impossible. Here we describe AccuNGS, an approach that 

combines error reduction in each sequencing stage with in silico error elimination, which enables 

detection of variants as rare as 1:10,000 or lower. We thoroughly explore AccuNGS background 

errors and reveal they are mostly generated in the sequencer itself. We demonstrate that as 

opposed to common assumptions, Illumina paired-end reads are not independent. After applying 

AccuNGS to an HIV sample taken during acute infection, we reveal that the vast majority of 

transition variants in the sample segregate at ultra-low frequencies, rendering them undetectable 

by standard sequencing. These results highlight the early rich accumulation of genetic diversity 

during viral infection at depths previously unseen. 

INTRODUCTION  

Recent advances in high-throughput nucleic acid sequencing have revolutionized our ability to 

identify the prevalence of minor traits in a heterogeneous sample. Identification of rare single 

nucleotide variants (SNVs) is important in diverse disciplines spanning post-transcriptional 

modifications, cancer genetics, non-invasive prenatal diagnoses and microbiology (1-4). SNV 

identification in virus populations is currently at the heart of many studies monitoring drug 

resistance, estimating mutation rates, quantifying standing genetic variation and predicting the 

fitness costs of single mutations (4-10). Accountable quantification of such variants present in 

clinical specimens requires high template recovery, sufficient sequencing depth, and 
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discrimination of real minor variants from the background errors of the sequencing process 

(11,12). However, using the standard next generation sequencing (NGS) protocols may result in 

significant background error rates. In fact, following typical post-processing of NGS data, 

mutations that are at frequencies lower than 1-5% are discarded, drastically limiting rare SNV 

identification (9,13,14). This limitation of NGS has been recently pointed as one of the major gaps 

in using genotyping to survey resistance mutations and understand HIV treatment failure (15,16). 

In the past few years, several innovative experimental approaches were suggested to reduce 

the background error rates of the NGS process: rolling-circle-based redundant coding of the 

amplified fragments (1,17-19); consensus sequencing of barcoded genomic fragments (19-24); 

error reduction by overlapping paired reads in paired-end sequencing (25-27); and usage of 

improved polymerases (28). Complementary to the library preparation methods, several 

computational methods were created to facilitate discrimination of true variants from process 

errors, based on systematic background error modeling (24,29-33). Apart from the usage of 

overlapping read pairs (ORP), most experimental methods described above are designed for 

samples with high biomass and are inapplicable for sequencing of viruses from clinical samples, 

where the biomass of the viruses may be extremely low. Furthermore, these experimental 

protocols may provide accuracy at the cost of increased technical complexity, and may introduce 

their own artifacts to the sequencing process (34). On the variant calling side, most variant calling 

programs model strand-specific sequencing bias but do not properly incorporate the information 

from the paired region that may have different error characteristics (35). Moreover, it has been 

suggested that these well-established variant callers do not perform well on clinical virus samples 

(36).  

We therefore sought to create a simple and highly accurate sequencing protocol that will be 

suitable for sequencing of clinical samples, with a special focus on low-biomass samples of RNA 

viruses. The motivation was based on the fact that many of these viruses replicate at huge 

census population sizes with high mutation rates of ~10-4-10-5 mutations/base/replication, so viral 

populations from clinical samples are expected to contain very high levels of heterogeneity 

(5,37,38). We set out to perform a step-by-step optimization of NGS protocols with an emphasis 

in each step on high accuracy and high yield. The resulting optimized protocol termed “AccuNGS” 

is a simple and rapid sequencing method and includes an associated variant caller, which if 

combined can reliably detect ultra-rare variants at frequencies of 1:10,000 or lower. Using 

homogenous DNA and RNA samples, we characterized the typical error landscape of the 

AccuNGS protocol, pinpointed the potential sources that generate errors in our protocol and 

suggest potential solutions. We applied our method to an RNA sample taken from a patient 

recently infected with HIV-1 (acute stage, seronegative) to examine the breadth of accumulation 

of mutations in the viral population in this critical period of the infection.  
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RESULTS 

Protocol overview 

AccuNGS protocol was designed to enable targeted sequencing of a desired genomic region 

from clinical samples with maximal yield, high accuracy and rapid implementation. It combines 

several concepts, some of which were previously reported separately. The principles of our 

protocol are (i) use of high-fidelity polymerases during reverse transcription (RT) and 

amplification. In particular we chose to use either the SuperScript III or SuperScript IV RT 

enzymes (reported mean error rate near 5x10-5 (29,39)) and the Platinum SuperFi DNA 

polymerase (error rate of near 5x10-7, (40) and manufacturer at https://www.thermofisher.com/ ); 

(ii) significant reduction of sequencer errors by overlapping paired-end sequencing; and (iii) a 

specialized base calling bioinformatics pipeline that incorporates mutation-specific and locus-

specific distribution of background errors (see Methods and Fig. 1). Based on the above 

information we were able to calculate theoretical means of 1.78*10-5 and 6.78*10-5 errors per 

base introduced in our AccuNGS protocol for DNA and RNA samples, respectively (Table 1). An 

auxiliary part of our protocol allows for quantification of the actual number of RNA genomes 

sequenced using uniquely barcoded primers introduced early in the RT step (the "primer-ID" 

method) (2,20,21,41,42). This is a critical measure when analyzing the levels of diversity present 

in clinical samples, since low genetic diversity observed in a sample may stem from a small 

number of sequenced templates rather than from real reduced diversity in the sample. We note 

that this manuscript focuses on two measures: the mean error rate, reported when we 

characterize the method, and a cutoff error rate (based on the gamma distribution of errors), 

which we report as a measure to be used when performing base-calling. Naturally the cutoff value 

is higher than the mean error. 

Table 1. Mean expected error rates in AccuNGS. 

Step Error rate Number of 

rounds 

Expected error 

Polymerase Chain Reaction 

(PCR) 
6.47*10-7 [ThermoFisher] 40 + 12 1.68*10-5 

Sequencing 10-6 (Q30 filtering & 

overlapping paired reads) 
1 1*10-6 

Total (DNA starting material)   1.78*10-5 

Reverse Transcriptase (RT) 3.1*10-5 – 6.5*10-5 (29,39) 1 4.8*10-5 

Total (RNA starting material)   6.58*10-5 
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Fig. 1. AccuNGS protocol principles. (i) High fidelity and high-yield RT reaction. The RT 

primers may be designed with a unique N-base barcode (e.g. "primer-ID") to allow template 

quantification downstream (ii) High-fidelity PCR reaction (iii) Library construction with size 

selection for insert size as short as a single paired-end read (iv) Paired-end sequencing where 

each base in the insert is sequenced twice, once in the forward read and again in the reverse 

read (v) Alignment of reads, Q-score filtering on both reads and basecalling of both the sample 

and a homogeneous control (vi) Sample variant calling based on fitted distributions of process 

errors and position-specific error propensity. 

AccuNGS error sources analysis at the DNA level  

We began by evaluating AccuNGS when a DNA plasmid was used as starting material. Our 

underlying assumption throughout our working process was that our DNA starting material is 

homogenous with respect to the theoretical error rate we calculated. This assumption is based on 

the fact that we used low-copy plasmids that were grown in E. coli, and only a single colony was 

subsequently sequenced. The mutation rate of E. coli is in the order of 1x10-10 

errors/base/replication (23), and sequencing of a single colony ensures only a limited number of 

replication cycles. Accordingly, error rates in the purified plasmids are expected to be much lower 

than the expected protocol mean error of ~1x10-5. Thus, errors observed when comparing the 
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results of the sequencing to our known reference sequence reflect errors created by the library 

preparation or by the sequencing process itself. All samples underwent basecalling using our 

specialized bioinformatics pipeline and positions were considered for analysis only if their 

coverage exceeded 100,000 bases per position (see Methods). Table S1 provides statistics about 

the number of reads and the distribution of miscalls in each sample.  

We thus set out to sequence the HIV-1 pLAI.2 plasmid (43) using AccuNGS at its baseline 

conditions, including 40 cycles of PCR amplification of a target region with a high-fidelity 

polymerase, followed by Nextera XT library preparation with a high-fidelity polymerase and size 

selection of a 250bp insert (see Methods and Table 2). We then compared the baseline 

AccuNGS error rate to the results of a protocol typically used in clinical (and other) settings, 

where less focus is put on the fidelity of the process (44). Fig. 2 compares the proportion of errors 

observed on our plasmid sequence under AccuNGS and under standard sequencing, broken 

down according to type of mutation (base-to-base). Reassuringly, AccuNGS showed a significant 

improvement of one to two orders of magnitude over the standard sequencing protocol. For 

example, the mean A>G error rate went down from 2.6x10-3 down to around 9.2x10-5. While this 

improvement was large, perplexingly it was still an order of magnitude higher than the theoretical 

error rate we had expected of ~1x10-5. We thus set out to optimize the AccuNGS protocol and try 

to pinpoint the unexpected source introducing errors into the process.  

Sources of process errors based on differential sequencing. We next performed a set of 

sequencing trials, whereby at each trial we tested if removing or changing a specific stage of the 

protocol alleviates some of the observed errors and improves the fidelity of AccuNGS. Our 

immediate suspect was the PCR amplification step. Due to the exponential nature of PCR, errors 

introduced at early stages of the amplification will be carried over and have been reported to 

create a high background error for ultra-deep sequencing (45,46). Accordingly, we were worried 

that any misspecification of the error rate of the SuperFi DNA Polymerase we use (Table 1) would 

lead to an inflation in PCR errors. To test this hypothesis we created a sample with no PCR 

amplification, by harvesting larger quantities of the plasmid from the bacteria. This led to only a 

slight decrease in the mean error rate of transition mutations (Fig. 2). We hence concluded that 

the forty PCR cycles that take place in the PCR amplification prior to library preparation do not 

explain most of the errors of the AccuNGS protocol.  
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Table 2. Differential DNA control samples sequenced in this study. 

Sample name PCR enzyme 
PCR 

cycles 

PCR 

purification 

method 

Library 

purification 

method 

Cloning 

bacteria 

Tagmentation 

method 
Target region 

Baseline 
SuperFi 

(Thermofisher) 
40+12 Gel Beads 

E.coli 

(DH5α) 
Nextera XT 

Integrase 

(pLAI) 

Q5 Q5 (NEB) . . . . . . 

PCR free . 12 . . . . 
Integrase 

(extended) 

Alt. PCR purification 

(beads) 
. . Beads . . . . 

Alt. PCR purification 

(Exosap) 
. . Exosap . . . . 

Alt. library 

purification (gel) 
. . . Gel . . . 

TG1 . . . . 
E.coli 

(TG1) 
. . 

Alt. tagmentation . . . . . PCR . 

AmpR . . . . . . AmpR (pLAI) 

RpoB . . . . . . RpoB (DH5α) 

NextSeq (Illumina) . . . . . . . 

"." in a cell indicates a condition that is similar to the baseline; Alt=alternative. All samples besides the 
NextSeq sample were sequenced on the Illumina MiSeq sequencing platform. 

 

We next focused on various so-called “chemical” processes that take place in AccuNGS library 

preparation. Mainly we were concerned that using gel extraction for DNA size selection, 

particularly UV light exposure, may introduce mutations. Indeed, when replacing gel extraction for 

the PCR products with magnetic beads extraction, we observed a slight reduction of the mean 

transition error rates (Fig. 2). On the other hand, this sample showed elevated levels of C:G>A:T 

errors. These errors are often signatures of oxidative stress and are discussed below. Alternative 

PCR purification using the Exosap cleanup reagent did not show elevated C:G>A:T errors 

compared to their levels in the baseline protocol, however it showed error levels comparable to 

the baseline protocol.  
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Fig. 2. Mean background error rates of different sequencing protocols at the DNA level. 

AccuNGS dramatically reduces errors present in standard sequencing protocols by almost two 

orders of magnitude. PCR errors in AccuNGS are negligible based on comparison of PCR and 

PCR-free sample. Higher rates of G>T and C>A are likely indicative of oxidation (see text for 

more details). Error bars represent 95% confidence intervals around estimated mean values 

using 1,000 bootstrap repeats. 

We next tested if the source plasmid itself was the major source of observed errors, focusing on 

the conditions whereby we grew the plasmid. First we tested if the mutations were accumulated 

naturally due to lack of selection on the HIV genes by sequencing the antibiotic resistance marker 

AmpR on pLAI.2 that is presumably under strong selection against mutations. Next we tested if 

the plasmid was the source of errors by sequenced the highly conserved RpoB gene from E. coli 

itself. Finally we tested if the errors were introduced by the bacteria during plasmid replication by 

growing the plasmid in an alternative strain of E. coli (TG1) with a presumably lower mutation rate 

(47). However, we observed no change in the error rate distribution in any of these conditions, 

suggesting that the DNA input was not the major source of minor variants.  

We next hypothesized that the tagmentation process in the NexteraXT DNA library preparation kit 

(Illumina) might be the cause of artifacts. We resorted to a home-made tagmentation protocol 
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based on introduction of NexteraXT-compatible adapters and indices via PCR amplification of a 

250bp fragment of pLAI.2. Yet again, we observed no significant change in the distribution of 

errors. Replacing the Illumina MiSeq sequencer with the Illumina NextSeq, which is based on a 

two-channel sequencing process rather than a four-channel process and a different flow cell, 

resulted in a small increase in error levels. This suggests that the Illumina MiSeq and the higher 

throughput HiSeq (which employs the same detection method as MiSeq) are slightly more 

suitable for AccuNGS sequencing.  

After having ruled out all sources of error we could conceive of testing, we were still left with the 

enigma of what causes the errors observed consistently and reproducibly across all the samples 

we sequenced. We were left with one condition that we could not alter directly: the sequencing 

step itself, as discussed next. 

Sequencing quality effect. Each base reported by Illumina sequencers is assigned with a 

probability of that base being wrong, termed the Q-score. The range of Q-scores reported from 

the Illumina MiSeq is 0 to 40, which translates to a probability of an erroneous call between 1 and 

0.0001, respectively. In the AccuNGS base calling scheme, we consider only sites where the two 

overlapping reads reported the same base with an average Q-score of 30 or higher, as in (25). 

Our original interpretation of overlapping reads, in line with previous works (48,49) was that the 

base called jointly on both reads has a corrected Q-score equals approximately to the sum of the 

Q-scores from both reads. Accordingly, this means that if we filter for bases with a corrected Q-

score of at least 60, this translates to an error probability <=1x10-6 per base called, far below our 

theoretical threshold of 1.78x10-5. We set out to test if this is indeed true. First, we determined 

whether the independent Q-scores indeed reflect what they are supposed to. When inspecting 

errors observed on one read only with a Q-score of 30 or higher, we found that their maximal 

frequency was indeed around 10-3 (Fig. S3). Thus, it seems that the individual Q-scores on each 

read are reflective of the error rates of the process. However, we suspected that the joint Q-

scores that we calculate are incorrect – mainly, that each reported Q-score is not independent of 

the Q-score on the mate read. To test this, we examined whether using a more stringent filter 

criterion improves AccuNGS results. We applied a very stringent quality filtering of Q38 on the 

AmpR sample that was sequenced to extreme depth of 1,500,000 bases per position (Table S1). 

The very high coverage and the good quality of the sequencing allowed us to still retain most 

sites at a coverage of above 100,000 reads per base (Table S1). We expected that this filtering 

will improve the results by the difference between twice Q30 (Q60, error probability of 1x10-6) and 

twice Q38 (Q76, error probability of ~2x10-8). This difference translates to an improvement which 

is far below our observed error rate and hence we did not expect to see any improvement. 

Surprisingly, we observed a dramatic reduction in the rates of errors for A:T>G:C miscalls, and a 

modest reduction for C:G>T:A miscalls (Fig. 3, Table 3 and Table S2). We hence concluded that 
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the assumption that the Q-scores of overlapping reads are independent is an incorrect 

assumption, and that the sequencer itself is the major source of errors in AccuNGS.  

 

Fig. 3. The effect of increasing the Q-score filtering threshold on AccuNGS error rates. 

Error distributions for Q30 and Q38 filtering for the AmpR amplicon, presented for each type of 

transition error. n.s., not significant; ***p<0.0001 

Effects of surrounding nucleotides on error rates. Previous studies have indicated that the 

nucleotides surrounding a called base may influence its propensity to be miscalled (13,28). 

Indeed, we found that the identity of the surrounding bases sometimes affected the error rate 

observed with AccuNGS: when focusing on G>A mutations, we observed a higher error when the 

G was preceded by a C (CpG) and a lower error when the G was preceded by an A (ApG, Fig. 

S1). The exact same pattern was observed for the reverse complement C>T mutations (data now 

shown). These phenomena were found in all sequenced samples, suggesting that they aren't 

affected by any of the differential conditions we tested. When analyzing transversion artifacts, we 

observed a higher error rate for G:C>T:A mutations compared to all other types of transversions. 

This enrichment was more prominent in some samples than in the others and is typically 

associated with oxidative damage (13,50-53). When characterizing the nucleotide context of the 

C:G>A:T errors, we found that G>T errors occurred more frequently when the mutated G base   
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Table 3. Fitted gamma distributions for different Q-scores cutoffs and substitution types, on 

the AmpR amplicon.  

Q-score 
Cutoff  

Substitution 
type 

Number of 
Sites (N) 

Shape (κ) Scale (θ) 0.95% of 
fitted gamma  

Mean 
error rate 

Median 
error rate 

Q30 

A->G 145 8.855585 9.31E-06 1.32E-04 8.24E-05 8.30E-05 

C->T 172 4.511632 1.69E-05 1.42E-04 7.61E-05 6.49E-05 

G->A 154 5.32 1.33E-05 1.27E-04 7.05E-05 6.69E-05 

T->C 170 12.8402 6.57E-06 1.26E-04 8.43E-05 8.02E-05 

Q38 

A->G 138 5.863207 8.51E-06 8.79E-05 4.99E-05 4.89E-05 

C->T 164 2.773564 2.49E-05 1.48E-04 6.92E-05 5.90E-05 

G->A 149 2.879898 2.17E-05 1.32E-04 6.25E-05 5.36E-05 

T->C 166 7.09643 7.01E-06 8.39E-05 4.98E-05 4.77E-05 

 

was followed by A or another G (GpA\G). As in the G>A transitions, the reverse complement C>A 

mutations were more frequent when C was preceded by C or T (C\TpC; Fig. S2).  

AccuNGS error analysis at the RNA level  

Since one of the ultimate goals of the development of AccuNGS was the sequencing of RNA 

viruses, we set out to characterize how the protocol fares for RNA. In order to obtain a 

homogenous RNA sample we performed in-vitro transcription of a homogeneous plasmid using 

T7 polymerase, whose error rate has been approximated in the order of 10-6 (54), an order of 

magnitude lower than the error rate observed for DNA with AccuNGS. The RNA was then used 

as input for reverse transcription reaction with random hexamers using SuperScript III, whose 

mean error rate has been approximated to be between 3.1x10-5 and 6.5x10-5 (29,39). We then 

proceeded with the AccuNGS protocol for DNA as previously described. In this RNA control 

sample, we expected the observed errors to be the union of those introduced by the DNA part, 

those introduced during in-vitro transcription and those introduced during reverse transcription. 

With Q30 filtering, the RNA control sample indeed showed a higher mean transition error rate of 

9.52x10-5 compared to the mean transition error rate of 8.49x10-5 in the DNA control sample 

(Table S1 and Fig. 4). The difference of 1.03x10-5 is indeed in line with most additional errors in 

the RNA control sample stemming from the RT step. By using the difference between the 

medians of these two control samples, we were able to calculate upper bounds on the base-by-

base error rates of the RT used in the process, which were found to be lower for some mutation 

types than previously reported (Table S3).  
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Fig. 4. Error rates of the DNA versus RNA control samples. Comparison of error distributions 

reveals that RT most often does not introduce a dramatically high level of error. Boxplots of errors 

per type of base changes are shown. Raw read bases were filtered when their average Q-score 

was less than Q30. 

Clinical sample sequencing – acute HIV-1 infection 

We next went on to test our method on direct sequencing of a clinical HIV-1 sample. HIV-1 

infections typically begin with one to few viruses, indicating that the virus diversity at the 

population level at the time of infection is very limited (55). Large population sizes coupled with 

high mutation rates in the order of 10-5 mutations/base/replication cycle allow the virus to obtain 

mutations shortly after infection (38,56). However, HIV-1 populations sequenced shortly after 

infection, while the patient is at acute infection, have shown very limited diversity (57-59). At this 

time point, most variants in HIV are expected to be at frequencies below 10-3, thus mostly 

obscured by the common clinical sequencing protocols’ error rates. We obtained a plasma 

sample from a recently infected HIV-1 patient with laboratory confirmed seroconversion (a 

negative HIV-1 confirmatory assay followed by a positive test, 2 weeks apart), indicating this 

patient was likely 15-20 days after infection (so called acute HIV infection (60)). We chose to 

sequence the gag region of the virus (nearly 1800 bases) as it is mostly under purifying selection, 
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but is also targeted by the HLA component of the adaptive immune system and possibly HLA 

escape mutations will be seen at this early stage of infection (61). We prepared each RT primer 

with a unique barcode (“primer ID”), 15 nucleotides long that allowed us to quantify the amount of 

viruses we have actually sequenced (see Methods and Supplementary Text). We aimed to 

sequence ~30,000 viruses, which is roughly the inverse of the error rate we obtain with AccuNGS 

(which is around 1 in 10,000). To this end, we started the protocol with roughly 300,000 viruses, 

as estimated from the viral load of the sample. Based on RT processivity, we estimated that 10% 

of the viruses would hence be sequenced (62).  

For background errors control, we amplified and sequenced a clonal pLAI.2 DNA in parallel. The 

sequenced sample and the control had a median coverage of nearly 400,000 bases per position 

at Q30, allowing us to filter called bases for a minimum of Q38 for each base in the Forward and 

Reverse reads. As expected, background error rates in the control plasmid were similar to those 

obtained by our previous controls. Primer-ID analysis revealed that nearly 16,000 viruses were 

actually sequenced, so variants identified at frequencies of 10-4 are likely to represent true 

diversity (see Supplementary Text). We applied our variant caller on the sample using the pLAI 

control to serve as the background error distribution. Using a p-value cutoff of 0.01 for each 

variant called (i.e., this variant is at or above the 99th percentile of the gamma distribution for this 

mutation type), between 40% and 50% of all sequenced positions were identified as containing 

true transition mutations (Fig. 5A and Table 4). Using the standard sequencing, only four 

transition mutations would have been identified; AccuNGS revealed that several hundreds of 

transition variants exist at this time of infection at low frequencies of 10-4-10-3 (Table 4). When 

analyzing the type of mutations observed at low frequencies, synonymous mutations were the 

most prevalent, then non-synonymous mutations and then nonsense mutations (Fig. 5B). This 

suggests that signals of purifying selection can be already captured at this early time-point of 

infection and also strongly suggests that the variation observed is true. Interestingly, G>A minor 

variants were more prevalent than all other mutation classes (Fig. 5). Specifically, G>A variants 

preceded by A (GpA) were the most prevalent among all G>A variants, followed by G>A variants 

preceded by G (GpG, Fig. S4). This is possibly evidence for cytosine deamination activity by host 

APOBEC enzymes on the minus strand during reverse transcription, reflected as excess G>A 

mutations in the genome of virus (63). This is also in line with the favored editing context of 

APOBEC3F (63). However, G>A mutations are also the most common replication error of HIV-RT 

(56), and we cannot rule out that this drives higher frequencies of G>A as observed here. 
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Table 4. Variants identified with AccuNGS in the acute HIV sample. P-values were calculated 

with AccuNGS variant caller using the specified control sample as control. Sites were considered 

if their coverage exceeded 25,000x. 

Control #Sites 
with 
sufficient 
coverage 

Significance 
level  

Number 
of 
variants 
(Ts+Tv) 

Number of 
transition 
variants 

% Positions 
with 
transition 
variants 

Average 
transition 
variant 
frequency 

pLAI.2 
(DNA) 

1,469 5% 1,535 799 54% 8.2E-04 

pLAI.2 
(DNA) 

1,469 1% 1,297 727 49.4% 8.98E-04 

In vitro 
RNA 

1,469 5% 1,105 649 44.1% 9.9E-04 

In vitro 
RNA 

1,469 1% 984 594 40.4% 1.06E-03 

Ts, Transitions; Tv, Transversions. 

 

Fig. 5. Transition minor variants identified in the acute HIV-1 sample. (A) Variants plotted 

against their respective frequency on the DNA control. Variants are colored if they reside in the 

top 1% of the fitted error distributions based on the DNA control. The vast majority of HIV variants 

reside below the standard sequencing limit of detection of ~1% (dashed line). (B) Minor C>T 

transition variants by type. Synonymous mutations are more prevalent than non-synonymous and 

stop-codon-forming mutations.  

DISCUSSION 

Application of next generation sequencing on clinical samples is still limited by the ability to 

reliably capture minor variants (15,16,36). Here we describe AccuNGS, a simple, rapid and 

optimized experimental protocol and associated computational pipeline for detecting ultra-rare 

variants from low-biomass clinical RNA and DNA samples. AccuNGS aims to accurately detect 
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minor variants present in a population of genomes at frequencies of 1:10,000 or lower, close to 

the mutation rate of RNA viruses (5). By performing differential sequencing we demonstrate that 

as opposed to many sequencing protocols, PCR is not a major source of errors in AccuNGS 

(45,64), and conversely we suggest that the sequencer is a major source for errors, even when 

correcting the strand-bias using overlapping read pairs. We show that the mean transition error 

rate of the protocol is around 7.83x10-5 when filtering for Q30, and 5.80x10-5 when filtering for 

Q38. These error rates translate to a cutoff of 1.35x10-4 and 1.16x10-4 based on the 95 percentile 

of a fitted gamma distribution of all transition errors. Notably when focusing on specific types of 

transitions (mostly T>C and A>G) the cutoff drops to below 1x10-4. 

AccuNGS excels especially when the input is low-biomass heterogeneous RNA. Comparable 

methods for accurate sequencing such as rolling-circle-based methods typically require extremely 

high-biomass input, making them irrelevant for clinical virus sequencing. Furthermore we and 

others have observed that such protocols exhibited a relatively high C>T rate [exceeding 10-4 

(1,17,18,65), unpublished results]. Such error levels were not recapitulated using AccuNGS, 

suggesting that these may have been artifacts of the rolling circle approach. A possible 

alternative for clinical sequencing would be the use of barcoded primers (also known as primer-

IDs) during RT reaction, to generate consensus sequences that will correct errors inserted during 

amplification and sequencing (2). The advantage of the barcoded approaches is that they can 

also correct for unequal PCR sampling. However, the downside of these approaches is that they 

require splitting the input sample into numerous reactions, since a barcode has to be attached to 

each sequencing read (typically spanning 500-600 bases). When the number of initial viruses in 

the sample is not huge (as typical for limited clinical samples), this is problematic since only a 

relatively small number of viruses will be sequenced in each reaction. AccuNGS is only limited by 

the capacity of the RT and PCR reactions (i.e., the length of the targeted sequence that 

undergoes one RT or PCR reaction), which may span several thousand bases. We also noted 

that error rates in barcoding-based protocols are comparable to AccuNGS (35,66). We do note 

that in the AccuNGS approach we recommend primer barcoding only on one end of the amplicon, 

but this is aimed to understand how many RNA templates were actually sequenced rather than 

for error correction.  

The overlapping read pairs (ORP) concept to reduce sequencing errors was first reported by 

Chen-Harris et al. (25) and further used by PELE-Seq (26). We note that our approach is novel in 

that it hinges on the combined use of high fidelity enzymes, ORP and a bioinformatics pipeline 

that compares variant frequencies to the fitted gamma distribution of process errors 

(24,27,67,68). Indeed, AccuNGS improves over Chen-Harris et al., and we further show that the 

use of a high fidelity polymerase is key to bringing down the mean transition error rate by 

approximately 30% (Fig. S5). We further provide here a step-by-step dissection and optimization 
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of the sequencing process. This has allowed us to refute the commonly assumed notion that the 

forward and reverse reads are independent and can be considered technical replicas [e.g. 

(48,49,69,70)]. The observed improvement in error rates of A:T>G:C transitions when using a 

more stringent Q-score filtering threshold strongly indicate that the Illumina chemistry, involving 

low-fidelity polymerases (71), is a major source of sequencer errors that are only partially 

reflected in the Q-scores, and are usually not modelled. This is supported by the observation that 

Taq DNA polymerase, which operates during cluster generation in the sequencer (71), tends to 

make more errors on A:T>G:C (46,64). The lack of improvement in the reciprocal G:C>A:T 

process errors in spite of more stringent filtering suggests these may stem from Cytosine 

deamination during thermal cycling, rather than from polymerization during cluster generation 

(72). Our results also demonstrate that MiSeq to some extent better suits AccuNGS than the 

newer NextSeq platform, although significant improvement of error rates was also seen on the 

latter platform. We suggest that the observed error rate of the Q38 samples approaches the limit 

of detection that can be achieved using any traditional Illumina sequencing protocol. Hopefully in 

the future sequencing vendors will create a "high-fidelity" sequencing program that incorporates 

high fidelity enzymes that could minimize process artifacts.  

We further note that the modeling process errors has several advantages over position-specific 

error models (25,30). First, position-specific error models do not perform well when the 

consensus base in the sample differs from the consensus base in the background homogeneous 

control. Second, the stochastic nature of process errors at a given position may result in 

significant differences between technical replicates, highlighting the fragility of an error estimation 

based on a single base observation. When possible, we strongly recommend using a 

homogenous control that is as similar as possible to the samples at hand, since this directly 

allows detecting loci that are highly error prone. In the absence of such a control, any 

homogenous control (e.g., a plasmid) is useful to control for process errors. 

Performing our benchmarking on relatively long genomic regions allowed us to find that some 

errors tend to occur more in specific contexts than in others. We find that C:G>T:A mutations, that 

often arise from spontaneous cytosine deamination during thermal cycling (53,64,72), tend to 

occur when in CpG context (for both C and G), whereas they are less frequent when in CpT (for 

C>T) and ApG (for G>A) contexts. Similarly, we find that C:G>A:T mutations, which often stem 

from the formation of 8-oxo-Guanine under oxidative stress (53), are more prevalent in specific 

contexts. AccuNGS incorporates this observed bias into its variant calling method, based on 

more-specific background errors distributions.  

We used AccuNGS to characterize HIV-1 diversity shortly after infection. To the best of our 

knowledge, the immediate evolution of HIV-1 following a new infection has been rarely observed 

(57-59), mainly due to the lack of resolution associated with the common sequencing protocols. 
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We demonstrate that AccuNGS captures minor transition mutations that mostly segregate at 

frequencies between 1:100 and 1:10,000, and match the expected properties of real biological 

variants such as different rates for silent, missense and nonsense mutations. We found that in 

this sample, G>A mutations were three times more prevalent than C>U mutations (Fig. 5B). In 

spite of being the most abundant type of mutation induced by the viral reverse transcriptase (6), 

the high level of observed minor frequencies exceeded our predictions, given the early time point. 

This may be partially explained by activity of APOBEC3 editing enzymes acting on the antisense 

of the HIV reverse transcribed genome. The most common APOBEC3 signature observed in our 

clinical sample (characterized by GpA>ApA mutations) was that of APOBEC3A/D/F/H, unlike a 

previous study that highlighted the contribution of APOBEC3G to the observed G>A variants in 

HIV-1 proviral DNA (characterized by GpG>ApG, (73)). It is possible that in our patient there are 

variants of APOBEC3 that are more active (74), or that in this patient, the viral Vif protein (that 

encounters host APOBEC3 proteins) lost the activity against some APOBEC3 enzymes (75). 

Future studies spanning more patients may elucidate this issue.  

Summary 

To summarize, we anticipate that using AccuNGS will be highly useful in detecting previously 

uncharacterized genetic diversity in biological samples. The ease of use of this approach should 

make it highly amenable for many different studies.  

MATERIALS AND METHODS 

Ethics declaration 

The study was approved by the local institutional review board of the Sheba Medical Center 

(approval number SMC 1765-14) and of Tel-Aviv University. Written informed consent for 

retention and testing of residual plasma samples was provided by the patients. 

Preparation of plasmids 

In order to maintain the plasmid stock as homogenous as possible, plasmids were transformed to 

a chemically competent bacteria cells [DH5alpha (BioLab, Israel) or TG1 [A kind gift by Itai 

Benhar (Tel Aviv University, Tel Aviv, Israel)]] by a standard heat-shock protocol. Based on the 

fact that Escherichia coli doubling time is 20 mins in average using rich growing medium (76), a 

single colony was selected and grown to a maximum of 100 generations. Plasmids were column 

purified (HiYield™ Plasmid Mini Kit, RBC Bioscience) and stored at -20°C until use. 

Construction of baseline control amplicon 

Baseline control amplicon was based on clonal amplification and sequencing of the pLAI.2 

plasmid, which contains a full-length HIV-1LAI proviral clone (43) (obtained through the NIH AIDS 

Reagent Program, Division of AIDS, NIAID, NIH: pLAI.2 from Dr. Keith Peden, courtesy of the 

MRC AIDS Directed Program). The Integrase region of pLAI.2 was amplified using primers: 
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KLV70 - 5’TTC RGG ATY AGA AGT AAA YAT AGT AAC AG and KLV84 - 5’TCC TGT ATG CAR 

ACC CCA ATA TG (77). Polymerase chain reaction (PCR) amplification was conducted using the 

high-fidelity Platinum™ SuperFi™ DNA Polymerase (Invitrogen) in a 50µl reaction using 20-40 ng 

of the plasmid as input and according to the manufacturer instructions. Amplification in a thermal 

cycler was performed as follows: initial denaturation for 3min at 98°C, followed by 40 cycles of 

denaturation for 20sec at 98°C, annealing for 30sec at 60°C and extension for 1min at 72°C, and 

final extension for 2min at 72°C. An alternative high-fidelity DNA polymerase used was Q5 High-

Fidelity DNA Polymerase (New England Biolabs, NEB). PCR cycles were set according to each 

manufacturer’s instructions using the above described PCR program. The Integrase amplicon 

was gel purified (Wizard® SV Gel and PCR Clean-Up System, Promega) and the concentration 

determined by Qubit fluorometer (Invitrogen) according to each manufacturer instructions. The 

purified product was further used for library construction. 

For the AmpR sample, the conserved AmpR gene was amplified from PLAI.2 plasmid using 

primers: AmpR FW - 5’AAA GTT CTG CTA TGT GGC GC and AmpR RV - 5’GGT CTG ACA 

GTT ACC AAT GC. PCR amplification was carried out as described above, except for extension 

duration of 30sec instead of 1min. Similarly, the conserved RpoB gene was amplified from the 

bacteria genome using the following primers: RpoB FW 5’- ATG GTT TAC TCC TAT ACC GA 

and RpoB RV 5’- GTG ATC CAG ATC GTT GGT G and the following PCR program: initial 

denaturation for 3min at 98°C, followed by 40 cycles of denaturation for 10sec at 98°C, annealing 

for 10sec at 60°C and extension for 4sec at 72°C, and final extension for 2min at 72°C.  

Construction of alternative purification amplicons  

The agarose gel purification step of the amplified integrase gene was replaced with other 

purification methods; (1) For the gel-free sample, the amplified integrase gene was purified using 

25µl of AMPure XP beads (0.5X ratio, Beckman Coulter) according to the manufacturer 

instructions; And (2) For the ExoSap sample, 10µl of the amplified integrase gene were mixed 

with 4µl of ExoSap (ExoSAP-IT™ PCR Product Cleanup Reagent, Applied Biosystems) and 

incubated according to the manufacturer instructions. No other changes in the generation of 

amplicon protocol were made.  

Construction of a PCR free control amplicon 

For the PCR-free sample, 10ug of PLAI.2 plasmid was digested using the restriction enzymes: 

NheI, StuI and XcmI (NEB) according to the manufacturer instructions. A ~1500bp fragment 

containing the integrase gene was gel purified and concentration was determined by Qubit. The 

purified product was further used for library construction. 

Construction of an RNA control amplicon 

A plasmid containing the full cDNA of Coxsackie virus B3 (CVB3) under a T7 promoter was a kind 

gift from Marco Vignuzzi (Institut Pasteur, Paris, France). The plasmid was used to generate an 
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RNA control pool. Ten micrograms of this plasmid were linearized using SalI (NEB), purified by 

AMPure XP beads (0.5X ratio), and then in-vitro transcribed using T7 RNA polymerase (NEB) 

according to the manufacturer instructions. The transcribed RNA was purified using AMPure XP 

beads (0.5X ratio) and reverse transcribed with random hexamers using SuperScript III Reverse 

Transcriptase (Invitrogen) according to the manufacturer instructions. Four microliters of the 

reverse transcription reaction were used as template for a PCR reaction using primers: CVB FW - 

5’GGA GAG AAG GTC AAC TCT ATG GAA GC and CVB RV - 5’TAC CAC CCT GTA GTT  CCC 

CA, which amplify a ~1500bp fragment within the CVB genome. PCR reaction (50µl total) was set 

and amplified using Platinum™ SuperFi™ as follows: initial denaturation for 3min at 98°C, 

followed by 40 cycles of denaturation for 20sec at 98°C, annealing for 30sec at 60°C and 

extension for 15sec at 72°C, and final extension for 2min at 72°C. The CVB amplicon was gel 

purified and the concentration measured by Qubit. The purified product was further used for 

library construction. 

Construction of clinical HIV-1 amplicon with primer-ID 

Plasma sample from a recently diagnosed HIV-1 patient (clinical sample, ID 83530) with >1x107 

c/ml HIV-1 viral load was provided by the National HIV Reference Laboratory, Chaim Sheba 

Medical Center, Ramat-Gan, Israel. The mode of HIV-1 transmission for this patient was MSM, 

men who have sex with men. HIV-1 viral load was determined with Xpert HIV-1 viral load assay 

on GeneXpert (Cepheid Inc., Sunnyvale, CA), according to the manufacturer instructions (78). 

RNA was extracted from 0.5 mL plasma by NucliSENS Easy MAG (Biomerieux, Marcy l’Etoile, 

France) according to the manufacturer’s protocol, eluted in a final volume of 55 µl and stored in -

80°C until use. A primer specific to the Gag gene of HIV-1 was designed with a 15 N-bases 

unique barcode followed by a linker sequence for subsequent PCR, Gag ID RT - 5’TAC CCA 

TAC GAT GTT CCA GAT TAC GNN NNN NNN NNN NNN NAC TGT ATC ATC TGC TCC TG 

TRT CT. Based on the measured viral load and sample concentration, 4 µl (containing the 

genomes of roughly 300,000 viruses) were taken for reverse transcription reaction. RT was 

performed using SuperScript IV Reverse Transcriptase (Invitrogen) according to the manufacturer 

instructions with the following adjustments; (1) In order to maximize the primer annealing to the 

viral RNA, the sample was allowed to cool down gradually from 65°C to room temperature for 10 

minutes before it was transferred to ice for 2min; And (2) The reaction was incubated for 30min at 

55°C to increase the overall reaction yield. To remove excess primers, the resulting cDNA was 

purified using AMPure XP beads (0.5X ratio) and eluted with 35µl nuclease-free water. To avoid 

loss of barcoded primers due to coverage drop at the ends of a read as a result of the 

tagmenation process, the PCR forward primer was designed with a 60bp overhang so the 

barcode (“primer ID”) is far from read end, Gag ID FW - 5’AAG  CGA GGA GCT GTT CAC TGC 

CAT CCT GGT CGA GCT ACC CAT ACG ATG TTC CAG ATT ACG and Gag ID RV - 5’CTC 

AAT AAA GCT TGC CTT GAG TGC. PCR amplification was accomplished using Platinum™ 
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SuperFi™ in a 50µl reaction with 33.5µl of the purified cDNA as input using the following 

conditions: initial denaturation for 3min at 98°C, followed by 40 cycles of denaturation for 20sec at 

98°C, annealing for 30sec at 60°C and extension for 1min at 72°C, and final extension for 2min at 

72°C. The Gag amplicon was gel purified and the concentration determined by Qubit. The 

purified product was further used for library construction. 

Libraries construction 

PCR fragmentation and indexing of samples for sequencing was performed using the Nextera XT 

DNA Library Prep Kit (Illumina) with the following adjustments to the manufacturer instructions; 

(1) In order to get a short insert size of ~250bp, 0.85 ng of input DNA was used for tagmentation; 

(2) No neutralization of the tagmentation buffer was done, as described previously (79); (3) For 

library amplification of the tagmented DNA, the Nextera XT DNA library prep PCR reagents were 

replaced with high-fidelity DNA polymerase reagents (the same DNA polymerase that was used 

for the amplicon generation). The PCR reaction (50µl total) was set as depicted. Directly to the 

tagmented DNA, index 1 (i5, illumina, 5µl), index 2 (i7, illumina, 5µl), buffer (10µl), high-fidelity 

DNA polymerase (0.5µl), dNTPs (10mM, 1µl) and nuclease-free water (8.5µl) were added; (4) 

Amplification was performed with annealing temperature set to 63°C instead of 55°C, as 

introduced previously (79) and final extension for 2min; (5) Post-amplification clean-up was 

achieved using AMPure XP beads in a double size-selection manner (80) to remove larger 

fragments as well as smaller fragments, in order to obtain a narrower size-selection that will 

maximize the fraction of fully overlapping read pairs. For the first size-selection, 32.5µl of beads 

(0.65X ratio) were added to bind the large fragments. These beads were separated and 

discarded. For the second-size selection, 10µl of beads (0.2X ratio) were added to the 

supernatant to allow binding of intermediate fragments, and the supernatant containing the small 

fragments was discarded. The intermediate fragments were eluted and their size was determined 

using a high-sensitivity DNA tape in Tapestation 4200 (Agilent). A mean size of ~370bp, 

corresponding to the desired insert size of ~250bp, was achieved; And (6) Normalization and 

pooling was performed manually. 

Alternative library purification methods 

For the AMPure XP beads-free sample, post-amplification clean-up by double size-selection was 

replaced with an agarose gel purification of a ~370bp fragment, with no other changes in the 

library construction protocol.  

Alternative tagmentation sample 

For the alternative tagmentation sample, a 250bp amplicon within the integrase region was 

designed, using specific primers with an overhang corresponding to the sequence inserted during 

the tagmentation step of the NexteraXT DNA library prep kit, NexteraXT free FW - 5’TCG TCG 

GCA GCG TCA GAT GTG TAT AAG AGA CAG ACT TGT CCA TGC ATG GCT TCT C and 

NexteraXT free RV - 5’GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GTC TAT CTG 
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GCA TGG GTA CCA GCA. PCR reaction was set up using Platinum™ SuperFi™ and carried out 

as follows: initial denaturation for 3min at 98°C, followed by 40 cycles of denaturation for 20sec at 

98°C, annealing for 30sec at 62°C and extension for 15sec at 72°C, and final denaturation for 

2min at 72°C. The PCR product was gel purified and the concentration was measured by Qubit. 

The purified product was indexed by a succeeding PCR amplification using primers 

corresponding to i5 and i7 NexteraXT primers (IDT) as mentioned previously (79) at a final 

concentration of 1uM. The PCR reaction was set up using Platinum™ SuperFi™ and amplified as 

detailed: initial denaturation for 3min at 98°C, followed by 12 cycles of denaturation for 20sec at 

98°C, annealing for 30sec at 63°C and extension for 30sec at 72°C, and final extension for 2min 

at 72C. Size selection was achieved by gel purification of ~370bp fragments.  

NextSeq libraries construction  

Illumina NextSeq supports shorter reads than MiSeq. The longest NextSeq read length is 150bp, 

therefore we selected a shorter insert size of 270bp, compared to the 370bp insert size for the 

MiSeq platform. The first size selection of the post-NexteraXT amplification cleanup was 

performed using 42.5µl of AMPure XP beads (0.85X ratio) (80).  

Sequencing  

Sequencing of all samples (except for the NextSeq sample) was performed on the Illumina MiSeq 

platform using MiSeq Reagent Kit v2 (500-cycles) [Illumina]. Sequencing of the NextSeq samples 

was performed on the Illumina NextSeq 500 platform using NextSeq 500/550 High Output Kit 

(300-cycles) [Illumina]. 

Reads processing and base calling 

The paired-end reads from each control library were aligned against the reference sequence of 

that control using an in-house script that relies on BLAST command-line tool (81-83). The paired-

end reads from the clinical HIV-1 sample were aligned against HIV-1 subtype B HXB2 reference 

sequence (GenBank accession number K03455.1) and then realigned against the consensus 

sequence obtained. Bases were called using an in-house script only if the forward and reverse 

reads agreed and their average Q-score was above an input threshold (30 or 38). At each 

position, for each alternative base, we calculate mutation frequencies by dividing the number of 

reads bearing the mutation by sequence coverage. Positions were retained for analysis only if 

sequenced to a depth of at least 100,000 reads. In order to analyze the errors in the sequencing 

process we used Python (Anaconda distribution) with the following packages: pandas, matplotlib, 

seaborn, numpy and stats. Distributions of errors on control plasmids were compared using two-

tailed t-test or two-tailed Mann-Whitney U test.  

Variant calling 

In order to facilitate discrimination of true variants from AccuNGS process artifacts, we created a 

variant caller based on two principles: (i) positions that exhibit relatively high level of error on a 

control sample are error-prone for the clinical sample as well; and (ii) process errors on a control 
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sample follow a gamma distribution. A gamma distribution was fitted for each mutation type in the 

control sequence. In order to detect and remove outliers from the fitting process we used the 

“three-sigma-rule”, and positions that showed error higher than three standard deviations from the 

mean of the fitted distribution were removed. For these rare loci a base was called only if the 

mutation was more prevalent in the sample by an order of magnitude. For G>A transition 

mutations, four distinct gamma distributions were fitted, corresponding for all four G>A 

combinations with preceding nucleotide. Accordingly, for C>T transition mutations four gamma 

distributions were fitted as well, on the four C>T reverse complement mutations of the G>A 

mutations. For establishing Figure 5, variants were called on the input RNA sample only if a 

mutation was in the extreme 1% of the corresponding gamma distribution fitted using the DNA 

control. 

Standard sequencing control sample 

Standard control sample of pLAI.2 was taken from a previous study (77). For obtaining mutation 

frequencies we used the same pipeline as for the AccuNGS samples, but without correcting 

overlapping paired reads. Positions in this sample were analyzed only if sequenced to a depth of 

at least 2,000 bases.  

CODE AVAILABILITY 

We have developed the following computational resources that complement the AccuNGS 

sequencing protocol:  

(a) Base coverage calculator. AccuNGS relies on overlapping read pairs and high Q-scores 

for both reads of a pair. The calculator receives as input the length of the target regions 

and the desired coverage, and outputs the recommended number of reads required for 

sequencing each sample.  

(b) Computational pipeline for computing the number of unique RNA molecules sequenced, 

based on primer-ID barcodes (see Supplementary Text). 

(c) Computational pipeline for base-calling and inferring site by site base frequencies.   

All resources are freely available at https://github.com/SternLabTAU/AccuNGS. 

ACCESSION NUMBERS 

The datasets generated and reported in this study were deposited in the Sequencing Read 

Archive (SRA, available at https://www.ncbi.nlm.nih.gov/sra), under BioProject PRJNA476431.  
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