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Abstract

Stochastic gene expression in regulatory networks is conventionally modelled via the
Chemical Master Equation (CME) (van Kampen 1981). As explicit solutions to the CME,
in the form of so-called propagators, are not readily available, various approximations have
been proposed (Zechner et al. 2013, Feigelman et al. 2016, Popović, Marr and Swain 2016).
A recently developed analytical method (Veerman, Marr and Popović 2017) is based on a
scale separation that assumes significant differences in the lifetimes of mRNA and protein in
the network, allowing for the efficient approximation of propagators from asymptotic expan-
sions for the corresponding generating functions. Here, we showcase the applicability of that
method to a ‘telegraph’ model for gene expression that is extended with an autoregulatory
mechanism. We demonstrate that the resulting approximate propagators can be successfully
applied for Bayesian parameter inference in the non-regulated model with synthetic data;
moreover, we show that in the extended autoregulated model, autoactivation or autorepres-
sion may be refuted under certain assumptions on the model parameters. Our results indicate
that the method showcased here may allow for successful parameter inference and model
identification from longitudinal single cell data.

1 Introduction and background
Gene expression in regulatory networks is an inherently stochastic process (Elowitz et al. 2002).
Mathematical models typically take the form of a Chemical Master Equation (CME), which
describes the temporal evolution of the probabilities of observing specific states in the network
(van Kampen 1981). Recent advances in single-cell fluorescence microscopy (Crane et al. 2014,
Filipczyk et al. 2015, Hoppe et al. 2016, Suter et al. 2011, Zenklusen, Larson and Singer 2008)
have allowed for the generation of experimental longitudinal data, whereby the fluorescence
intensity of mRNA or protein abundances in single cells is measured. While most common
models assume the availability of protein abundance data, the abundance of mRNA may equally
be of interest, depending on the model (Janicki et al. 2004). Here, we focus exclusively on
protein abundances, which we assume to be measured at regular sampling intervals ∆t, for the
sake of simplicity. Given the resulting data set D, parameter inference is performed on the basis
of the log-likelihood

L(Θ|D) =
∑

i

log Pni+1 | ni (∆t,Θ), for i = 0, . . . ,N, (1.1)

that can be calculated over a range of values for the model parameters to yield a ‘log-likelihood
landscape’, the maximum of which corresponds to the most likely parameter set Θ subject to D.
Here, the propagator Pni+1 | ni (∆t,Θ) encodes the probability for the transition ni → ni+1 between
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protein numbers ni and ni+1 to occur after time ∆t, given Θ. Due to the complex nature of
the underlying gene networks, explicit expressions for Pni+1 | ni are difficult to obtain in general.
Hence, a variety of approximations have been developed, which can be either numerical (Zech-
ner et al. 2013, Feigelman et al. 2016) or analytical (Schnoerr, Sanguinetti and Grima 2017,
Popović, Marr and Swain 2016), to name but a few. Here, we apply the analytical method re-
cently developed by the current authors (Veerman, Marr and Popović 2017), which was based on
ideas presented by Popović, Marr and Swain 2016, to obtain fully time-dependent approximate
propagators; an outline of the method is given in Section 2.

Our aim in the present article is to demonstrate the applicability of these propagators, as well
as to evaluate their performance in the context of Bayesian parameter inference for synthetic
data. Specifically, we showcase the resulting inference procedure for a family of models for
stochastic gene expression. First, in Section 3, we consider a model that incorporates DNA
on/off states (‘telegraph model’); see also the work of Raj et al. 2006 and Shahrezaei and Swain
2008. Subsequently, in Section 4, that model is extended with an autoregulatory mechanism,
where the protein influences its own production through an autocatalytic reaction. In Section 5,
we summarise our results and present an outlook to future research; finally, in Appendix A, we
collate the analytical formulae that underly our inference procedure for the family of models
showcased here.

2 Method

2.1 Calculation of propagators
Our method (Veerman, Marr and Popović 2017) is based on an analytical approximation of the
probability generating function that is introduced for analysing the CME corresponding to the
given gene expression model. Propagators can be calculated from the generating function via
the Cauchy integral formula, which implies

Pni+1 | ni (∆t,Θ) =
1

2πi

∮
γ

F(z; ∆t, ni,Θ)
zni+1+1 dz; (2.1)

here, F(z; t, ni,Θ) is the generating function of the (complex) variable z, which additionally
depends on time t, the protein number ni, and the model parameter set Θ. The integration
contour γ is a closed contour in the complex plane around z = 0. The choice of contour is
arbitrary; however, it can have a significant effect on computation times and the accuracy of the
resulting integrals; see the work by Bornemann 2011. Here, we choose γ to be a regular 150-
sided polygon approximating a circle of radius 0.8 that is centred at the origin of the complex
plane, which results in a ‘hybrid analytical-numerical’ procedure for the evaluation of Pni+1 | ni .

2.2 Parameter inference
The parameter inference procedure proposed here can be divided into the following steps:

1) Data binning. The simulated data D is presented as a time series {ni}, 0 ≤ i ≤ N, which
yields N transitions ni → ni+1. Generically, some of these transitions occur more than once. We
bin the data accordingly to create a binned data set D0 =

{(
k j, (n0 → n) j

)}
, with 0 ≤ j ≤ N0 for

N0 ≤ N, where k j denotes the frequency of the transition (n0 → n) j; see also Figure 1.

2) Marginalisation. Frequently, some of the involved species in a model are not observed,
and hence have to be marginalised over. In the models discussed in Sections 3 and 4, this is the
case for mRNA. Marginalisation over unobserved species is usually carried out on the transition
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Figure 1: (A) Simulated time series of protein abundance n, with measurements at times ti and
sampling interval ∆t. (B) Histogram of the frequency k j of transitions (n0 → n) j, from a longer
time series with 100 transitions.

probabilities in (2.1). However, since the marginalisation procedure is linear, it commutes with
the Cauchy integral. Introducing the linear ‘marginalisation operator’M, we may write

M Pni+1 | ni (∆t,Θ) =
1

2πi

∮
γ

M F(z; ∆t, ni,Θ)
zni+1+1 dz, (2.2)

whereM now acts on the generating function F. Therefore, given the analytical approximation
for F resulting from our method (Veerman, Marr and Popović 2017), we define

F̂(z; ∆t, ni, Θ̂) = M F(z; ∆t, ni,Θ), (2.3)

where Θ̂ ⊂ Θ is the subset of parameters that remain after the marginalisation procedure has
been applied. Note that F̂ is still a fully analytical, general expression which depends on the as
yet unspecified values of its arguments.

3) Evaluation. We choose a set Θ̂0 of numerical values for the parameters in Θ̂. Moreover,
we specify the integration contour γ, which we discretise as described in 2) to approximate the
Cauchy integral in (2.1) by a finite sum. Suppose that the contour γ is discretised as {ζ(l)}, with
0 ≤ l ≤ L and ζ(0) = ζ(L); then, the integral of a function G along γ is approximated as∮

γ

G(z) dz ≈
L−1∑
l=0

G(ζ(l)) ∆ζ(l), with ∆ζ(l) = ζ(l + 1) − ζ(l). (2.4)

Now, for every element (k, n0 → n) j of the binned data set D0, we evaluate F̂, as given in (2.3),
for the chosen parameter values Θ̂0 along the discretised contour. We hence obtain the array 1

2πi
F̂(ζ(l); ∆t, (n0) j, Θ̂0)

ζ(l)(n) j+1 ∆ζ(l)

 for 0 ≤ l ≤ L − 1 and 0 ≤ j ≤ N0, (2.5)

which we sum over l to find

p j(Θ̂0,∆t) =

L−1∑
l=0

1
2πi

F̂(ζ(l); ∆t, (n0) j, Θ̂0)
ζ(l)(n) j+1 ∆ζ(l) (2.6)

as the approximate value of the propagator for the transition (n0 → n) j.
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4) Calculation of the log-likelihood To calculate the log-likelihood of the parameter subset
Θ̂0, we substitute the approximate propagators p j, as defined in (2.6), into (1.1) to obtain

L(Θ̂0|D) =

N0∑
j=0

k j log p j(Θ̂,∆t). (2.7)

3 Showcase 1: The telegraph model
To demonstrate our parameter inference procedure, we consider a stochastic gene expression
model that incorporates DNA on/off states (‘telegraph model’) (Raj et al. 2006, Shahrezaei and
Swain 2008):

D
k0


k1

D∗ (DNA activation/deactivation),

D∗
ν0
→ D∗ + M (transcription of DNA to mRNA),

M
ν1
→ M + P (translation of mRNA to protein),

M
d0
→ ∅ (decay of mRNA),

P
d1
→ ∅ (decay of protein).

(3.1)

In recent work (Veerman, Marr and Popović 2017), we presented an analytical method for ob-
taining explicit, general, time-dependent expressions for the generating function associated to
the CME that arises from the model in (3.1). A pivotal element of the application of that method
to (3.1) is the assumption that the protein decay rate d1 is notably smaller than the mRNA decay
rate d0, which implies that the parameter ε := d1

d0
is small; hence, the associated generating func-

tion is approximated to a certain order O = k, corresponding with a theoretical accuracy that is
proportional to εk. For more details on the resulting approximation, we refer to Appendix A.

We simulate the model in (3.1) using Gillespie’s algorithm (Gillespie 1977), for fixed values
of the (rescaled) parameters

κ0 :=
k0

d1
= 1.3, κ1 :=

k1

d1
= 1.2, λ :=

ν0

d1
= 3.3, µ :=

ν1

d0
= 2.85, ε :=

d1

d0
= 0.1, and d1 = 1

(3.2)
on the time interval 0 ≤ t ≤ 10, and measure the protein abundance n with a fixed sampling
interval ∆t. As our method assumes that ∆t is of order ε, cf. again Appendix A, we set ∆t =

ε = 0.1, which yields N = 100 transitions. Based on the simulated measurement data, we
perform the parameter inference procedure described in Section 2. As the data consists of
protein abundances only, and as propagators for the model in (3.1) depend on both protein and
mRNA abundances, we marginalise over mRNA abundance assuming a Poisson distribution
with parameter λε κ0

κ0+κ1
=

ν0
d0

k0
k0+k1

. We assume that the values of κ0, κ1, ε, and d1 are known,
and calculate the log-likelihood in (2.7) for varying λ and µ. We scan these two parameters
in

{
10−3 ≤ λ ≤ 103, 10−3 ≤ µ ≤ 102}, using a logarithmically spaced grid of 50 × 40 grid

points. Figure 2 shows the resulting log-likelihood landscapes and, in particular, a comparison
of the performance of the leading (zeroth) order approximation for the generating function, see
Figure 2(A), with that of the first order approximation in Figure 2(B).

To quantify the performance of the method developed by Veerman, Marr and Popović 2017
for parameter inference, we compare four different scenarios:

(a) Parameter values as in (3.2), with sampling interval ∆t = ε = 0.1 on the time interval
0 ≤ t ≤ 10, corresponding to N = 100 transitions, which is the original setup that yields
the results shown in Figure 2.

(b) As in (a), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000
transitions.
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Figure 2: Log-likelihood landscapes inferred from a simulation of the telegraph model in (3.1)
with N = 100 transitions and parameter values as in (3.2); (A): leading (zeroth) order approx-
imation, (B): first order approximation; true value (cross) versus maximum likelihood estimate
(MLE; dot).

(c) As in (a), with ε = 0.01; the sampling interval is decreased accordingly to ∆t = ε = 0.01;
measurements are taken on the time interval 0 ≤ t ≤ 1, which yields N = 100 transitions.

(d) As in (a), with µ = 28.5.

For each scenario, we infer the most likely values of the parameters λ and µ, for increasing
approximation order O. The inferred values of λ and µ are compared to the ‘true’ values λtrue and
µtrue, where we consider relative errors to quantify the performance of our inference procedure.
The results of that comparison are shown in Figure 3.

4 Showcase 2: An autoregulated telegraph model
We extend the telegraph model in (3.1) with an autoregulatory mechanism, where the DNA ac-
tivation rates are influenced by the presence of protein. Autoregulation is modelled in a catalytic
manner, via one of the two following reactions:

D + P
aP
→ D∗ + P (autoactivation through protein), (4.1a)

D∗ + P
rP
→ D + P (autorepression through protein). (4.1b)

The above pair of autoregulation mechanisms was introduced by Hornos et al. 2005, and imple-
mented e.g. by Iyer-Biswas and Jayaprakash 2014; see Section 5 for a discussion of the physical
validity of these mechanisms.

To assess the performance of our parameter inference procedure, we fix the parameter values
as in (3.2). We generate six data sets, as follows:

(A) Simulate the model in (3.1) without autoregulation (‘null model’; aP = rP = 0) on the
time interval 0 ≤ t ≤ 10, which yields N = 100 transitions.

(B) As in (A), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000
transitions.
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Figure 3: Relative error ∆r(x) := x−xtrue
xtrue

of the inferred parameters λ (A) and µ (B), for increasing
approximation order O; for O = k, the propagators Pni+1 | ni are approximated up to and including
terms of order εk. (a) N = 100 transitions, ε = 0.1, λtrue = 3.3, and µtrue = 2.85. (b) N =

1000 transitions, other parameters as in (a). (c) ε = 0.01, number of transitions N and other
parameters as in (a). (d) µtrue = 28.5, number of transitions N and other parameters as in (a).
The accuracy of inference for λ clearly increases when the approximation order O is increased
from 0 to 1; the increase in accuracy from O = 1 to O = 2 is obfuscated by grid size effects. A
ten-fold increase in the number of transitions (b) increases the accuracy of the leading order
approximation, while a ten-fold increase in the value of µtrue (d) decreases the accuracy of
the leading order approximation. For µ, there is no noticeable increase in accuracy with the
approximation order O, within the parameter grid used. However, the accuracy of inference for
µ increases overall when the number of transitions is increased (b), the small parameter ε is
decreased (c), or the value of µtrue is increased (d).

(C) Simulate the extended model {(3.1),(4.1a)} with autoactivation for aPδ = 0.3 on the time
interval 0 ≤ t ≤ 10, which yields N = 100 transitions.

(D) As in (C), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000
transitions.

(E) Simulate the extended model {(3.1),(4.1b)} with autorepression for rPδ = 0.3 on the time
interval 0 ≤ t ≤ 10, which yields N = 100 transitions.

(F) As in (E), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000
transitions.

Every data set consists of 10 runs of equal length.
Generating functions for the autoregulated extension (4.1) of the telegraph model in (3.1)

have been derived in the theoretical companion article (Veerman, Marr and Popović 2017) to
the current work, under the assumption that the autoregulation rate aP or rP is small compared
to the protein decay rate d1. That assumption implies that the ratios aP

d1
:= αPδ and rP

d1
:= ρPδ are

small.
Parameter inference now proceeds as follows. We fix a data set, and take a single run

from that data set. For that run, we determine the likelihood of the autoactivated model in
{(3.1),(4.1a)}, varying 0 ≤ αPδ ≤ 1; likewise, we determine the likelihood of the autorepressed
model in {(3.1),(4.1b)}, varying 0 ≤ ρPδ ≤ 1. The likelihood of the non-regulated model in
(3.1) is then used to determine the model score according to the Bayesian information criterion
(BIC) (Schwarz 1978), where

∆BIC = 2[log(L) − log(L0)]. (4.2)
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Here, L is the likelihood of an autoregulated extension, with autoregulation as in (4.1), of the
model in (3.1), while L0 denotes the likelihood of the non-regulated model in (3.1). The inform-
ation difference ∆BIC – which is also known as the log Bayes factor – quantifies the evidence
for the model in question. Typically, a ∆BIC-value above 3 is considered strong evidence (Kass
and Raftery 1995). We repeat the above procedure for all 10 runs in the data set, and determine
the mean and standard deviation; the outcome is illustrated in Figure 4.

5 Discussion
In the present article, we showcase a parameter inference procedure that is based on a recently
developed analytical method (Veerman, Marr and Popović 2017) which allows for the efficient
numerical approximation of propagators via the Cauchy integral formula on the basis of asymp-
totic series for the underlying generating functions. The resulting hybrid analytical-numerical
approach reduces the need for computationally expensive simulations; moreover, due to its per-
turbative nature, it is highly applicable over relatively short time scales, such as occur naturally
in the calculation of the log-likelihood in (1.1).

We present results for synthetic data in a family of models for stochastic gene expression
from the literature under the assumption that lifetimes of protein are significantly longer than
those of mRNA, which introduces a small parameter ε and, hence, a separation of scales. For
an extensive discussion of the validity of our assumption that ε is small, we refer to (Veerman,
Marr and Popović 2017).

In Section 3, we discuss a simple (‘telegraph’) gene expression model without autoregula-
tion, showing that our approach can successfully infer relevant model parameters. Unlike in
previous work by Feigelman, Popović and Marr 2015, the underlying implementation avoids
potential bias due to zero propagator values and large initial protein numbers through the use of
‘implicit’ series expansions in ε; see Appendix A for an in-depth argument.

In Section 4, we perform a model comparison in an autoregulated extension of the standard
telegraph model. We consider three types of gene regulation: autoactivation, autorepression, and
no regulation of DNA activity (null model). For each type, we simulate data with 100 and 1000
protein transitions, respectively. Throughout, we find that 100 data points are insufficient to re-
ject model hypotheses with our approach. With 1000 data points, however, we can successfully
reject the non-regulated and the autorepressed model for simulated data from an autoactivated
model, in which case we can even infer the correct order of the autoactivation parameter. For
simulated autorepression, we can reject the model with autoactivation, but not the non-regulated
model. Our approach fails to identify the correct model for data from a non-regulated model for
1000 transitions, where the autoactivated model is clearly, but wrongly favoured. We believe
that more research is needed into the sources of these discrepancies in dependence on model
parameters and the order of our approximation.

In both showcases, we observe a trade-off between the accuracy of inference versus the
required computation time. Computation times seem to increase exponentially with the approx-
imation order, at least for the setup realised in this article. For practical purposes, we hence
propose an algorithm whereby the fastest, leading order approximation is used to obtain a first
estimate for the underlying model parameters; that estimate can then be improved by including
higher order corrections, resulting in a much more computationally efficient procedure.

It is insightful to compare our results with other recent work on parameter inference in regu-
lated gene expression models. In work by Feigelman et al. 2016, three models for regulated gene
expression with a slightly different structure compared to the models studied in the present art-
icle were simulated and inferred via a stochastic particle filtering-based inference procedure that
employs genealogical information of dividing cells. Interestingly, positive and negative autore-
gulation could be successfully rejected there for data that was simulated from a no-feedback
model. However, the no-feedback model could not be rejected for data originating from the
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Figure 4: Results on parameter inference for the extended autoregulated model {(3.1),(4.1)} on
the basis of various types of synthetic data, where the performance of the model is quantified
via the Bayesian information criterion (BIC). On the vertical axis, ∆BIC, as defined in (4.2),
indicates the difference between the BIC score of the autoactivated or autorepressed model and
the score of the non-regulated model in (3.1); the higher the ∆BIC score, the more likely the
associated model is. In each panel, the solid curve indicates the mean values based on 10 model
runs; dashed curves indicate the uncertainty (one standard deviation). On the horizontal axis, the
strength of autoregulation is measured by αPδ (increasing to the right) or ρPδ (increasing to the
left). (A) Data generated from the null (non-regulated) model in (3.1), with N = 100 transitions;
(C) data generated with the model in (3.1) with autoactivation as in (4.1a), for αPδ = 0.3 and
N = 100 transitions; (E) data generated with the model in (3.1) with autorepression as in (4.1b),
for ρPδ = 0.3 and N = 100 transitions. (B,D,F) as (A,C,E), but with N = 1000 transitions;
note that the vertical axis has a different scaling. All other model parameters were assumed
to be known. We see that 1000 transitions suffice to correctly refute autorepression in (B,D),
and to correctly refute autoactivation in (F). In the case of 100 transitions, no conclusion can
be drawn from (A) and (C); (E) correctly refutes autoactivation; however, the low ∆BIC score,
with |∆BIC| ≤ 2, indicates low significance.
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corresponding models with positive or negative feedback. From this comparison with Feigel-
man et al. 2016, we conclude that the structure of the data, the intensity of regulatory feedback,
and the chosen inference procedure together will influence the extent of insight which can be
obtained from a inference approach that is based on stochastic models of gene expression.

We emphasise that the application of the analytical method showcased here is not restric-
ted to specific models; the goal of the present article is to demonstrate the applicability of that
method, and to investigate its performance, rather than to assess the biological validity of a given
model. It is important to note that our approach can equally be extended to recent, physiolo-
gically more relevant modifications of the telegraph model with autoregulation (Hornos et al.
2005) by Grima, Schmidt and Newman 2012 and Congxin et al. 2018; another feasible altern-
ative model can be obtained by introduction of a refractory state (Zoller et al. 2015).

The input for our propagator-based approach is the abundance of the involved species, viz. of
protein. Such abundances are challenging to obtain experimentally due to the unknown relation
with the fluorescence that is observed under a microscope. A linear relation is regularly assumed
(Suter et al. 2011, Zechner et al. 2013); an improvement over that assumption may be achievable
through recent work by Bakker and Swain 2018.

Finally, the showcases presented in this article are based on synthetic data that was generated
in silico; in future work, we plan to consider experimental data, such as can be found in work
by Suter et al. 2011.
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A Analytical details

A.1 Approximate generating functions
The generating functions used to approximate propagators in the present article, cf. Section 2,
are derived via the analytical method presented by Veerman, Marr and Popović 2017. For the
telegraph model in Section 3, the leading order generating function F̂0 is given by

F̂0(z; n0,∆t, ε, λ, µ, χ) =
[
1 − (1 − z)e−∆t

]n0

× exp
−ε(1 − χ)λµ(1 − z)e−∆t 1 − e−[1+µ(1−z)e−∆t] ∆t

ε

1 + µ(1 − z)e−∆t

 ; (A.1)

here, χ = κ1
κ0+κ1

. All parameters have been rescaled according to (3.2). The generating func-
tion has been marginalised over mRNA abundance, using a Poisson distribution with parameter
λε κ0

κ0+κ1
. Analogously, the first order approximation F̂1 of the generating function is given by

F̂1(z; n0,∆t, ε, λ, µ, χ) =
[
1 − (1 − z)e−∆t

]n0

×

1 +
ε(1 − χ)λµ(1 − z)e−∆t

1 + µ(1 − z)e−∆t

1 − e−[1+µ(1−z)e−∆t] ∆t
ε

1 + µ(1 − z)e−∆t −
∆t
ε


× exp

−ε(1 − χ)λµ(1 − z)e−∆t 1 − e−[1+µ(1−z)e−∆t] ∆t
ε

1 + µ(1 − z)e−∆t

[
1 +

ε

e[1+µ(1−z)e−∆t] ∆t
ε − 1

×

 e[1+µ(1−z)e−∆t] ∆t
ε − 1[

1 + µ(1 − z)e−∆t]2 −

∆t
ε

1 + µ(1 − z)e−∆t + µ(1 − z)e−∆t
(

1
2

∆t
ε

)2
 . (A.2)

For the autoregulated model discussed in Section 4, the same expressions for the generating
functions are used; however, χ now depends on the autoregulatory mechanism according to

χ =



κ1

κ0 + κ1
(no autoregulation),

κ1

κ0 + αPδ n0 + κ1
(autoactivation),

κ1 + ρPδ n0

κ0 + κ1 + ρPδ n0
(autorepression).

(A.3)

A.2 ‘Implicit’ expansions
It is important to note that neither the leading order generating function in (A.1) nor the first
order approximation given by (A.2) are expressed as asymptotic series in powers of ε, as would
be expected on the basis of the perturbative approach taken by Veerman, Marr and Popović
2017. The underlying reasoning can be summarised as follows.

First, in the derivation of the generating functions, it was assumed that the sampling time
∆t was small, i.e. of order ε; note that this assumption is satisfied in all numerical simulations
shown in the current article, where ∆t = ε throughout. Thus, we can write

∆t = ε∆s. (A.4)

With the above scaling for ∆t, an expansion of F̂0 and F̂1, as defined in (A.1) and (A.2), respect-
ively, into asymptotic series in ε to the appropriate order yields

F̂0 = zn0 , (A.5)

F̂1 = zn0

1 + ε(1 − z)

n0∆s
z
−

(1 − χ)λµ
1 + µ(1 − z)

µ(1 − z)
{
1 − e[−(1+µ(1−z)]∆s

}
1 + µ(1 − z)

+ ∆s



 . (A.6)

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 18, 2018. ; https://doi.org/10.1101/349431doi: bioRxiv preprint 

https://doi.org/10.1101/349431


From (A.5), one can immediately conclude that∮
γ

F̂0 = δn,n0 . (A.7)

From the series for F̂1 in (A.6), we see that we can write

F0(z) = zn0

∞∑
k=−1

f1,kzk; (A.8)

hence, it follows that ∮
γ

F̂1 = 0 if n0 > n + 1. (A.9)

More generally, an expansion of the generating function to order k in ε will yield∮
γ

F̂k = 0 if n0 > n + k. (A.10)

From these observations, we conclude that decreasing transitions (ni → ni+1), where ni >
ni+1 + k, will be assigned a probability that is identically zero. Hence, if such transitions do
occur in the data, the model is ruled out immediately, as our perturbative approach excludes the
possibility that such transitions can occur. One can understand this phenomenon by considering
the definition of the small parameter ε, which is defined as the ratio of the protein decay rate d1
over the mRNA decay rate d0. A leading order approximation of ε = 0 is thus equivalent to tak-
ing the protein decay rate d1 → 0 which, in turn, implies that protein does not decay at all, since
(natural) protein decay is the only reaction in (3.1) that can decrease protein abundance. By the
same reasoning, a straightforward expansion of the generating function to order εk will restrict
the model to transitions (ni → ni+1), where ni+1 − ni ≥ −k. It would follow that either the order
O of the method would be limited from below by the data, leading to high-order expansions in
ε and, hence, to long computation times, or that the method could only be applied to a subset of
the data, which would introduce a bias.

Lastly, an asymptotic expansion such as (A.6) implicitly assumes that all parameters and
variables in the model are of order 1 in ε. For the series expansion of F̂1 in (A.6), that assumption
would significantly restrict the range of λ; in comparison, in Figure 2, likelihood values for λ
up to order ε−3 are calculated. More importantly, the above assumption would restrict the range
of n0, implying that only a subset of the data – with sufficiently low protein numbers – could be
used as input for parameter inference.

We emphasise that none of these difficulties occur with the expressions in (A.1) and (A.2),
where the expansion order in ε is expressed ‘implicitly’ in the respective functional forms of F̂0
and F̂1.
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