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Abstract
Background: Genome-wide association studies and other computational biology
techniques are gradually discovering the causal gene variants that contribute to
late-onset human diseases. After more than a decade of genome-wide association
study efforts, these can account for only a fraction of the heritability implied by fa-
milial studies, the so-called “missing heritability” problem.
Methods: Computer simulations of polygenic late-onset diseases in an aging pop-
ulation have quantified the risk allele frequency decrease at older ages caused by
individuals with higher polygenic risk scores becoming ill proportionately earlier.
This effect is most prominent for diseases characterized by high cumulative inci-
dence and high heritability, examples of which include Alzheimer’s disease, coro-
nary artery disease, cerebral stroke, and type 2 diabetes.
Results: The incidence rate for late-onset diseases grows exponentially for
decades after early onset ages, guaranteeing that the cohorts used for genome-
wide association studies overrepresent older individuals with lower polygenic risk
scores, whose disease cases are disproportionately due to environmental causes
such as old age itself. This mechanism explains the decline in clinical predictive
power with age and the lower discovery power of familial studies of heritability and
genome-wide association studies. It also explains the relatively constant-with-age
heritability found for late-onset diseases of lower prevalence, exemplified by can-
cers.
Conclusions: For late-onset polygenic diseases showing high cumulative inci-
dence together with high initial heritability, rather than using relatively old age-
matched cohorts, study cohorts combining the youngest possible cases with the
oldest possible controls may significantly improve the discovery power of genome-
wide association studies.
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Introduction
Throughout the ages, late-onset diseases (LODs) were
considered the bane of the lucky few who survived to
an advanced age. Over the last couple of centuries,
however, continuous improvements in sanitation, life and
work environments, vaccinations, disease prevention, and
medical interventions have extended the average life ex-
pectancy by decades.
With a growing fraction of the population being of ad-
vanced age, the leading causes of mortality are now heart
disease, cancer, respiratory disease, stroke, and notably
Alzheimer’s disease and other dementias (Murphy et al.,
2017). The need—and with it, the effort being made—
to determine the causes of late-onset diseases is ever in-
creasing, and one of the targets of medicine has become
combating aging itself in addition to specific age-related
diseases (Franceschi et al., 2018).
One of the major goals of computational biology is to iden-
tify gene variants that lead to increased odds of late-onset
diseases. Nevertheless, polygenic LODs remain resistant
to the discovery of sufficient causal gene variants that
would allow for accurate predictions of an individual’s
disease risk (Manolio et al., 2009; Clarke and Cooper,
2010; Kumar et al., 2016). This is despite the fact that
LODs with varied symptoms and phenotypes show high
heritability in twin and familial studies (Zaitlen and Kraft,
2012).
At a young age, the human organism usually functions as
well as it ever will. With time, the organism’s functions
decline, leading to the common image of aging as one
of thinning hair and a loss of pigmentation in what re-
mains, increased wrinkling and altered pigmentation of
the skin, reductions in height, muscle and bone mass,
joint pain, and deficits in hearing, sight and memory
(Fedarko, 2018). The combination of genetic liability, en-
vironmental factors, and the physiological decline of mul-
tiple organism systems leads to individual disease pre-
sentation. Genetic variation may be either protective or
detrimental when compared to the average distribution of
common gene variants that defines human conditions as
it applies to polygenic LODs.
Researchers engaged in genome-wide association stud-
ies (GWASs) often set an unrealistic expectation that a
combination of causal single nucleotide polymorphisms
(SNPs)—also known as a polygenic score—will, irrespec-
tive of the patient’s age, completely predict an individual’s
predisposition to an LOD to a degree matching the maxi-
mum heritability found in familial studies (Naj and Schel-
lenberg, 2017; Silva et al., 2015). The lost heritability de-
bate, in the case of LODs, often treats polygenic LODs as
if they were binary hereditary phenotypic features rather
than facets of failure processes that arise in the human
body (Oh et al., 2014) when it is past its reproductive
prime and when evolutionary selection is significantly re-
laxed compared to younger ages (Fedarko, 2018).
GWAS can implicate a subset of SNPs that can typically
explain between 10 and 20% of the genetic heritability
of a polygenic LOD (Visscher et al., 2017). There are
two complementary hypotheses explaining this so-called

missing heritability (Eyre-Walker, 2010; Yang et al., 2012;
Thornton et al., 2013; Agarwala et al., 2013). The first
is the hypothesis that LODs are caused by a combination
of a large number of relatively common alleles of small
effect (Goldstein, 2009). GWASs have been able to dis-
cover only a small number of moderate-effect SNPs, but
a large number of SNPs remain below GWASs’ statisti-
cal discovery power. The second hypothesis states that
LODs are caused by a relatively small number of rare,
moderate- or high-effect alleles with a frequency below
1% that likely segregate in various proportions into sub-
populations or families (Dickson et al., 2010; North and
Beaumont, 2015) and are also under the radar of GWASs’
discovery power.
Both scenarios can contribute to observational facts, but
their relative weights vary depending on the genetic archi-
tecture of an LOD (Park et al., 2011). Rare highly detri-
mental alleles become indistinguishable in their presenta-
tion from the OMIM cataloged conditions and will likely
be diagnosed as a separate disease or syndrome. The pop-
ulation age distribution and individual disease progres-
sion of polygenic LODs are best understood by consider-
ing the aging process itself as an ongoing loss of function,
which can be modulated by the genetic liabilities resulting
from both common and rare SNP distributions combined
with changing environmental and lifestyle variables. It
has been determined (Anderson et al., 2011; Yang et al.,
2015) that common variants very likely explain the ma-
jority of heritability for most complex traits.
While the findings of GWASs can explain only a fraction
of heritability, the systematically collected SNP correla-
tions provide a good indication of what to expect regard-
ing the effect sizes and allele frequency distribution of as
yet undiscovered SNPs (Eyre-Walker, 2010). Many stud-
ies focus on constructing hypotheses, defining the types
of gene variants that could explain the missing heritabil-
ity, proving why these gene variants are difficult to dis-
cover, and identifying the evolutionary processes that led
to the hypothesized and observed gene variant distribu-
tions (Manolio et al., 2009; Clarke and Cooper, 2010;
So et al., 2011; Zaitlen and Kraft, 2012; Thornton et al.,
2013; Wood et al., 2014). These studies explore the ef-
fect sizes and allele frequencies that GWAS would expect
to find for LODs as well as the genetic architecture of com-
plex traits and their implications for fitness.
The age-related heritability decline of some LODs has
been assumed for decades. The precise magnitude of her-
itability change with age is typically unknown for most
LODs, and the effects are not understood and often ig-
nored or overlooked. Most GWASs recommend homo-
geneity in cohort age—-that is, that the same age window
should be targeted–—although it has been suggested (Li
and Meyre, 2013) that individuals with an early age of
onset are likely to have greater genetic susceptibility. Dis-
cussing a replication study design, Li and Meyre (2013)
stated, “Once the risk of false positive association has been
ruled out by initial replication studies, the focus of the as-
sociation can be extended to different age windows." An-
other common approach is to “age adjust" the effect (Za-
itlen et al., 2012) with the goal of removing or averaging
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out the effect of aging rather than examining its conse-
quences more thoroughly. Two recent studies (Lin et al.,
2014; Bjørnland et al., 2018) emphasize the need to ex-
plore “extreme phenotype sampling" in order to improve
GWAS discovery, including using cohorts that are diverse
in age.
One of the first geneticists to build a conceptual founda-
tion for disease susceptibility, and the pioneer of the lia-
bility threshold approach, was D. S. Falconer in his stud-
ies of inheritance estimated from the prevalence among
relatives (Falconer, 1965) and his 1967 follow-up study
exploring the prevalence patterns of LODs, specifically di-
abetes (Falconer, 1967), and their decreasing heritability
with age. These concepts were not followed up by sys-
tematic research, likely due to the difficulties involved
in setting up large familial studies and perhaps the per-
ceived limited clinical use of this kind of expensive and
time-consuming project.
Detailed, high-granularity data on heritability by age are
rare for most diseases. The familial heritability, clini-
cal, and epidemiological statistics were available for eight
prevalent LODs, Alzheimer’s disease (AD), type 2 dia-
betes (T2D), coronary artery disease (CAD), and cerebral
stroke, and four late-onset cancers: breast, prostate, col-
orectal, and lung cancer. These statistics served as the
basis for this study’s analysis and conclusions. This study
investigated the model in which the polygenic risk of an
individual remains constant with age and endeavored to
establish how the higher odds of becoming ill of individu-
als with higher polygenic liability may lead to a change of
risk allele distribution as the population ages and whether
this alone may explain some of the known observational
facts.
A set of computer simulations quantified the change in the
risk allele representation for these LODs as the population
ages and determined how and why these changes affect
clinical predictive power and GWAS statistical discovery
power with age more for some LODs than for others. Con-
sequently, this study proposes a modification to GWAS co-
hort selection to improve statistical discovery power.

Methods
The model definition
According to Chatterjee et al. (2016), the conditional age-
specific incidence rate of the disease, I(t|G) that is defined
as the probability of developing the disease at a particu-
lar age t, given that a subject has been disease-free until
that age, can be modeled using Cox’s proportional haz-
ards model (Cox, 1972):

I(t|G) = I0(t)· ex p(
∑

k

bkGk), (1)

where G = (G1, . . . , Gk) is the multiplicative effect of a set
of risk factors on the baseline hazard of the disease I0(t).
The set of age-independent variables in G could include
genetic and environmental risk factors, as well as their
interaction terms.
The following summary from Chatterjee et al. (2016) is
particularly relevant to the methodology of this research:

“For case-control studies, if it can be assumed that envi-
ronmental risk factors are independent of the SNPs in the
underlying population, then case-only and related meth-
ods can be used to increase the power of tests for gene-
environment interactions. To date, post-GWAS epidemi-
ological studies of gene-environment interactions have
generally reported multiplicative joint associations be-
tween low-penetrant SNPs and environmental risk fac-
tors, with only a few exceptions." This means that the
polygenic score G =

∑

k bkGk, as the lifelong characteris-
tic of each individual, is used multiplicatively with I0(t),
which encompasses environmental and aging effects.
It is important to note that the simulations conducted in
this research rely on the model genetic architectures of
the analyzed LODs, not a complete GWAS map of their ex-
perimentally discovered SNPs, because GWAS-discovered
sets can explain only a fraction of these LODs’ heritabil-
ity. These model genetic architecture SNPs are treated as
“true” causal variants for disease liability and heritabil-
ity, as discussed in Chatterjee et al. (2016), rather than
GWAS-linked SNPs. They are used as a priori known con-
stant causal SNPs that combine into individual polygenic
risk scores (PRSs) for an LOD, as will be described further.
The study by Pawitan et al. (2009), which followed the
mathematical foundation and simulational validation of
the liability model developed in Noh et al. (2006), served
as a basis for the genetic architectures used in this study.
Taking an aging population simulation approach allows
for the identification of individuals becoming ill and, with
them, the corresponding allele distribution between cases
and controls, without intermediate steps and operating
directly with the odds-ratio-based polygenic risk scores
common to GWASs and clinical studies. The core of the
simulation is Algorithm 1, operating on the known yearly
incidence of an LOD and the PRSs for all individuals based
on a modeled LOD genetic architecture:

Algorithm 1: Sampling individuals diagnosed with a
disease proportionately to their polygenic odds ratio
and incidence rate.
for age = 1 to MaxAge do

number I l lThisYear = I(age)·N // N is unaffected population
for i = 1 to number I l lThisYear do

HRsum= 0 // will recalculate sum of all HRs
for u= 1 to N do

HRsum= HRsum+ORtoHR(Gu) // calculate the HR total
LOOKU P(add, HRsum, u) // add uth individual to the lookup table

rand = RandomNumber(0, HRsum) // pick a random number
il l = LOOKU P( f ind, rand, N) // found newly diagnosed
N = N − 1 // decrement in number of healthy individuals
ProcessAndAnal yze(il l)

Note: an individual makes a sampling target proportionate to the hazard ratio (HR) in the LOOKU P() table.
Odds ratios (ORs) are converted to HRs, similar to the approach taken by Wang et al. (2013). An individual with
an HR of 15 will be 150 times more likely to be sampled than an individual with an HR of 0.1.
ProcessAndAnal yze() moves newly diagnosed individual from the healthy to the ill population pool, accounts for
allele distribution, case/control ORs, etc.

Descriptively, the algorithm works as follows. In the sim-
ulation, each next individual to be diagnosed with an
LOD is chosen proportionately to that individual’s relative
PRS at birth relative to all other individuals in the as-yet-
unaffected population. The number of individuals diag-
nosed annually is determined using the model incidence
rate curve derived from clinical statistics. In this manner,
the aging process is probabilistically reproduced using a
population simulation model rather than a computational
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model. As the simulation progresses, the risk alleles are
tracked for all newly diagnosed individuals and the re-
maining unaffected population, and their representation
in the affected and remaining population is statistically
analyzed.
The following sections describe the model genetic archi-
tectures, the LOD incidence models and the statistical
foundations of this research.

Allele distribution models
An in-depth review by Pawitan et al. (2009) extensively
analyzed models of genetic architecture and through sim-
ulations determined the number of alleles required to
achieve specific heritability and estimated the discovery
power of GWASs. They calculated allele distributions and
heritability and ran simulations for six combinations of ef-
fect sizes and minor allele frequencies (MAFs). Reliance
on the conclusions of Pawitan et al. (2009) in this research
makes it unnecessary to repeat the preliminary steps of
evaluating the allele distributions needed to achieve the
requisite heritability levels. The Pawitan et al. (2009) al-
leles represent the entire spectrum ranging from common,
low-frequency, low-effect-size alleles to extremely rare,
high-effect, high-frequency alleles. The five most relevant
architectures were implemented in this study; see Table 1.

Table 1. Genetic architecture scenarios

Scenario MAF Odds ratio
A. Common low 0.073–0.499 1.05–1.15
B. Modest low 0.0365–0.2495 1.05–1.15
C. Rare low 0.0146–0.0998 1.05–1.15
D. Rare medium 0.0146–0.0998 1.28–2.01
E. Rare high 0.0073–0.0499 1.63–4.05

Allele distributions as modeled by Pawitan et al. (2009).

It is also handy for repeatable allele tracking, rather than
generating the continuous random spectrum of allele fre-
quencies and effect sizes, to follow the Pawitan et al.
(2009) configuration and discretize the MAFs into five
equally spaced values within the defined range, with an
equal proportion of each MAF and an equal proportion of
odds ratios. For example, for scenario A, the MAFs are
distributed in equal proportion at 0.073, 0.180, 0.286,
0.393, and 0.500, while the odds ratio (OR) values are
1.15, 1.125, 1.100, 1.075, and 1.05, resulting in 25 pos-
sible combinations. Having multiple well-defined alleles
with the same parameters facilitated the tracking of their
behaviors with age, LOD, and simulation incidence pro-
gression.
An individual polygenic risk score β can be calculated as
the sum of the effect sizes of all alleles, which is by defini-
tion a log(OR) (natural logarithm of odds ratio) for each
allele, also following Pawitan et al. (2009):

β = log(OR) =
∑

k

ak log(ORk), (2)

where ak is the number of risk alleles (0, 1 or 2) and ORk
is the odds ratio of additional liability presented by the
k-th allele.
Variance of the allele distribution is determined by:

var = 2
∑

k

pk(1− pk)(log(ORk))
2, (3)

where pk is the frequency of the k-th genotype (Pawitan
et al., 2009).
The contribution of genetic variance to the risk of the dis-
ease is heritability:

h2 =
var

var +π2/3
, (4)

where π2/3 is the variance of the distribution (Noh et al.,
2006). For example, the number of variants needed for
the Scenario A LODs is summarized in Table 2.

Table 2. Heritability of analyzed LODs and an example
of required variant numbers for common low-effect
variants: Scenario A

Highly prevalent LODs Cancers
AD T2D CAD Stroke Prostate Colorectal Breast Lung

Heritability 0.795 0.69 0.55 0.41 0.57 0.40 0.31 0.095
Variants 3575 2125 1175 625 1250 600 400 100

Following Pawitan et al. (2009), the variants are assigned
to individuals with frequencies proportionate to MAF pk
for SNP k, producing, in accordance with the Hardy–
Weinberg principle, three genotypes (AA, AB or BB) for
each SNP with frequencies p2

k , 2pk(1− pk) and (1− pk)2.
The mean value βmean of the population distribution can
be calculated using the following equation:

βmean = 2
∑

k

pk· log(ORk) (5)

Customarily, the individual PRSs are normalized relative
to Gmean, resulting in a zero mean initial population PRS,
making it easy to compare higher- and lower-risk individ-
uals.
A part of simulation functionality is to allocate the genetic
architectures and calculate the variance, using Eq. (3),
of each genetic architecture instance described above.
Each genetic architecture listing is represented in the
File S1 executable folder; for example, the file “Com-
monLow.txt" lists the variants describing Scenario A (only
three columns are used for this simulation: SNP—-
internal use identifier, EAF—-effect allele frequency, and
OR). In the case of Scenario A, var = 0.09098 for the
single set of SNPs listed in this file. Rearranging Eq. (4)
and changing the multiple allows for the discovery of the
number of variant sets for each LOD, as seen in Table 2,
and for the target heritability to be closely approximated.
Each simulation run calculates the PRS variance within
the population and records heritability and allele distribu-
tions for the case and control populations as the simulated
age progresses.
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Evaluating GWAS statistical power
GWAS statistical power is the estimate of the ability of
GWASs to detect associations between DNA variants and a
given trait, and depends on the experimental sample size,
the distribution of effect sizes, and the frequency of these
variants in the population (Visscher et al., 2017). Statisti-
cal power calculations are very useful in a case/control
study design for determining the minimum number of
samples that will achieve adequate statistical power; con-
ventionally, statistical power of 80% is considered to be
acceptable (Hong and Park, 2012). To achieve greater
power, a disproportionately larger number of cases and
controls may be required, which is frequently unrealis-
tic for cohort studies. A number of statistical power cal-
culators are available, for example, Sham and Purcell
(2014). This study utilized the Online Sample Size Es-
timator (OSSE) (Online Sample Size Estimator).
The progress made by GWASs over the last decade, partic-
ularly in relation to polygenic traits, was to a large extent
due to ever-increasing cohort sizes. Cohort size is one
of the principal factors limiting GWAS discovery power,
making it an important benchmark for this study. Here,
the cohort size is defined as the number of cases and con-
trols needed to achieve 80% statistical discovery power
when the case/control allele frequency changes with co-
hort age for a subset of representative alleles in the model
genetic architectures. For each such allele in the simu-
lated population, the allele frequency for cases and con-
trols is tracked as age progresses. The difference between
these MAFs gives the non-centrality parameter (NCP) λ
for two genetic groups (Sham and Purcell, 2014; Luan
et al., 2001):

λ= N · p1· p2· (β1 − β2)
2, (6)

where N is the overall population sample size and
p1andp2 the fractions of cases and controls, and β1 and
β2 are the case and control mean log(OR) for an allele of
interest. The values p1 = p2 = 0.5, or an equal number of
cases and controls, are used throughout this publication.
Having obtained NCP λ from Eq. (6), Luan et al. (2001)
recommended using SAS or similar statistical software to
calculate the statistical power, using the following SAS
statement:

StatPower = 1−PROBF(F INV (0.99999995, 1, N−4), 1, N−4,λ).
(7)

The conversion of this equation to its R equivalent, which
was used to process the simulation output, is:

StatPower = 1− p f (q f (PSign, 1, N − 4), 1, N − 4,λ),
(8)

where PSign= 0.99999995 corresponds to a 5·10−8 sig-
nificance level. The outputs of this conversion were val-
idated using the Online Sample Size Estimator (OSSE)
(Online Sample Size Estimator). This equation returns
statistical power based on a case/control number and
the NCP as calculated above. To find the number of
cases needed for 80% GWAS discovery power, having the
(β1−β2), a rapid convergence R routine was used to iter-
ate the values of N until the value of StatPower matched

0.8 (80%) with an accuracy better than ±0.01% for each
age and allele distribution of interest.

LOD incidence functional approximation
Chapter S3 in Supplementary File 1 describes the
functional approximations of the yearly incidence of
Alzheimer’s disease, type 2 diabetes, coronary artery dis-
ease, and cerebral stroke, and four late-onset cancers:
breast, prostate, colorectal, and lung cancer. As a short
summary, for all of the above LODs, the incidence rate
curves can be approximated during the initial disease on-
set periods with an annual incidence growth that is close
to exponential. This exponential growth continues for
decades; see Table 3 and Chapter S3 in Supplementary
File 1.

Table 3. Age to which LOD incidence rate rises expo-
nentially

Highly prevalent LODs Cancers
AD T2D CAD Stroke Prostate Colorectal Breast Lung

Age (years) 103 55 81 79 48 62 72 70

Later, the growth may flatten in old age, as is the case with
T2D, slow down, as is the case with cerebral stroke and
CAD, or continue exponentially to a very advanced age,
as is the case with Alzheimer’s disease. An R script auto-
mates the determination of the best fit for logistic and ex-
ponential approximation from the clinical incidence data.

Sampling based on the LOD incidence rate and
individual PRS
The incidence rate functional approximations for the an-
alyzed LODs are used to find the average number of diag-
nosed individuals Nd for each year of age t as a function
of the incidence rate I(t) and the remaining population
unaffected by the LOD Nu(t) in question:

Nd(t) = I(t) · Nu(t), (9)

In the next year of age, the unaffected population will
have been reduced by the number of individuals diag-
nosed in the previous year Nd(t):

Nu(t + 1) = Nu(t)− Nd(t) = Nu(t)(1− I(t)). (10)

The number of individuals projected to become ill per
year, as well as the remaining unaffected population, is
applied in Algorithm 1.
For the PRS of the simulated population based on odds
ratios built using (Pawitan et al., 2009) model, if an LOD
is characterized by low incidence within an age interval,
and the odds ratio is close to 1, odds ratio values are prac-
tically identical to hazard ratio or relative risk (RR). For
example, Song et al. (2014) treat OR and RR as equiva-
lent in the case of breast cancer in their simulation study.
For higher values, an OR usually significantly exceeds the
RR. An adjustment formula by Zhang and Kai (1998) can
provide OR to hazard ratio approximation.
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Individual values analysis and cohort simula-
tion
It can be expected that, for an LOD with higher inci-
dence and heritability, the fraction of the highest-PRS in-
dividuals will diminish more rapidly with age. For such
LODs, the relatively-lower-PRS individuals will represent
the bulk of the LOD cases at an earlier age compared to
LODs with lower incidence and heritability. The LODs are
characterized by a wide range of heritability and progres-
sion patterns of incidence rate with age. For example,
T2D and breast cancer begin their incidence rise relatively
early but reach quite different levels at older age, while
colon cancer and AD start later and also reach quite dif-
ferent maximum incidence and cumulative incidence lev-
els; see Fig. S1 in Supplementary File 1. In the absence of
mortality, both due to general frailty and other LODs, the
incidence progression makes it appear as though, sooner
or later, depending on the incidence magnitude, the ma-
jority of the population would be diagnosed with every
LOD. In reality, this does not happen because of ongoing
mortality from all causes.
Two main LOD simulation types are described next:
1. The individual values analysis of polygenic risk
scores and risk allele frequency for individuals diag-
nosed with a disease at each specific age and the re-
maining population at this age. The abbreviation “IVA"
is used interchangeably with “individual values analysis"
in this publication.
The IVA uses one-year age slices and is performed as fol-
lows. Initially, the mean and variance of the PRS for
the whole population are calculated. Next, based on
the required incidence value for each year, individuals
are picked from the unaffected population by randomly
sampling the population with a probability proportionate
to the individual’s PRS, as summarized in Algorithm 1.
These individuals become the cases for the relevant year’s
IVA, and the mean and variance of their PRSs are also
calculated and recorded. Mortality does not need to be
applied to the IVA scenario because it affects the future
cases and controls in equal numbers, and accounting for
mortality would only result in a smaller population being
available for analysis. To track the GWAS statistical dis-
covery power, the same nine representative variants (con-
figurable) are tracked for all LODs simulated. The process
continues in this way until the maximum desired simula-
tion age is reached.
2. A simulated cohort study for each of these diseases.
For the sake of brevity, the word “cohort" is also used
throughout this publication.
The clinical study cohort simulation performs an analysis
identical to that described above. The difference is that,
here, the simulated GWAS clinical studies are performed
with a patient age span of 10 years, which is a typical co-
hort age span, although any age span can be chosen as
a simulation parameter. The simulation statistics are col-
lected using the mid-cohort age, which is the arithmetic
half-age of the cohort age span. In the first simulation
year, a population equal to one-tenth of the complete pop-
ulation goes through the steps described for IVA. Each

year, an additional one-tenth starts at age 0, while the
previously added individuals age by one year. This con-
tinues until all 10 ages are represented. This combined
cohort proceeds to age and is subject to the disease in-
cidence rate and mortality according to each individual’s
age.
Mortality is applied, with a probability appropriate to
each year of age, to both accumulated cases and controls.
As the population ages, both the case and control pool
numbers diminish. Take, for example, a cohort study that
includes a 10-year span, say, between 50 and 59 years of
age. The cases for the cohort are composed of individu-
als who were diagnosed with an LOD at any age either
younger than or including their current age, producing a
cumulative disease incidence over all preceding years of
age. For example, some of the individuals that are cases
now, at age 59, may have been healthy at age 58. Some of
the controls in our cohort at the age of 51 may or may not
be diagnosed at an older age, which would qualify them
as cases for this cohort, but they are currently younger and
healthy. Therefore, it can not be known with certainty the
extent to which younger controls differ from cases, except
for the fact that they are not currently diagnosed—not un-
like a real statistical study cohort. As a result, the corre-
sponding GWAS discovery power can be expected not to
change as dramatically as it does for the individual values
analysis.
The following additional mortality scenarios were also
simulated: (a) double mortality for cases compared with
the unaffected population, (b) no mortality for either
cases or controls, and (c) a one-year age span cohort with
no mortality for either cases or controls.
The youngest age cohort for each LOD is defined as the
mid-cohort age at which the cumulative incidence for a
cohort first reaches 0.25% of the population. For consis-
tency, this threshold was considered in this study as the
minimum cumulative incidence age, allowing for the for-
mation of well-powered cohort studies for all analyzed
LODs.

The simulation design summary
Preliminary data collection and analysis steps are shared
by all simulation runs and include: (a) preparing the
genetic architecture files and calculating the number of
variants needed, based on each modeled LOD heritabil-
ity, as described in the “Allele distribution models" section
above, and (b) determining the parameters of functional
approximation for LOD incidence from published statis-
tics, as described in Chapter S3 in Supplementary File 1.
A simulation run for a single LOD can be logically divided
into the following four steps:
1. Build the gene variants pool as outlined in the “Allele
distribution models" section and load the incidence rate
functional approximation parameters.
2. Allocate population objects and assign individual PRSs.
Allocate all other simulation objects and arrays that will
be used by the simulation.
3. Run the simulation’s Algorithm 1 from age 0 to 100 for
either the IVA or the cohort study scenario, described in
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the “Individual values analysis and cohort simulation" sec-
tion. Calculate and record the simulation data in comma
separated value files.
4. Determine statistical power for cases and controls for
each cohort based on the “Evaluating GWAS statistical
power" section.
The above steps were completely reinitialized and per-
formed for each LOD analysis. The complete simulation
iterated through all eight LOD analyses in two scenarios:
a per-year-of-age population IVA and a simulated GWAS
cohort study.

Validation simulations
Based on the model described above, it can be expected
that the allele distribution in a population of the same
age with a given initial genetic architecture will depend
solely on cumulative incidence, which represents the frac-
tion of the population that succumbs to a disease. The
purpose of validation simulation runs performed with (a)
constant, (b) linear and (c) exponential incidence rates
was to validate whether or to what extent this expecta-
tion is correct and whether the outcomes would differ be-
tween various genetic architectures. The validation sim-
ulations confirmed that PRSs for the population controls
and cases, viewed in the individual values analysis at ev-
ery age, depend on the cumulative incidence and the LOD
heritability, and are independent from the incidence pro-
gression shape within each genetic architecture. The pro-
cedures used in the validation simulations are described
in Chapter S2 in Supplementary File 1.

Data sources, programming and equipment
The population mortality statistics from the 2014 US So-
cial Security Actuarial Life Table provided yearly death
probability and survivor numbers up to 119 years of age
for both men and women.
Disease incidence data from the following sources were
extensively used for analysis, using the materials refer-
enced in Chapter S1 in Supplementary File 1 for cor-
roboration, Alzheimer’s disease: (Brookmeyer et al.,
1998; Edland et al., 2002; Kokmen et al., 1988; Hebert
et al., 1995); type 2 diabetes: (Boehme et al., 2015);
coronary artery disease and cerebral stroke: (Rothwell
et al., 2005); and cancers: (Cancer Statistics for the UK;
Kuchenbaecker et al., 2017).
The simulations were performed on an Intel i9-7900X
CPU-based 10-core computer system with 64GB of RAM
and an Intel Xeon Gold 6154 CPU-based 36-core computer
system with 288GB of RAM. The simulation is written in
C++ and can be found in Supplementary Data 1. The
simulations used population pools of 2 billion individu-
als for the LOD simulations and 300 million for validation
simulations, resulting in minimal variability in the results
between runs.
The cohort simulations were built sampling at least 5 mil-
lion cases and 5 million controls from the surviving por-
tion of the initial 2 billion simulated individuals, which is
equivalent to 0.25% of the initial population. This means
that the cohort study would begin its analysis only when

this cumulative incidence was reached. Conversely, the
analysis would cease when, due to mortality, the number
of available cases or controls declined below this thresh-
old. For all LODs, this maximum mid-cohort age was at
least 100 years and, depending on LOD, up to a few years
higher. This confirms that, as described later in the Dis-
cussion section, in cohorts composed of younger cases and
older controls it is feasible to form control cohorts up to
100 years of age.
The simulation runs for either all validation scenarios or
for a single scenario for all eight LODs took between 12
and 24 hours to complete. The final simulation data, ad-
ditional plots and elucidation, source code, and the Win-
dows executable are available in Supporting Information.
Intel Parallel Studio XE was used for multi-threading sup-
port and Boost C++ library for faster statistical functions;
the executable may be built and can function without
these two libraries, with a corresponding slowdown in
execution. The ongoing simulation results were saved
in comma separated files and further processed with R
scripts during subsequent analysis, also available in Sup-
plementary Data 1.

Statistical analysis
Large variations between simulation runs complicate the
analysis of population and genome models. This issue
was addressed in this study by using a large test pop-
ulation, resulting in negligible variability between runs.
The statistical power estimates deviated less than 1% in
a two-sigma (95%) confidence interval, except for the
early Alzheimer’s disease cohort, which commenced at
1.5% and fell below the 1% threshold within 4 years (see
*TwoSDFraction.csv files in Supplementary Data 1). In ad-
dition to ensuring that the simulations operated with re-
liable data, this eliminated the need for the confidence
intervals in the graphical display.

Results
Validation simulations for all genetic architec-
tures
The validation simulations for all scenarios described in
Methods Table 1 were performed not as models of spe-
cific diseases but to determine the behavior of all allele
scenarios and the resulting allele frequency changes un-
der simple controlled and comparable-to-each-other in-
cidence scenarios. It was important to characterize all
genetic architectures and to identify the differences and
similarities in behavior between them.
These simulations confirmed that a change in the popu-
lation’s mean PRS and a change in the cases’ mean PRS,
viewed as instantaneous values for each age, are depen-
dent on the cumulative incidence and the magnitude of
the initial genetic model heritability. If mortality is ex-
cluded, they are not dependent on the shape of incidence
progression with age (see Fig. S2 in Supplementary File
1) and are qualitatively similar between the genetic ar-
chitectures (seeFig. S3 in Supplementary File 1). This
means that, when the same level of cumulative incidence
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is reached with any incidence pattern, the allele distribu-
tion for the diagnosed cases and the remaining unaffected
population is identical.
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Figure 1. Polygenic risk scores of individuals diag-
nosed with an LOD as a function of age.
(A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D)
coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) col-
orectal cancer, (H) lung cancer.
Scatter plots show the distributions of PRS for cases diagnosed as age
progresses, with ongoing mortality. β = log(OddsRatio) visually im-
plies the underlying heritability and incidence magnitudes. If the re-
gression line can be easily drawn, dropping diagonally as age progresses,
there is a combination of high heritability and increasing cumulative in-
cidence. Otherwise, a plot appears as a relatively symmetrical blob.

Analysis of common, low-effect-size genetic ar-
chitecture scenario
The simulation results for the eight analyzed LODs are
presented next.
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Figure 2. Polygenic risk score difference between
newly diagnosed individuals and the remaining unaf-
fected population.
(A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D)
coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) col-
orectal cancer, (H) lung cancer.
SD band is a band of one standard deviation above and below the cases
and the unaffected population of the same age. For highly prevalent
LODs, at very old age, the mean polygenic risk of new cases crosses be-
low the risk of an average healthy person at early onset age. (Common
low-effect-size alleles (scenario A), showing largest-effect variant with MAF
= 0.5, OR = 1.15).

The IVA and cohort simulations were performed for all
genetic architecture scenarios, from low to high effect
sizes, and common to low allele frequencies, and the re-
sults were found to be qualitatively consistent between all
these scenarios. As a consequence, this report primarily
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Figure 3. Allele frequency difference between newly
diagnosed individuals and remaining population of
the same age.
(A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D)
coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) col-
orectal cancer, (H) lung cancer.
The MAF cases minus controls value is used to determine GWAS sta-
tistical power; see Eq. (6). Rarer and lower-effect-size (OR) alleles are
characterized by a lower MAF relative change, see also Fig. S5 in Sup-
plementary File 1. (Displayed here: 9 out of 25 SNPs, which are described
in Methods for common low-effect-size alleles - scenario A).

focuses on the common low-effect-size genetic architec-
ture scenario A, which the latest scientific consensus con-
siders to be the genetic architecture behind the majority of
polygenic LODs; the results are virtually identical for sce-
narios B and C, as validated in Fig. S3 in Supplementary
File 1, making it unnecessary to present separate figures
for these two scenarios.
The scatter plots in Fig. 1 show the distributions of PRS
for cases diagnosed as age progresses for the common,
low-effect-size genetic architecture scenario A. The PRSs
of individuals diagnosed with an LOD and the age-related
change of the average LOD PRS of the unaffected popu-
lation are demonstrated in Fig. 2. The color bands show
a one standard deviation spread for cases and controls,
which, in the case of newly diagnosed cases, represents
approximately two-thirds of the diagnoses at each age.
This figure demonstrates how the initially high average
polygenic risk of newly diagnosed cases declines as the
most predisposed individuals are diagnosed with each
passing year of age. The average PRS of the unaffected
population decreases much more slowly. At advanced old
age, the average polygenic risk of the newly diagnosed is
lower than the risk for an average individual in the popu-
lation at a young age; this is true for all four highly preva-
lent LODs: AD, T2D, CAD, and stroke.
This phenomenon is a consequence of the effect allele fre-
quency change, in which the highest-effect alleles show
the greatest difference between the diagnosed and the
remaining unaffected population as well as the fastest
change in frequency difference with age. Statistically, in-
dividuals possessing the higher-risk alleles are more likely
to succumb and to be diagnosed earlier, thus removing the
allele-representative individuals from the unaffected pop-
ulation pool; see Fig. 3. These plots show the most dra-
matic change for AD and T2D—the LODs with the high-
est cumulative incidence and heritability. The smallest
change corresponds to the LOD with the lowest incidence
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Figure 4. Change in number of cases needed to
achieve 80% discovery power in age-matched cases
and controls cohort design.
(A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D)
coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) col-
orectal cancer, (H) lung cancer.
Age-matched cohorts require larger numbers of participants to achieve
the same GWAS discovery power compared to the youngest cohort age.
There is a noticeable difference between cancers (with the exception of
prostate cancer; see the Discussion section) and other LODs. (Displayed
here: 9 out of 25 SNPs, which are described in the Methods section for
common, low-effect-size alleles–— scenario A).
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Figure 5. Change in number of cases needed for 80%
discovery power in a cohort study when using pro-
gressively older controls compared to fixed-age young
cases.
(A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D)
coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) col-
orectal cancer, (H) lung cancer.
Cases’ mid-cohort age is leftmost age (youngest plot point); control mid-
cohort ages are incremental ages. The number of cases needed for 80%
discovery power is smaller when using older controls, particularly for
those LODs showing the most prominent increase in the number of cases
needed for older age in matched-age cohorts, as can be seen in Fig. 4.
(Displayed here: 9 out of 25 SNPs, which are described in the Methods
section for common, low-effect-size alleles—- scenario A).

and heritability: lung cancer.
It is important to note that the absolute MAF values for
cases diagnosed at a particular age and controls do not
change much with age progression for all LODs. For ex-
ample, for T2D, the allele frequency for the allele with
an OR of 1.15 and an initial population MAF of 0.2860 is
0.2860 for controls and 0.3088 for cases at the age of 25.
This changes to 0.2789 for controls and 0.2871 for cases
at the age of 80 in the IVA case—-a change of only a few
percentage points. At the same time, the relative differ-
ences change correspondingly from 0.0228 to 0.0081, a
2.7 times change, which is very significant for GWAS dis-
covery power, as can be seen in Eq. (6). The absolute MAF

change is even less prominent in the cohort scenario, as
can be seen in Fig. S13 in Supplementary File 1, which
shows the same allele. The small change in the absolute
value for older age groups makes it difficult to analyze
this effect using, for example, GWAS SNP database statis-
tics for different age groups. The effect would be hidden
behind interpersonal and populational genetic variability
in hundreds and thousands of SNPs, changing their bal-
ance slightly with age in the case of the common, low-
effect-size genetic scenario. This effect is long established
for highly detrimental variants such as the BRCA1/2 gene
mutations in the case of breast cancer (Kuchenbaecker
et al., 2017) and the APOE e4 allele in the case of AD
(Farrer et al., 1997), where these gene variant carriers
are known to be present in lower numbers among older
undiagnosed individuals.
The cohort simulation shows a much more averaged
change for these same scenarios because cohorts repre-
sent accumulative disease diagnoses from earlier ages,
while mortality removes older individuals; see Fig. S5
in Supplementary File 1. While the MAF difference be-
tween cases and controls shown in the above figures is
illustrative by itself, it is most important for determin-
ing the GWAS statistical discovery power using Eq. (6)
and Eq. (8) and from there the number of cases neces-
sary to achieve 0.8 (80%) statistical power. From these
equations, it is apparent that GWAS statistical discovery
power diminishes as a complex function of a square of
case/control allele frequency difference. The age-related
change in the number of cases needed to achieve 80%
GWAS discovery power for an age-matched case/control
cohort study is presented in Fig. 4.
In the hypothetical IVA case, the number of individuals re-
quired to achieve the desired GWAS discovery power in-
creases rapidly; see Fig. S6 in Supplementary File 1. This
is a quite informative instantaneous value of statistical
power; however, neither GWASs nor clinical studies ever
consist of individuals of the same age, due to the need to
have a large number of individuals to maximize this same
statistical power. The cohort scenario is correspondingly
less extreme, as seen in Fig. 4. These plots show an in-
crease in the number of participants needed to achieve
adequate GWAS statistical power between the lowest ef-
fect and frequency and the highest effect and frequency
alleles; this number exhibits a greater-than-hundredfold
variation between alleles within the genetic architecture.
The required number of cohort participants is quite sim-
ilar for the same effect alleles among all eight LODs; for
example, the highest-effect allele for each LOD requires
5·104–1.4·105 cases for 80% GWAS discovery power at
younger ages. The change in allele frequency with age
between cases and controls shows substantial variation
among LODs, with the greatest change occurring in AD
and the least significant in lung cancer; see Fig. 3. The
red line in Fig. 6 summarizes the multiplier—the required
increase in the number of participants as the cohort is
aging—compared to the youngest possible cohort age for
the eight analyzed LODs. These cohort results are simu-
lated with identical mortality for cases and controls. Mor-
tality has an impact on the cohort allele distribution.
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Table 4 combines the heritability and incidence of the
LODs with the summarized simulation results from the
cohort simulation, also seen in Fig. 4 and Fig. S4 in Sup-
plementary File 1.

Table 4. LOD statistics and age matched cohort simu-
lation summary

Highly prevalent LODs Cancers
Disease AD T2D Stroke CAD Breast Prostate Colorectal Lung
Lifetime risk % 10–20 55 25–30 32–49 12 12 < 4.5 <6.9
Heritability % 79–80 69 38–44 50–60 31 57(42) 40 8–18
Maximum yearly incidence % > 20 2.5 4.4 3.6 <0.5 <0.8 <0.6 <0.6
∆MAF between cases and controls:
Youngest cohort 0.020 0.026 0.034 0.032 0.034 0.031 0.034 0.035
age 80y 0.015 0.018 0.028 0.023 0.032 0.024 0.031 0.035
age 100y 0.014 0.019 0.028 0.023 0.032 0.023 0.029 0.036
Cases needed for 80% statistical power:
Youngest cohort 1.4·105 8.7·104 5.3·104 6.0·104 5.0·104 6.1·104 4.9·104 4.9·104

age 80y 2.6·105 1.8·105 7.9·104 1.1·105 5.8·104 1.0·105 6.1·104 4.7·104

age 100y 3.0·105 1.7·105 7.3·104 1.1·105 5.9·104 1.1·105 6.9·104 4.5·104

Multiple cases needed, youngest to 80y 1.9 2.1 1.5 1.8 1.15 1.6(1.35) 1.25 1.0

The MAF values and cases needed for 0.8 (80%) GWAS statistical
discovery power are for the common, low-effect-size alleles, scenario
A. Cohorts span 10 years. The results shown are for the allele with a
MAF of 0.5 and an OR of 1.15, the largest effect allele, which requires
the smallest number of cases/controls. “Maximum incidence %" is the
largest incidence at older age. “Case mult." is the multiple of the
number of cases needed for the 80-year-old cohort to achieve the same
statistical power as the early cohort. Prostate cancer heritability is
57%, according to Hjelmborg et al. (2014). Shown in braces, 42%
heritability (Grönberg, 2003), which is more in line with the other
three cancers.
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Figure 6. Per LOD comparison: Youngest possible
cases and increasingly older controls vs classical age-
matched cohorts.
(A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D)
coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) col-
orectal cancer, (H) lung cancer.
The multiplier showing the reduction in the number of cases needed in
a young cases–older controls scenario is shown in blue, strongly con-
trasting with the number of cases needed for the same GWAS discovery
power in a classic age-matched study design, shown in red, which in-
creases with age. (Common low-effect-size alleles scenario A.)

Validating more extreme mortality scenarios
More extreme mortality scenarios—both lower and
higher—than one could expect in a real cohort study were
validated in this set of simulations. The results were rela-
tively close to those presented for equal case/control mor-
tality. The extreme cases of (a) no mortality for either
cases or controls and (b) double the mortality of cases
compared to controls produce very similar allele distri-
butions before the age of 85, while diverging somewhat

at older ages. The scenario in which the mortality of
cases is double that of controls is higher than the clini-
cally known mortality for the analyzed LODs. While this
may have been a realistic scenario a century ago, before
modern healthcare, it is certain that patient mortality is
lower these days. In addition, a one-year cohort without
mortality was used as the most extreme validation case.
This scenario can also be considered an individual cumu-
lative case, which counts everyone who became ill by a
specified age as cases and everyone healthy at that age as
controls. These validation cohort scenarios are summa-
rized in Fig. S7 in Supplementary File 1.
The mortality analysis was applied to one LOD at a time.
This research did not attempt to estimate increased mor-
tality for multiple disease diagnoses. Collerton et al.
(2009) followed a cohort of individuals over the age of
85 in Newcastle, England, and found that, out of the 18
common old-age diseases they tracked, a man was on av-
erage diagnosed with four and a woman with five, not
to mention a plethora of other less common diseases and
their causal share in individual mortality.

Evaluating rare, medium-effect-size genetic ar-
chitecture scenario
Other genetic architecture scenarios produce qualita-
tively similar patterns, specifically differing in the num-
ber of cases needed to achieve 80% statistical power for
medium- and large-effect genetic architecture scenarios.
The rare, medium-effect-size allele (scenario D) results
are presented in Fig. S8, Fig. S9, Fig. S10, and Fig. S11
in Supplementary File 1. There, at younger ages, the MAF
difference between cases and controls is larger for rare,
medium-effect-size alleles. The number of cases and con-
trols needed to achieve 80% GWAS statistical power for all
eight LODs is approximately five times lower, a direct con-
sequence of these variants’ larger effect sizes. This result
perhaps excludes the scenario of rare, medium-effect-size
alleles being causally associated with the LODs reviewed
here, because GWAS studies would be more readily able
to discover a large number of causal SNPs. From a qual-
itative perspective, all reviewed genetic architecture sce-
narios provide similar patterns of increasing numbers of
cohort study cases needed to maintain the same discovery
power with age progression.

Advantage of using youngest possible case co-
horts and oldest control cohorts
The scenarios simulating the number of cases needed
when the case cohort uses the youngest possible partic-
ipants with increasingly older control cohorts are pre-
sented in Fig. 5 and Fig. S12 in Supplementary File 1.
The multiplier representing the decrease in the number
of cases that are needed in this scenario is represented
by the blue lines in Fig. 6, which strongly contrasts with
the number of cases needed for the same GWAS discov-
ery power in a classic age-matched study design, which
increases with age. The summary of the comparison of
the two cohort designs is presented in Fig. 7.
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Figure 7. Advantage of using youngest possible cases
and increasingly older controls, compared to classical
age-matched cohorts.
(A) Relative increase in number of cases needed for 80% discovery
power in a cohort study using progressively older case and control co-
horts of the same age. (B) Relative decrease in the number of cases
needed for 80% discovery power in a cohort study when using pro-
gressively older control cohorts compared to fixed-age young-case
cohorts. The youngest age cohort for each LOD is defined as the mid-
cohort age at which the cumulative incidence for a cohort first reaches
0.25% of the population. Therefore, the leftmost point on each LOD line
is the reference (youngest) cohort, and as cohorts age, the cohort case
number multiple required to achieve 0.8 statistical power is relative to
this earliest cohort. While all alleles display a different magnitude of
cases needed to achieve the required statistical power, the change in the
multiplier with age is almost identical for all alleles within a given ge-
netic architecture scenario. (Common low-effect-size alleles scenario A.)

Thus, cohorts composed of the youngest possible cases
and the oldest available controls improve the discovery
power of GWASs. Equivalently, such cohorts require a
smaller number of participants to achieve the same dis-
covery power.

Discussion
Performing a comprehensive set of validation simula-
tions enabled the determination and generalization of the
change in allele distribution with an increase in cumula-
tive incidence for all genetic architectures described in the
Methods section. The simulation results show that, for
all genetic architectures, the change in the PRS depends
on the cumulative incidence and the magnitude of heri-
tability. When the same level of cumulative incidence is
reached, the difference in allele distribution between di-
agnosed cases and the remaining unaffected population is
identical. It therefore depends on the value of the cumula-
tive incidence, and not on the incidence pattern that led
to the achievement of a particular cumulative incidence
value in the validation scenarios.
Next, the simulations were performed using the incidence
rate patterns and model genetic architectures of each an-
alyzed LOD, determining changes in the allele distribu-
tion with age and the resulting impact on GWAS discov-
ery power. These results compared well with the find-
ings from clinical, GWAS, and familial heritability studies,
which are summarized below.
There are numerous reports of heritability, clinical predic-
tive power, and GWAS discovery power diminishing with
age for these LODs. Almgren et al. (2011) observed T2D
heritability equal to 0.69 for the 35–60 year age-of-onset
group, and negligible heritability for older ages. GWASs
(de Miguel-Yanes et al., 2011; Mühlenbruch et al., 2013)
segregating T2D risk SNPs by age have found that the

risk factor values are higher for those under the age of
50, compared to the older cohorts. Regarding the vari-
ant types that are most likely associated with T2D, Fuchs-
berger et al. (2016) found that, with a high degree of cer-
tainty, they were able to attribute T2D liability to common
variants rather than rare, high-effect variants. A cardio-
vascular disease (myocardial infarction) study by Nielsen
et al. (2013) found the predictive power of parental his-
tory to decline for ages older than 50. Schulz et al. (2004)
found familial history to be the best predictor of ischemic
stroke for individuals under the age of 60. A review based
on Framingham’s study (Seshadri et al., 2010) found the
parental predictive power of stroke to diminish for those
aged over 65. The heritability of Alzheimer’s disease has
been estimated at 80% from twin studies (Naj and Schel-
lenberg, 2017); Gatz et al. (2006) found heritability to be
79% at approximately 65 years of age, diminishing with
increasing age. GWASs (Tan et al., 2013; Shen and Jia,
2016; Naj and Schellenberg, 2017) have come to similar
conclusions. In summary, the predictive power of familial
history for the above LODs is greatest for younger ages,
specifically <65 years of age for AD, <50 for CAD, <60
for stroke, and <50 for T2D.
For the above LODs, the simulation results show high
PRSs for the earliest-diagnosed cases. The risk allele
case/control difference and the PRSs of newly diagnosed
cases decrease rapidly with age progression. At a very old
age, the individuals whose genotype would be considered
low risk at an earlier age are the ones diagnosed with the
disease; see Fig. 2. This also reinforces the validity of the
clinical observation that the major risk factor for LODs is
age itself.
The four cancers display a noticeably different pattern.
The PRSs for the earliest-onset cases are lower than those
for the above LODs, and this risk changes much less with
age than for the above LODs. These results explain the
observations of familial heritability studies: for three out
of the four most prevalent cancers, twin studies have
shown relatively constant heritability with age progres-
sion (Grönberg, 2003; Möller et al., 2016; Mucci et al.,
2016; Graff et al., 2017). Determining the change in lung
cancer heritability with age has proven somewhat more
elusive (Hjelmborg et al., 2016), and no definitive con-
clusions have been published, largely due to the generally
low documented heritability and substantial environmen-
tal component of this disease.
Prostate cancer is the only cancer that is somewhat con-
troversial. Its heritability is reported at 57% by Hjelm-
borg et al. (2014), and prostate cancer reaches the highest
maximum instance rate of the four most prevalent cancers
reviewed. Therefore, according to the above observations
and the results of the validation simulations, the relative
MAF between cases and controls is likely to be higher than
for other cancers. Nevertheless, the same article finds
that the heritability of prostate cancer remains stable with
age. It may be that this twin study result is somehow bi-
ased and that the heritability of prostate cancer is lower
than stated in Hjelmborg et al. (2014), or perhaps this is
a phenomenon specific to the populations or environmen-
tal effects of Nordic countries. Perhaps the earlier familial
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study (Grönberg, 2003), which estimated heritability at
42%, would be closer to the UK population incidence data
used here. The verification simulation using a heritability
of 42% produced results that matched more closely the
patterns exhibited by the other cancers; see the resulting
value shown in parentheses for the case multiple in Ta-
ble 4. A more exhaustive literature investigation of the
reviewed LODs is presented in Chapter S1 in Article S1.
GWASs’ statistical discovery power is impaired by the
change in individual distribution of the PRS at older ages.
A larger number of cases and controls is needed at older
ages to achieve the same statistical discovery power. The
first four LODs, which exhibit higher heritability and cu-
mulative incidence compared to cancers, require an in-
creased number of participants in case/control studies for
older ages. The cancers show a small increase in the num-
ber of participants required to achieve the same statistical
power.
Individual values analysis, in which the individuals diag-
nosed each year are compared to all remaining healthy
individuals, shows a rapid increase in the number of
cases hypothetically needed to achieve the same statistical
power, but this scenario would be impractical for a clinical
study. The age-matched cohort studies benefit from the
fact that the diagnosed individuals are accumulated from
the youngest onset to the age of becoming a case in the co-
hort study, as well as being averaged over the cohort age
range, resulting in a more moderate increase in the num-
ber of participants required, or a slower decline in GWAS
discovery power for older cohorts. Age-matched cohort
studies would require 1.5–2.1 times more participants at
age 80 compared to the youngest possible age-matched
cohorts in the case of stroke, CAD, AD, and T2D.
Designing cohorts composed of the youngest possible
cases and the oldest available controls improves GWAS
discovery power due to larger difference in risk allele fre-
quency between cases and controls. This improvement
leads to a lower number of participants being needed for
GWASs when applied to the highest cumulative incidence
and heritability LODs—so much so that about 50% fewer
participants are required to achieve the same GWAS sta-
tistical power when control cohorts between 90 and 100
years of age are matched to the youngest case cohorts,
with the reverse being the case with older age-matched
cohorts. In this scenario, notably (20–25%) fewer par-
ticipants are also needed to achieve the same statistical
power in cancer GWASs, including those focusing on lung
cancer.

Conclusions
This research was conducted with the goal of establishing
whether any of the observational phenomena, including
decreasing heritability with age for some notable LODs
and the limited success of LOD GWAS discovery, can be ex-
plained by changes in the allele proportions between cases
and controls due to the higher odds of more-susceptible
individuals being diagnosed at an earlier age.
The simulation results reported above show that these
phenomena can indeed be explained and predicted by the

heritability of the LODs and their cumulative incidence
progression. By simulating population age progression
under the assumption of relative disease liability remain-
ing proportionate to individual polygenic risk, it was con-
firmed that individuals with higher risk scores will be-
come ill and be diagnosed proportionately earlier, bring-
ing about a change in the distribution of risk alleles be-
tween new cases and the as-yet-unaffected population in
every subsequent year of age. With advancing age, the
mean polygenic risk of the aging population declines. The
fraction of highest-risk individuals diminishes even faster.
While the number of most-susceptible individuals and
the mean population susceptibility both decline, the inci-
dence of all LODs initially grows exponentially, doubling
in incidence every 5 to 8.5 years (see the Methods section)
and remains high at older ages, leading to a high cumu-
lative incidence for some LODs. The increasing incidence
rate in the face of declining polygenic risk for the as-yet-
unaffected population can be explained as a consequence
of the aging process, which itself is the major risk factor
for LODs. In old age, people who have low genetic or fa-
milial susceptibility are increasingly becoming ill with an
LOD.
LODs with low cumulative incidence and low familial her-
itability produce smaller changes in the allele distribution
between affected individuals and the remaining popula-
tion. The most-prevalent cancers are reported to have
stable heritability with age, and therefore these GWASs
are less affected by the increasing age of the participant
cohorts. For these diseases, modification of the cohort age
selection process by favoring younger cases and older con-
trols will also lead to noticeable improvements in statis-
tical power, albeit somewhat less prominent than for the
higher-incidence and -heritability LODs.
Four of the most prevalent LODs—Alzheimer’s disease,
coronary artery disease, cerebral stroke, and type 2
diabetes—exhibit both a high cumulative incidence at
older age and high heritability. These simulation re-
sults show that a GWAS of any polygenic LOD that dis-
plays both high cumulative incidence at older age and
high initial familial heritability will benefit from using the
youngest possible participants as cases rather than age
matching or statistically adjusting or compensating for
age. In addition, cohort GWASs would benefit from us-
ing as controls participants who are as old as possible.
This would allow for an additional increase in statisti-
cal discovery power due to the greater difference in risk
allele frequency between cases and controls. For most
LODs, ample numbers of still-unaffected individuals re-
main available at older ages to participate in the control
cohorts.
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Supplementary Chapter S1: LOD heri-
tability patterns with age based on fa-
milial and clinical studies and genome-
wide association studies (GWAS)
The notion that the heritability of LODs always decreases
with age is not entirely correct. A review of the clinical
and familial studies and GWAS on the heritability of poly-
genic LODs within the typical age range of disease onset
leads to a grouping of LODs into two broad categories:
those with decreasing heritability with age and those with
increasing or relatively constant heritability with age.
Next, these categories are reviewed in detail, focusing pri-
marily on the eight highly prevalent LODs analyzed in our
simulations. These categories are used to organize the
observational knowledge to enable the application of this
knowledge to the main article’s simulations and the veri-
fication of the simulation results.

LODs with decreasing heritability with age
There is a large number of highly environmentally af-
fected LODs that exhibit decreasing heritability with
age. Three of these diseases carry some of the highest
lifetime risk: coronary artery disease, cerebral stroke, and
type 2 diabetes; see Table 1, summarized from Wienke
et al. (2001), Zdravkovic et al. (2002), Devan et al.
(2013) and Aparicio and Seshadri (2017).

Supplementary Table 1. Population statistics of LODs
characterized by decreasing heritability with age

Statistic Alzheimer’s CAD Stroke T2D
Lifetime risk, USA (%) 10m, 20w 49m, 32w 25m, 30w 55
Mortality assigned, USA (%) 4.2 23.1 5.2 2.9
Heritability (%) 79 50–60 38–44 69
Best predictability, age <65 <55 <60 <50

Lifetime risk numbers, when marked, “w" for women, “m" for men.

Falconer (1967) noted that “the increase of incidence asso-
ciated with a variable age of onset can be due to either an
increase of the mean liability or an increase of the variance
of liability. Consideration of the changes of liability that
individuals may undergo as they grow older shows that an
increase of variance with increasing age is to be expected,
and since the additional variance is likely to be mainly envi-
ronmental, a reduction of the heritability is to be expected."
Falconer further pointed out that “the heritability of lia-
bility to diabetes, estimated from the sib correlation, de-
creases with increasing age. For people under 10, heritabil-
ity is about 70 or 80%, and it drops to about 30 or 40% in
people aged 50 and over. The decrease of the heritability is
attributable to an increase of environmentally caused vari-
ation. The increased environmental variation is not enough
to account in full for the increasing incidence, so there is
probably also an increase of the mean liability with increas-
ing age."
In the 1960s, the distinction between autoimmune
Mendelian type 1 diabetes and late-onset polygenic type
2 diabetes (T2D) was not known, but it was suspected
that there may be two distinct mechanisms. However,
this conclusion—of an increase in liability with age, and
accordingly blurred heritability—is observed for T2D as
well as other LODs.
The greatest heritability for T2D is observed in the 35–
60 (0.69) year age of onset group, (Almgren et al., 2011)
and heritability declines to only 0.31 when the upper age
limit is increased to 75 (making the age range 35–75).
In the over-60 group, the “environmental" component is
the primary cause of new T2D cases. The environmen-
tal component in this case includes systemic and tissue-
specific deterioration with age and the cumulative exter-
nal environmental effects with increased time duration.
Just as Falconer did 60 years earlier, this study concludes
that T2D heritability decreases with age and that liability
may be more accurately predicted in younger individuals.
One review (Talmud et al., 2014) cites two studies that
corroborate this view. The first concluded that recalculat-
ing the genetic risk for T2D by splitting a cohort by age
below and above 50 years using 40 T2D risk SNPs finds
that the risk factor values are higher in the younger group
(de Miguel-Yanes et al., 2011). Meanwhile, Almgren et al.
(2011) correlated the heritability and familiality of T2D
with quantitative traits and found a very significant drop
in heritability over the age of 60.
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The conclusion is that, for reliable GWASs, younger is bet-
ter: T2D patients under the age of 60—or, even better, un-
der the age of 50—should be chosen. Regarding the vari-
ant types that are most likely associated with T2D, Fuchs-
berger et al. (2016) found that they were able, with a high
degree of certainty, to attribute T2D liability to common
variants rather than rare, high-effect variants.
Nielsen et al. (2013) cardiovascular disease (myocardial
infarction) study provides implicit confirmation of de-
creasing heritability with age. The predictive power of
parental history is as follows: paternal relative risk (RR)
= 3.30 for ages <50 and 1.83 for ages >50; maternal RR
= 3.23 for ages <50 and 2.31 for ages >50.
Schulz et al. (2004) found familial history to be the best
predictor of ischemic stroke for individuals under the age
of 60, with an overall odds ratio (OR) of 1.73. Relative
OR, compared to the under-60 cohort, was 0.95 for the
60–70 age band and 0.77 for individuals over the age of
75.
A review based on Framingham’s study (Seshadri et al.,
2010) supplies very useful information about parental his-
tory of stroke. Even though the grouping used on the
parental side is stroke under 65, on the descendant side,
there are statistics showing RR both below and above the
age of 65. For descendants whose parents had a stroke be-
fore the age of 65, the stroke RR was determined. Over-
all, the RR was 3.79 under the age of 65 and 2.21 over
the age of 65; the HR for ischemic stroke was 5.45 under
the age of 65 and 2.47 over the age of 65. Additional im-
plicit information from this data, which supports the same
conclusion, is listed in Allport et al. (2016)
The heritability patterns for these diseases are summa-
rized in Table 3. There is qualitative and, increasingly,
quantitative knowledge about the progressively declin-
ing heritability of these diseases at ages above 50, as
well as the decreasing associated familial and GWAS pre-
dictive power; see Nielsen et al. (2013), Schulz et al.
(2004), Seshadri et al. (2010), Bevan et al. (2012), De-
van et al. (2013) and Fuchsberger et al. (2016) These
studies found familial history to be the better predictor of
next-generation disease only when the participants in the
parental generation are relatively young; see de Miguel-
Yanes et al. (2011), Talmud et al. (2014), Almgren et al.
(2011) and Table 1.
An environmental effect on the heritability of cardiovas-
cular disease and T2D with age is evident, (Falconer,
1967; Poulsen et al., 1999) including influences such as
spousal environment (Jee et al., 2002).
In addition, T2D is a major co-morbidity factor for CAD
and cerebral stroke, as well as causally correlated adi-
posity and hypertension, which are by themselves asso-
ciated with CAD and cerebral stroke and other LODs. In
the presence of T2D, these diseases develop years and
even decades earlier than the typical onset ages (Boehme
et al., 2015). For instance, twin studies on the heritabil-
ity of BMI (a co-morbidity often preceding T2D) show the
highest heritability of 85% at 18 years of age, after which
heritability slowly declines throughout the lifespan (Elks
et al., 2012).
It must be noted that the majority of diseases are influ-

enced to various degrees by environmental factors. The
three diseases just reviewed show incomparably higher
environmental influence than Alzheimer’s disease (AD).
For AD, neither lifestyle nor painstakingly developed med-
ications can markedly influence the progression of the dis-
ease. In contrast, CAD, cerebral stroke and T2D are often
considered by the medical community to be primarily in-
fluenced by lifestyle and environment (Lloyd-Jones et al.,
2006; Mahmood et al., 2014; Boehme et al., 2015; Dia-
pedia: Epidemiology of type 2 diabetes).
In conclusion, the highly prevalent LODs exhibiting high
environmental correlation with onset ages also show de-
creasing heritability with age. This is combined with an
exponential increase in incidence with age. In the case of
CAD and cerebral stroke, the exponential incidence rate
increase proceeds beyond 80 years of age.
Another type of LOD showing heritability that declines
with age can be described as a mode of failure with aging.
Alzheimer’s disease begins relatively late, but from there,
its incidence rises exponentially to extremely old age
(Brookmeyer et al., 1998). The heritability of Alzheimer’s
disease is estimated at 80% from twin studies (Naj and
Schellenberg, 2017); both familial studies and GWAS es-
timate heritability at 79% Gatz et al. (2006) at approxi-
mately 65 years of age, diminishing with increasing age.
Tan et al. (2013); Shen and Jia (2016); Naj and Schellen-
berg (2017)
A clinical study documenting the association between the
APOE genotype and Alzheimer’s disease (Farrer et al.,
1997; Davidson et al., 2007) reports the change in odds
ratio with age of APOE e4/e4 and APOE e3/e4 carriers,
which is summarized for the Caucasian population in Ta-
ble 2.

Supplementary Table 2. Alzheimer’s disease odds ra-
tio by age and APOE alleles, relative to e3/e3 allele
carriers

APOE allele / Age (y) 55 60 65 70 75 80 85 90
e4/e4 OR 14.1 15.0 14.3 12.1 9.5 6.1 3.7 2.0
e4/e3 OR 3.5 3.7 3.8 3.6 3.3 2.7 2.3 1.7

Values summarized from Farrer et al. (1997).

Another review (Naj and Schellenberg, 2017) concludes
that the typical age at onset is 68.8 years for APOE e4/e4
carriers, 75.5 years for e3/e4 carriers, and 84.3 years for
carriers without e4. Moreover, the APOE e4 effect is age
dependent, giving a broad-stroke assessment that the e4
allele effect is most prominent between the ages of 60 and
79 and gradually diminishes after the age of 80. This fits
well with the assessment (Farrer et al., 1997) summarized
in Table 2.
Table 3 summarizes the information in the literature
about the decreasing heritability of the LODs referenced
above.
The model presented by Brookmeyer et al. (1998) hypoth-
esized that, if the AD incidence curve could be delayed by
five years, the overall prevalence of AD would be half the
projected rate, assuming unchanged mortality from other
causes. AD prevalence in this study is limited by applying
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Supplementary Table 3. Heritability and risk statistics
for LODs exhibiting decreasing heritability with age

Disease Heritability/risk, younger age Heritability/risk, older age
AD e3/e4 (Farrer et al., 1997) OR=3.8, 65y OR=1.7, 90y
AD e4/e4 (Farrer et al., 1997) OR=15.0, 60y OR=2.0, 90y
CAD paternal (Nielsen et al., 2013) RR=3.30, < 50y RR=1.83, > 50y
CAD maternal (Nielsen et al., 2013) RR=3.23, < 50y RR=2.31, > 50y
Stroke (Schulz et al., 2004) OR=1.63, < 60y OR=0.77, > 70y
Stroke all (Seshadri et al., 2010) RR=3.79, < 65y RR=2.21, > 65y
Stroke ischemic (Seshadri et al., 2010) RR=5.45, < 65y RR=2.47, > 65y
T2D (Almgren et al., 2011) h2 = 0.69, 35-60y h2 = 0.31, 35-75y

OR = odds ratio; RR = relative risk; h2 = heritability

a 1.4 mortality multiplier to AD patients compared with
the unaffected population.
While AD progression is difficult to influence with lifestyle
changes or medications, AD incidence at comparable ages
has decreased by about 30% since the 1980s in many
Western countries (Binder and Schumacher, 2016; Wu
et al., 2017) due to undetermined causes. As life ex-
pectancy increases, AD lifetime incidence and prevalence
are expected to regain ground.
In conclusion, AD shows an exponentially increasing inci-
dence rate up to the most advanced ages, while also dis-
playing heritability that declines with age.

LODs exhibiting stable heritability with age
LODs with relatively constant heritability with age and in-
frequent types of LODs with increasing heritability with
age are grouped in this category. As found in the re-
viewed literature, the increase in heritability, when ob-
served, is moderate. The diseases showing slightly increas-
ing heritability with age are found to be those affecting the
skeletal system, for instance, osteoarthritis, particularly of
large joints such as the hip or lower back. One study (Sk-
ousgaard et al., 2015) shows that both the incidence and
heritability of advanced osteoarthritis of the hip and lower
back increase with age.
It is evident that younger cases are more environmentally
and less genetically correlated. For example, osteoarthri-
tis at a younger age is often due to trauma rather than
genetics (Amoako and Pujalte, 2014; Warner and Valdes,
2016). At the age of 60, the influence of genetic and envi-
ronmental components is roughly equivalent, and by the
age of 70, heritability increases to 75% and stays close to
this level into the 90s. Heritability is even higher and in-
creases with advanced age for osteoarthritis of the spine
at multiple locations (Spector and MacGregor, 2004).
The increase in heritability for these diseases is seen to
be relatively modest and extends from an initially high
level. Many osteoarthritis-affected structures and corre-
sponding diagnoses, with different ages of maximum in-
cidence and heritability by sex and age, do not follow this
pattern (Skousgaard et al., 2016).
The osteoporosis findings are similarly varied, with stud-
ies finding no heritability of pathology for some bone
structures and strong heritability for others (Ralston and
Uitterlinden, 2010). Specifically, the osteoporosis asso-
ciated with bone breaks is very heritable and shows a
slight increase in heritability into older age (Shaffer et al.,
2008). This is explicable by the fact that, for osteoporo-

sis, the main risk component—the shape and size of the
bone—is strongly heritable. Genetics in this case deter-
mines the early developmental stages of an organism,
when the structures take shape. Similar reasoning applies
to osteoarthritis, which is related to defects in collagen
and connective tissue formation. The malignancy occurs
after many decades of life, when wear, deterioration and
diminishing repair capacity cross the threshold leading to
pathology.
In conclusion, some LODs with their roots in the early de-
velopment of an organism’s structures may display strong
heritability late in life and even increasing diagnostic her-
itability as aging progresses. GWAS has found only a
small set of SNPs that provides very limited risk prediction
for these diseases (Loughlin, 2015; Warner and Valdes,
2016). Apparently, the research cannot be impeded by
the increasing heritability with age of the GWAS cohorts.
Relatively stable heritability with advancing age is a distin-
guishing feature of cancers. Accurate information about
heritability at different ages is not sufficiently explored
for most cancers. Fortunately, during this decade, a num-
ber of studies have shed light on the age-related heritabil-
ity of three out of the four most prevalent cancers, and
these data allow us to extrapolate the expectations to the
fourth: lung cancer.
The lifetime risk of developing any type of cancer in the
US is 38% for women and 40% for men, (Lifetime Risk of
Developing or Dying From Cancer) and the 2016 fraction
of mortality directly attributed to cancer was 21.8%, the
second-highest after heart disease (Murphy et al., 2017).
In the UK, the corresponding numbers are higher, at 47%
and 53%, respectively, (Ahmad et al., 2015; Cancer Statis-
tics for the UK) with the higher likelihood perhaps at-
tributable to the UK’s longer life expectancy. Each spe-
cific type of cancer constitutes a small fraction of overall
lifetime risk, with breast, prostate, lung, and colorectal
cancer being the four most prevalent.
Next, the latest heritability and incidence research for
these four cancers is summarized.

Breast cancer (BC) Breast cancer (BC) is well re-
searched, with studies delving into all aspects of BC. Like
prostate cancer, the two largest genetic predictors of BC
are mutations in the BRCA1 and BRCA2 genes. The
BRCA1/2 genes are involved in the homologous repair
of double-stranded DNA breaks, working in combination
with at least 13 known tumor suppressor proteins (Ha-
ley, 2016). Defects in the BRCA1/2 proteins disable ho-
mologous double-stranded DNA break repair, and the cell
falls back on the use of imprecise non-homologous re-
pair mechanisms; this leads to the accumulation of muta-
tions, eventually leading to cancer. BRCA1/2 mutations
are the most important predictor of breast cancer. The re-
view by Haley (2016) states that the frequency of BRCA
mutations varies with geographic location and ethnicity,
ranging from a 0.02% mutation carrier rate in some pop-
ulations to 2.6% in the Ashkenazi Jewish population due
to ancient founder mutations. Other founder mutations
have been reported in the Dutch, Swedish, French Cana-
dian, Icelandic, German, and Spanish populations. In On-
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tario, Canada, for instance, the frequency of mutation car-
riers is 0.32% for BRCA1 and 0.69% for BRCA2 (Risch
et al., 2006).
An early study (Ford et al., 1998) analyzing families with
at least four cases of BC found that the disease was linked
to BRCA1 in 52% of cases and BRCA2 in 32% of cases
(with only 16% remaining for other causes). Taking into
account ovarian cancer in addition to BC resulted in 81%
of cases being due to BRCA1, while 76% of cases in fami-
lies with both male and female BC were due to BRCA2.
The lifetime risk of BC for women both in the US and the
UK is 12% (Lifetime Risk of Developing or Dying From
Cancer; Cancer Statistics for the UK). As Haley (2016)
summarized, carriers of BRCA1 have a lifetime risk of de-
veloping BC equal to 60–70%, and an additional 40% risk
of developing ovarian, fallopian, or primary peritoneal
cancers. For BRCA2 carriers, the risks are 45–55% for BC
and 25% for ovarian cancer. These numbers closely cor-
respond to the aforementioned study (Ford et al., 1998).
Möller et al. (2016) presented in-depth data on the heri-
tability by age of breast and ovarian cancer for BRCA1/2
carriers. The study demonstrated that the genetic liabil-
ity, while exhibiting a slight downward trend, remains rel-
atively constant and exceeds the common environmental
component at all ages.
One of the most recent studies (Kuchenbaecker et al.,
2017) provides further clarification, stating that BC inci-
dences increase rapidly in early adulthood until the ages
of 30 to 40 for BRCA1 carriers and until the ages of 40
to 50 for BRCA2 carriers, thereafter remaining at a rela-
tively constant incidence rate of 2–3% per year until at
least 80 years of age; see Table 4. This study’s calcu-
lations based on this data show that the initial increase
in incidence is exponential before flattening into the con-
stant horizontal incidence rate approximation; a logistic
approximation also fits. The exponential doubling rate,
until it reaches the constant incidence level, is also con-
sistent with all other diseases reviewed, showing an in-
cidence doubling time of five years for BRCA1 and eight
years for BRCA2 (the BRCA1 calculation, based only on
two data points, is less accurate). A much earlier review
study (Antoniou et al., 2003) collected the same kind of
statistics as Kuchenbaecker et al. (2017) and arrived at
similar conclusions.

Supplementary Table 4. BRCA1/2 carriers incidence
rate by age, data from Kuchenbaecker et al. (2017)

Gene ≤20 21–30 31–40 41–50 51–60 61–70 71–80
BRCA1 (%) 0 0.59 2.35 2.83 2.57 2.50 1.65
BRCA2 (%) 0 0.48 1.08 2.75 3.06 2.29 2.19
BRCA1 cum. risk (%) 0 4 24 43 56 66 72
BRCA2 cum. risk (%) 0 4 13 35 53 61 69

Möller et al. (2016) study found a somewhat lower life-
time BC risk of 8.1% in Nordic countries compared to 12%
in the US and estimated heritability at 31%.
In addition to BRCA1/2, Mavaddat et al. (2010) and Ha-
ley (2016) also list a number of high-penetrance gene
mutations—the TP53, PTEN, STK11, and CDH-1 gene
mutations—giving a lifetime probability of cancers in gen-
eral of about 90% and specifically a female breast cancer

probability above 50%.
Several rare gene mutations—CHEK2, PALB2, ATM,
BRIP1CHEK2, PALB2, ATM, and BRIP1—are also associ-
ated with a breast cancer relative risk in the range of 1.5–
5.0. In aggregate, these high-effect mutations are corre-
lated with only approximately 10% of hereditary breast
cancers (Risch et al., 2006; Haley, 2016).
To date, GWAS attempts to discover common polygenic
variants of low effect size have had only limited success.
One review study (Lyra-Junior et al., 2017) outlines the
history and accomplishments of breast cancer GWAS over
a decade of research. The most recent high-powered con-
sortium study (Michailidou et al., 2017) included 122,977
cases and 105,974 controls of European ancestry as well
as 14,068 cases and 13,104 controls of East Asian ances-
try. The study verified 102 previously reported SNPs, find-
ing that 49 of them were reproducible. The study also
found that the majority of discovered SNPs reside in non-
coding areas of the genome. The discovered set of poly-
genic SNPs allows for the explanation of approximately
4% of heritability on top of the 14% explained by known
high-penetrance SNPs, bringing the predictive power to
18%. This GWAS estimated the familial heritability of
breast cancer at 41%—a possible exaggeration, because
it significantly exceeds the 31% estimated by Möller et al.
(2016) and the 27% estimated by Mucci et al. (2016)
Breast cancer conclusions: The familial heritability stud-
ies and BRCA1/2 clinical studies show that breast cancer
heritability is relatively constant over the age of 40 for
both mutations. A number of high-penetrance gene mu-
tations can explain an additional fraction of heritability,
totaling 10–14%.
The GWAS described above (Michailidou et al., 2017) also
found multiple SNPs located in non-coding areas to be
correlated with the candidate gene promoters and activity
modifier areas. This improves the possibility that the com-
mon variant component may be able to explain a larger
fraction of heritability. It appears at this time, based on
Möller et al. (2016) statistics, that breast cancer heritabil-
ity for the polygenic component may also be relatively
constant after the age of 40 or may only slightly decline
with age.

Prostate cancer (PC) The effects and risks of the
BRCA1/2 genes and their mutations described in the
breast cancer section apply in a very similar way to the
incidence of PC.
A study by Lecarpentier et al. (2017) found that lifetime
PC risks are approximately 20% for BRCA1 mutations car-
riers and 40% for BRCA2 mutation carriers, while, overall,
BRCA1/2 is associated with only 2% of all PC cases. In ad-
dition, BRCA1/2 accounts for 10% of male breast cancer
cases. The lifetime risk of male breast cancer in mutation
carriers is estimated at 5–10% for BRCA1 mutations and
1–5% for BRCA2 mutation carriers. Therefore, compared
to breast cancer, BRCA1/2 mutations are associated with
a smaller fraction of heritability.
The lifetime risk of PC in men is estimated at 6% for Dan-
ish cohorts and 12% for Finnish, Norwegian, and Swedish
cohorts. The lifetime risk of developing PC in the US and
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the UK is 12% (Lifetime Risk of Developing or Dying From
Cancer; Cancer Statistics for the UK). PC heritability has
been estimated at 57% (Hjelmborg et al., 2014; Mucci
et al., 2016) and 42% by an older study (Grönberg, 2003).
The Nordic twin study (Hjelmborg et al., 2014) presents
strong evidence that the heritability of PC remains sta-
ble or even slightly increases between the ages of 65 and
100. As with breast cancer, the fraction of PC attributed
to highly malignant mutations is low. Known rare, high-
effect-size variants such as BRCA1/2, ATM, and HOXB13
explain only 10–12% of heritability (Wu and Gu, 2016;
Mancuso et al., 2016; Walsh, 2017; Lecarpentier et al.,
2017). Recently, Eeles et al. (2017) using an imputed
meta-analysis for 145,000 men, reported that the GWAS
polygenic score they obtained explains 33% of the familial
relative risk.
Wu and Gu (2016) concluded that the search for the miss-
ing heritability may be better served by high-coverage
whole-genome sequencing (WGS); however, due to the
cost and complexity, it is not currently feasible to obtain
this much high-quality data. In the absence of more pre-
dictive genetic data, Wu and Gu (2016) noted that the
best predictor of PC is age itself.
Prostate cancer conclusions: The conclusions for PC her-
itability are very much the same as for breast cancer.
While the heritability is higher than that of BC, it appears
even more likely to remain constant or slightly increase
with age, notwithstanding the smaller number of known
rare, large-effect-size mutations that can be used to ex-
plain the heritability of PC.

Colorectal cancer (CRC) The lifetime risk of develop-
ing CRC in the US is 4.1% for women and 4.5% for men
(Lifetime Risk of Developing or Dying From Cancer). In
the UK, the corresponding numbers are 5% and 7% (Can-
cer Statistics for the UK).
The Nordic twin studies (Mucci et al., 2016; Graff et al.,
2017) estimated CRC heritability at 40%. A number of
studies have included separate classifications for colon
cancer, with a heritability of 15%, and rectal cancer, with
a heritability of 14%, while the combined percentage is
more than double the individual ones. This example may
indicate that, while subdivisions exist in the medical diag-
noses that may make a difference for surgical or treatment
purposes, and while even the carcinogenicity manifesta-
tions may differ between subareas of the organ, from the
perspective of the heritability of the liability, they are in-
herited as a single condition.
CRC heritability is also relatively constant between the
ages of 50 and 95 in twin studies (Graff et al., 2017).
Compared to the two previously reviewed cancers, there
is a larger number of identified predisposing mutations
and syndromes, such as Lynch syndrome, familial adeno-
matous polyposis, Peutz–Jeghers syndrome, juvenile poly-
posis syndrome, MUTYH-associated polyposis, NTHL1-
associated polyposis, and polymerase proofreading-
associated polyposis syndrome (de Voer et al., 2016; Jiao
et al., 2014).
Graff et al. (2017) study concluded that, although a small
number of genetic variants have a substantial effect on

CRC, a considerable portion of its heritability is thought
to result from multiple low-risk variants. de Voer et al.
(2016)) concurred that penetrant high-effect gene vari-
ants are found in 5–10% of CRC cases. A GWAS review
(Schmit et al., 2016) found that more than 50 SNPs have
been identified as credibly associated with CRC risk, yet
these only account for a small proportion of heritability.
In GWAS, common, genome-wide variants are able to ac-
count for 8% of heritability.
Colorectal cancer conclusions: The conclusions are
much the same as for BC and PC.

Lung cancer (LC) The lifetime risk of developing LC in
the US is 6.0% for women and 6.9% for men (Lifetime
Risk of Developing or Dying From Cancer). In the UK,
the corresponding numbers are 5.9% and 7.6% (Cancer
Statistics for the UK).
The LC pattern of heritability is not easy to ascertain. Ac-
cording to Kanwal et al. (2017) approximately 8% of lung
cancers are inherited or occur as a result of a genetic pre-
disposition. The Nordic twin studies review (Mucci et al.,
2016) estimated the heritability of LC at 18% (within a
likely range of 0–42%). Heritability studies require con-
trolling for environmental factors, particularly tobacco
smoking. It is perhaps for this reason that the Nordic twin
studies consortium, which was invaluable in the three
other cancer analyses, primarily restricted itself to ana-
lyzing the effects of tobacco smoking on LC (Hjelmborg
et al., 2016).
Factors such as asbestos, industrial smoke and pollutants,
high levels of domestic radon in some areas of the world,
or exposure of miners to radon or other sources of radia-
tion may influence incidence and, if not accounted for,
may affect heritability estimates (Krewski et al., 2005;
Carr et al., 2015; Malhotra et al., 2016). Hereditary
mutations of genes that regulate DNA repair, including
BRCA1/2, TP53 and others, also increase the risk of LC,
as with almost any cancer (Kanwal et al., 2017).
Due to the low heritability of LC, GWASs’ success at iden-
tifying predictive common SNPs has been limited (Weiss-
feld et al., 2015). Some studies explain part of the LC inci-
dence by reference to causal epigenetic effects (Shi et al.,
2017). The heritability value of 18% given by Mucci et al.
(2016) has a very broad range. An earlier study (Yang
et al., 2013) noted that tobacco smoking is by far the
largest causal factor for LC, and the heritability of smok-
ing itself may outweigh any other LC heritability.
Mucci et al. (2016) also considered smoking, but the high
value reported by them exceeds the previous consensus
and may need further corroboration. LC perhaps belongs
to the difficult-to-analyze, non-additive traits of heritabil-
ity noted by Polderman et al. (2015). This study considers
LC heritability to be closer to 10%.
Lung cancer conclusions: In conclusion, an age-related
heritability pattern for LC is lacking, and while it is im-
possible to make definitive conclusions, it can be hypoth-
esized that LC follows a similar pattern to the other three
cancers reviewed.
In summary, the heritability patterns of cancers were not
systematically investigated until relatively recently. A
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small number of familial studies (Hjelmborg et al., 2014;
Möller et al., 2016; Haley, 2016; Graff et al., 2017) and
a more recent study that is particularly informative about
the incidence of BRCA1/2 mutations with age (Kuchen-
baecker et al., 2017) have finally allowed researchers to
determine that cancer heritability remains relatively con-
stant with age. Table 5 summarizes the findings from the
reviewed literature in relation to breast, prostate, colorec-
tal, and lung cancer. Studies ascertaining the heritability
of lung cancer with age are absent from the literature;
data may be difficult to collect due to the relatively low
heritability of the disease.
Most lung cancer incidence is environmental, and lung
cancer does not have specific, highly malignant mutations
that may cause a noticeable fraction of heritability. The
mostly polygenic fraction of lung cancer heritability is hy-
pothesized to be similarly stable with age, as is the case
with the other three cancers reviewed.

Supplementary Table 5. Patterns of heritability by age
for most common cancers

Cancer type: Breast Prostate Colorectal Lung
Lifetime risk, USA
(%)

12 12 4.5m 4.1w 6.9m 6w

Heritability (%) 31 57 40 8–18
Incidence from highly
detrimental muta-
tions (%)

10–14 10–12 5–10 minor

Polymorphic inci-
dence (%)

86–90 88–90 90–95 major

Heritability trend
(50y–100y)

flat / slight decline flat / slight incline flat likely flat

(Ford et al., 1998;
Antoniou et al.,
2003; Risch et al.,
2006; Mavaddat
et al., 2010; Mucci
et al., 2016; Haley,
2016; Möller et al.,
2016; Kuchen-
baecker et al., 2017;
Michailidou et al.,
2017)

(Hjelmborg et al.,
2014; Wu and Gu,
2016; Mancuso
et al., 2016; Walsh,
2017; Lecarpentier
et al., 2017; Eeles
et al., 2017)

(Jiao et al., 2014;
Schmit et al., 2016;
de Voer et al., 2016;
Graff et al., 2017)

(Krewski et al.,
2005; Weissfeld
et al., 2015; Carr
et al., 2015; Mal-
hotra et al., 2016;
Mucci et al., 2016;
Hjelmborg et al.,
2016; Kanwal et al.,
2017; Shi et al.,
2017; Wang and
Wang, 2017)

Lifetime risk numbers, when marked, "w" for women, "m" for men.
Lifetime risk numbers, when marked, “w" for women, “m" for men.

Because cancer development is primarily a consequence
of mutations and epigenetic effects leading to uncon-
strained propagation of the clonal cell population, in the
long term, cancers are inevitable for most multicellular
organisms, including humans (Marusyk and DeGregori,
2008; Tomasetti and Vogelstein, 2015; Guedj et al., 2016;
Ribezzo et al., 2016; Nelson and Masel, 2017).
Due to cancer’s constant heritability with age, the effect
of age is likely to be insignificant for GWASs’ discovery of
cancer polygenic scores and their corresponding predic-
tive power. This could also apply to any LOD that follows
a similar heritability pattern, that is, one that is relatively
constant with age.
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Supplementary Chapter S2: Incidence
functional approximation used in pre-
liminary validations
To determine the effect of disease incidence with age pro-
gression on allele frequencies in the population and the
difference in allele frequency between the newly affected
and remaining unaffected populations, three incidence
dependencies with age were used.
1) Constant incidence:

I(t) = a, (1)

where a is a constant representing a horizontal line.
Yearly incidence values of 0.0015, 0.005, and 0.02 (0.15%
to 2%) were selected.
2) Linear incidence:

I(t) = b t, (2)

where b is a slope of the linear progression with intercept
0. Slope values of 0.003, 0.01, and 0.04 were selected.
This means that incidence begins at 0 and increases to
an incidence equal to 0.3%, 1%, and 4%, respectively, at
100 years of age to match the cumulative incidence of 1)
above.
These values were chosen to simplify the evaluation via
simulation. The simulation was run with zero mortality,
and the values were chosen to keep cumulative incidence
at the same level—0.44 (44%)—at 100 years of age for
the highest of either the constant or linear incidence pro-
gression.
3) In addition, an evaluation exponential incidence pro-
gression was used:

I(t) = 3.05·10−5e0.1178t , (3)

fitted to achieve a similar cumulative incidence at the
most advanced age.
In all five scenarios described in the main article, the
values of the case and control means and standard de-
viation/variance are identical when the cumulative inci-
dence reaches the same level.
Two heritability scenarios were validated: 30.5% and
80.5%; see Table 6.

Supplementary Table 6. Linear and constant incidence
validation scenarios

A B C D E
Scenario 1. Variants: 400 625 1375 50 25

Achieved heritability: 0.3068 0.308 0.3075 0.296 0.3142
Scenario 2. Variants: 3725 5850 12775 500 225

Achieved heritability: 0.8047 0.8064 0.8049 0.8078 0.8048

The target heritability is 0.305 (30.5%) for validation scenario 1 and
0.805 (80.5%) for validation scenario 2 due to the genetic architecture
model requiring multiples of 25 variants.

Validating allele distribution change in model
genetic architectures using systematic inci-
dence progressions
A set of validation simulations was run to verify the behav-
ior of the model genetic distributions for the three types
of incidence progression described above. The validation
simulations based on the constant, linear and exponential
incidence rates confirmed that both of the mean polygenic
scores, for the population and for the cases, viewed in the
individual values analysis for each age depend on the cu-
mulative incidence and the magnitude of heritability, with
neither being dependent on the shape of incidence pro-
gression with age.
From the validation simulations, the cumulative inci-
dence, regardless of the incidence progression pattern,
was found to produce a virtually identical polygenic score
distribution for cases and the remaining unaffected popu-
lation; see the genetic common allele low effect size plot-
ted in Supplementary Fig. 2.
Between the genetic architectures, there is also a rela-
tively small difference in the polygenic scores of the popu-
lation and the cases; see Supplementary Fig. 3. As can be
seen, the low-effect-size scenarios A, B, and C, progressing
in allele frequency from common to rare, are practically
indistinguishable from each other.
The higher-effect-size architectures (D and E) show a
slightly larger fraction of higher-polygenic-score individ-
uals or, more precisely, a slightly larger representation of
higher- and low-polygenic-score individuals. The qualita-
tive picture is close to identical among all five scenarios.
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Supplementary Chapter S3: LOD inci-
dence functional approximation
The simulations were applied to eight of the most preva-
lent LODs: Alzheimer’s disease, type 2 diabetes, coronary
artery disease, and cerebral stroke, and four late-onset
cancers: breast, prostate, colorectal, and lung cancer.
First, the functional approximation of the clinical inci-
dence data used for the simulations is described. The
incidence progression of the LODs with age is presented
in Supplementary Fig. 1. The initial incidence rate (the
fraction of the population newly diagnosed each year) in-
creases exponentially with age. This exponential growth
continues for decades, after which the growth in older co-
horts may flatten, as in the case of T2D (Boehme et al.,
2015). In the case of cerebral stroke and CAD, the clinical
studies indicate a slowdown of the incidence for individu-
als over the age of 85; (Rothwell et al., 2005) accordingly,
a constant level was used for the exponential approxima-
tion Eq. 4.
The incidence of Alzheimer’s disease, on the other hand,
continues exponentially past the age of 95, reaching inci-
dences above 20% (Brookmeyer et al., 1998). Cancer pro-
gression reaches only a small fraction of the incidence lev-
els of the above-mentioned LODs, even for the four most
prevalent cancers. Generalizing to other cancers, the in-
cidence is much lower for more than a hundred of the less
prevalent cancer types.
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Supplementary Fig. 1. LOD clinical incidence rates
and functional approximations.
Two functional approximations of clinical data: exponential followed

by linear and logistic. The R script automating NLM (nonlinear model)

regression for both approximation curves is available in Supporting In-

formation.

To evaluate each LOD’s allele redistribution with age, it
was necessary to approximate the yearly incidence from
much rougher-grained statistics. An R script automated

the determination of the best fit for logistic and expo-
nential regression from the clinical incidence data. The
script also calculated lifetime incidence from our func-
tional approximations; it closely matched the disease clin-
ical statistics presented in Tables 1 and 5.
The incidence approximation I(t) is represented mathe-
matically by Eq. 4; a, b, and c are exponential approxima-
tion parameters, i and s are the linear regression intercept
and slope, respectively, and t is time in years.

I(t) =

¨

aebt + c, until intersection with the line, below

i + st, thereafter
(4)

A logistic approximation of the clinical data is shown in
red in Supplementary Fig. 1. It is characterized by the
following equation:

I(t) =
a

1+ e(c−t)/b
+ d. (5)

The incidence rate in the logistic curve slows faster than
the incidence rate in the exponential curve and also ap-
proximates the incidence rate with age. It follows a simi-
lar pattern, with an initial exponential rise and a logistic
inflection point occurring at quite advanced ages. Thus,
the clinical data and corresponding approximations show
the higher representation of older people in the patient
cohorts.
For all LODs, decades-long initial exponential sections
were observed in the incidence curve. The exponent con-
forms to a relatively narrow range of doubling the inci-
dence rate, fitting between 5 and 8.5 years. While the
absolute incidence rate differs significantly, the exponent
constant multiplier a, which is equivalent to the linear re-
gression intercept for log(a) in the I(t) function, mainly
controls the rise, or the initial incidence onset, of the in-
cidence rate; see Supplementary Fig. 1.
From this are found the logistic recursion inflection points
at values shown in Table 7. The exponential incidence rise
follows with high precision up to the ages shown in the
table, and the rapid rise in the incidence rate continues
past these ages.

Supplementary Table 7. Age to which LOD incidence
rate rises exponentially

Highly prevalent LODs Cancers
AD T2D CAD Stroke Prostate Colorectal Breast Lung

Age (years) 103 55 81 79 48 62 72 70

The logistic approximation produced a good, simple fit
for seven of the eight diseases. While the logistic approx-
imation could also have been used for breast cancer, the
exponential-plus-linear approximation showed a better fit
and was therefore preferred.
As this paper makes extensive reference to the incidence
of LODs, some of the commonly used terms are clarified
below. A lifetime incidence, also called a cumulative rate,
is calculated using the accepted method of summing the
yearly incidences: (Sasieni et al., 2011)
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Il i f et ime =
tmax
∑

t=0

I(t), (6)

For larger incidence values, the resulting sum produces an
exaggerated result. It may become larger than 1 (100%),
in which case the use of an approximate clinical statistic
called cumulative risk overcomes this issue and is more
meaningful. This is much like compound interest, which
implicitly assumes an exact exponential incidence pro-
gression (Sasieni et al., 2011)

CumRisk = 1− e−Il i f et ime . (7)

Cumulative risk (Eq. 7) is also an approximation because,
in any practical setting, the statistic is complicated by on-
going population mortality, multiple diagnoses, and other
factors. In addition, cumulative incidence and cumulative
risk can be used to find values for any age of interest, not
only lifetime. When necessary in this study’s simulations,
the exact diagnosis counts were used to calculate the pre-
cise cumulative incidence for every age.
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SUPPLEMENTARY FIGURES
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Supplementary Fig. 2. Validation simulations: con-
stant, linear, and exponential incidence curves within
the same allele architectures.
Using a constant incidence at a level of 0.5% per year, linearly increas-
ing incidence with a slope of 0.01%, and exponentially reaching similar
cumulative incidence in a 105-year age interval. Within the same al-
lele architecture, the β is identical, subject to the simulation population
stochasticity; β = log(OddsRatio).
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Supplementary Fig. 3. Validation simulations for five
allele architectures.
The linear and constant incidence patterns give identical results for each
allele architecture. The rare medium-effect-size and even rarer high-
effect-size scenarios produce a fraction of higher individual betas for
the same overall population variance; a relative difference is less promi-
nent at 80% versus 31%. The three identical low-effect-size scenarios
produce effectively identical β patterns; β = log(OddsRatio).
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Supplementary Fig. 4. Polygenic score difference be-
tween patients and controls in a cohort simulation.
Common, low-effect-size alleles (scenario A); β = log(OddsRatio). SD
band is a band of one standard deviation above and below the cases and
the unaffected population of the same age. The cohort change and dif-
ference are less prominent than in IVA due to the accumulated diagnoses
from younger cases with an averaged control polygenic risk score and
mortality.
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Supplementary Fig. 5. Allele frequency difference be-
tween cases and controls; cohort simulation.
Common low-effect-size alleles (scenario A). The MAF cases minus con-
trols value is used to determine GWAS statistical power. Rarer and
lower-effect-size (OR) alleles are characterized by a lower relative MAF
change.
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Supplementary Fig. 6. Number of cases needed to
achieve 0.8 discovery power; IVA.
Common, low-effect-size alleles (scenario A). The diagnosed-
individuals-versus-same-age-unaffected-population curve continues to
rise steeply in the IVA scenario. A sample of 9 out of 25 SNPs; MAF =
minor (risk) allele frequency; OR = risk odds ratio.
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Supplementary Fig. 7. Number of cases needed for 0.8
discovery power for three LODs with representative
incidence rate and initial heritability; summary of five
LOD validation simulation types.
The number of cases needed for 0.8 GWAS discovery power for the clin-
ical cohort study scenario lies between equal mortality for cases and
controls and double mortality for cases; it is closer to equal mortality
for the LODs we review. The divergence begins after age 85 and is even
then relatively modest. “Cohort—double mortality" cases have a mor-
tality twice as large as controls (doubling the value for mortality from
the US “Actuarial Life Table". “Cumulative—no mortality" is the most
extreme case of a one-year-span GWAS cohort; with no mortality, it re-
quires the smallest number of cases in GWAS. Note that the logarithmic
scale is very different among the three LODs.
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Supplementary Fig. 8. Difference in allele frequency
between newly diagnosed instances and the remain-
ing unaffected population; IVA.
Rare, medium-effect-size alleles (scenario D). The MAF cases minus
controls value is used to determine GWAS statistical power. Rarer and
lower-effect-size (OR) alleles are characterized by a lower relative MAF
change.
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Supplementary Fig. 9. Difference in allele frequency
between cases and controls; cohort simulation.
Rare, medium-effect-size alleles (scenario D). The MAF cases minus
controls value is used to determine GWAS statistical power. Rarer and
lower-effect-size (OR) alleles are characterized by a lower relative MAF
change.
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Supplementary Fig. 10. Number of cases needed to
achieve 0.8 discovery power; IVA.
Rare, medium-effect-size alleles (scenario D). The diagnosed-
individuals-versus-same-age-unaffected-population curve continues to
rise steeply in the IVA scenario. A sample of 9 out of 25 SNPs; MAF =
minor (risk) allele frequency; OR = risk odds ratio.
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Supplementary Fig. 11. Number of cases needed to
achieve 0.8 discovery power; cohort simulation.
Rare medium-effect-size alleles (scenario D). The cohort curve due to the
accumulative cases diagnosed at younger ages with an averaged control
polygenic risk score and mortality begins at the same necessary-cases
number as IVA but rises more slowly and levels out at older ages. A
sample of 9 out of 25 SNPs; MAF = minor (risk) allele frequency; OR =
risk odds ratio.
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Supplementary Fig. 12. Multiple of the decline in the
number of cases needed for 0.8 discovery power in a
cohort study using progressively older control cohorts
compared to a fixed-age young-cases cohort.
Cases’ mid-cohort age is leftmost age (youngest plot point); control mid-
cohort ages are incremental ages. The number of cases needed for 0.8
discovery power is smaller when older controls are used, particularly for
LODs with the highest heritability and incidence. Common, low-effect-
size alleles (scenario A). A sample of 9 out of 25 SNPs; MAF = minor
(risk) allele frequency; OR = risk odds ratio.
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Supplementary Fig. 13. Absolute magnitude change in
MAF (minor allele frequency) with age for cases and
controls; cohort simulation.
Common, low-effect-size alleles (scenario A), all plots show MAF =
0.286 and OR = 1.15 allele. Change in the absolute magnitude of each
allele frequency value is relatively small with age progression. GWAS
discovery power is a function of the difference in allele frequency be-
tween cases and controls. Rarer and lower-effect-size (OR) alleles are
characterized by a lower change in absolute and relative MAF with co-
hort age progression.
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