Regulation of the Unfolded Protein Response by BiP AMPylation protects photoreceptors from light-dependent degeneration.

3	
4	Andrew T. Moehlman ¹ , Amanda K. Casey ² , Kelly Servage ^{2,3} , Kim Orth ^{2,3*} , Helmut Krämer ^{1,4*}
5	
6	
7	Affiliations:
8	¹ Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX.
9	² Department of Molecular Biology UT Southwestern Medical Center, Dallas, TX.
10	³ Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX and Howard
11	Hughes Medical Institute, Dallas, TX.
12	⁴ Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX.
13	
14	*Correspondence to:
15	Helmut.Kramer@UTSouthwestern.edu.
16	Kim.Orth@utsouthwestern.edu
17	

19 Abstract

20	In response to environmental, developmental, and pathological stressors, cells engage
21	homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein
22	Response protects cells from the accumulation of misfolded proteins in the ER. Depending on
23	ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the
24	major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the
25	importance of the reversible AMPylation of BiP in maintaining the Drosophila visual system in
26	response to stress. After 72 hours of constant light, photoreceptors of <i>fic</i> -null and AMPylation-
27	resistant <i>BiP</i> ^{T366A} mutants, but not wild-type flies, display loss of synaptic function,
28	disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this
29	phenotype is reversible: photoreceptors regain their structure and function within 72 hours once
30	returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of
31	BiP is required for neurons to adapt to transient stress demands.
32	

33

34 Introduction

Post-translational modifications (PTMs) of proteins are important for rapid responses to environmental challenges of cells. One such PTM is AMPylation, the reversible addition of adenosine monophosphate (AMP) to hydroxyl groups (also known as adenylylation) (Brown et al., 1971; Casey & Orth, 2018; Kingdon et al., 1967; Woolery et al.). AMPylation is catalyzed by at least two protein families, among them the conserved Fic-domain proteins (Casey & Orth, 2018; Harms et al., 2016). Eukaryotic Fic, an ER-resident type-II membrane protein (Rahman et al., 2012), AMPylates BiP (GRP78), a highly conserved and ubiquitous ER chaperone (Ham et

42	al., 2014; Preissler et al., 2015). Working together with a multitude of associated quality control
43	proteins, BiP is critical for the translocation, folding, and secretion of proteins from the ER as
44	well as for aiding in the clearing of misfolded ER aggregates and degradation of membrane-
45	associated proteins (Hendershot et al., 1988; Kozutsumi et al., 1988; Meunier et al., 2002). BiP is
46	both a mediator and transcriptional target of the Unfolded Protein Response (UPR), a
47	coordinated cell signaling pathway that is activated during times of high misfolded protein levels
48	in the ER. Like many protein chaperones, BiP depends on its ATPase activity to undergo a
49	conformational change to bind to its substrates (Gaut & Hendershot, 1993). AMPylation locks
50	BiP into a state resembling the ATP-bound conformation with high substrate off-rates, thereby
51	inhibiting its chaperone function (Preissler, Rohland, et al., 2017; Wieteska et al., 2017).
52	In agreement with this PTM's inhibitory role, BiP AMPylation levels are linked to
53	protein homeostasis (Ham et al., 2014). Reduction of ER protein load promotes Fic-mediated
54	AMPylation of BiP, whereas Fic catalyzes the deAMPylation of BiP under elevated ER stress
55	conditions (Ham et al., 2014; Preissler et al., 2015). This switch in Fic's activity is linked to a
56	key regulatory salt bridge in eukaryotic Fic. Mutations in Fic that disrupt this salt bridge result in
57	an overactive AMPylator that lacks deAMPylation activity (Casey et al., 2017; Preissler, Rato, et
58	al., 2017). Together, these studies suggest a model in which BiP is AMPylated in times of low
59	ER stress, creating a reserve pool of inactive BiP that can be readily activated to respond to
60	changes of ER homeostasis (Figure 1A). This reserve pool of BiP is proposed to act as a buffer
61	to attenuate or shorten the need for a more dramatic activation of the transcriptional and
62	translational arms of the UPR (Casey et al., 2017; Preissler, Rato, et al., 2017; Wieteska et al.,
63	2017). However, the physiological importance of endogenous Fic-mediated AMPylation for
64	remains unclear.

65	In the fruit fly, Drosophila melanogaster, we previously demonstrated that fic-null
66	mutants harbor a defect in visual signaling, as assessed by electroretinogram (ERG). The well-
67	characterized Drosophila visual system has proven a valuable model for many fields, such as
68	neuroscience (Borycz et al., 2002; Sugie et al., 2015), cell signaling (Dolph et al., 1993; Scott et
69	al., 1995), protein trafficking (Akbar et al., 2009; Lee et al., 2003), and neurodegeneration
70	(Johnson et al., 2002; Leonard et al., 1992; Ryoo et al., 2007). The specialized photoreceptor
71	cells possess tightly packed microvilli-like membranes, termed rhabdomeres, that endow
72	remarkable sensitivity to minute changes in light conditions (Montell, 2012). The ability to
73	maintain this sensitivity is critical for flight behavior, foraging, and escape from predators. Thus,
74	under a wide range of conditions, photoreceptors must maintain their light detection cascade,
75	which requires the constant production, trafficking, and degradation of proteins through the
76	endomembrane system (Colley et al., 1995; Kiselev et al., 2000; Rosenbaum et al., 2006).
77	We postulated that as a regulator of proteostasis and the UPR, BiP must be tightly
78	regulated for proper maintenance of vision in the fly. Here we demonstrate that mutants lacking
79	AMPylation of BiP at a specific residue, Thr366, possess the same ERG defect as <i>fic</i> -null
80	animals, implicating BiP as the target of Fic necessary for visual signaling. We go on to find that
81	application of an eye-specific stress, constant light, leads to exaggerated electrophysiology
82	defects and the loss of photoreceptor rhabdomeres, akin to neurodegeneration. However, these
83	defects exhibit a remarkable and unique reversibility: structural and functional phenotypes
84	observed in light-stressed <i>fic</i> -null and AMPylation-resistant <i>BiP</i> ^{T366A} mutants are reversed after
85	the flies are returned to a standard light/dark cycle. In addition, we identify changes in the
86	regulation of UPR during constant light stress in these mutants, implicating ER dysregulation as
87	the cause of the inability to adapt to altered light conditions.

Results

90	BiP ^{T366A} rescues over-expression of constitutively active AMPylating Fic ^{E247G}
91	To test the hypothesis that BiP is a critical target of Fic AMPylation <i>in vivo</i> (Figure 1A),
92	we designed and generated transgenes expressing wild-type and AMPylation-resistant FLAG-
93	tagged BiP proteins under control of the endogenous BiP promoter (Figure 1- figure
94	supplement 1A). BiP null fly mutants die early in development; this lethality is rescued by
95	including a copy of the genomic transgene expressing FLAG-BiPWT or the AMPylation-resistant
96	FLAG-BiP ^{T366A} mutant (Figure 1B). We will refer to these rescued flies as BiP^{WT} or BiP^{T366A} ,
97	respectively. In contrast, a BiP transgene mutated at a second reported AMPylation site (Casey et
98	al., 2017; Preissler et al., 2015), BiP ^{T518A} , did not rescue <i>BiP^{-/-}</i> lethality. As <i>fic</i> null mutants that
99	lack BiP AMPylation are viable, the lethality of the <i>BiP</i> ^{T518A} mutant is not likely to be due to the
100	loss of AMPylation (Casey et al., 2017). Instead, these observations indicate an essential role for
101	Thr ⁵¹⁸ in BiP's chaperone activity. Consistent with this notion, the equivalent residue, Thr ⁵³⁸ , in
102	the S. cerevisiae BiP homolog Kar2 is required for survival under heat stress even though yeast
103	lack both Fic domain proteins and BiP AMPylation (Figure 1- figure supplement 1B).
104	Previously, we reported that over-expression of the constitutively active AMPylating
105	Fic ^{E247G} was lethal in a <i>fic</i> -null fly background (<i>fic</i> ^{30C}) because it lacks the essential
106	deAMPylation activity (Casey et al., 2017). We tested whether flies expressing the AMPylation-
107	resistant BiP ^{T366A} could survive this lethality. Consistent with previous findings, we observe
108	over-expression of the mutant UAS-Fic ^{E247G} transgene using the ubiquitous <i>Da</i> -Gal4 driver was
109	lethal in an otherwise <i>fic</i> -null animal (Figure 1C). Lethality of the constitutively active
110	AMPylating Fic ^{E247G} was suppressed in flies expressing the AMPylation-resistant BiP ^{T366A} but

- not BiP^{WT} (Figure 1C). These results indicate that Thr³⁶⁶ of BiP is a physiologically relevant
 AMPylation target *in vivo*.
- 113
- 114 The UPR protects eyes from overactive AMPylation

115	To test the interaction between Fic-mediated AMPylation and the UPR, we employed an
116	eye-specific Fic gain-of-function model. Eye-specific expression of the constitutively active
117	AMPylating UAS-Fic ^{E247G} transgene using a LongGMR-Gal4 driver in otherwise <i>fic</i> -null
118	animals results in a severe rough-eye defect (Casey et al., 2017). However, in a fic heterozygous
119	background, eye-specific expression of constitutively active AMPylating Fic ^{E247G} yields only a
120	mildly rough eye (Figure 2A). We used this intermediate phenotype to assess genetic
121	interactions between Fic ^{E247G} and components of the UPR with a candidate-based targeted RNAi
122	screen (Table 1). Fic ^{E247G} -induced eye roughness was significantly enhanced by knockdown of
123	the key UPR components Perk, Atf4, and Ire1 (Figure 2C-E and Table 1), but not ATF6 (Figure
124	2B) . Furthermore, <i>Xbp1</i> knockdown in conjunction with Fic ^{E247G} expression was lethal (Figure
125	2F). By contrast, knockdown of these UPR genes in the absence of Fic^{E247G} did not influence
126	eye phenotype or fly survival (Figure 2A'-F'). These genetic interactions suggest a role for UPR
127	signaling in mitigating cellular stress imposed by expressing the constitutively active
128	AMPylating Fic ^{E247G} in the eye.
120	

- 129
- 130 **AMPylation of BiP is necessary for maintaining vision**

The findings that BiP is a target of Fic *in vivo* and that silencing UPR pathway
 components enhances the severity of the constitutively active AMPylating Fic^{E247G}-induced
 rough-eye phenotype prompted us to assay the physiological effects of cellular stress in flies

lacking BiP AMPylation. To do this we utilized flies that are either null for *fic (fic^{30C})* or express
the AMPylation-resistant BiP^{T366A} instead of wild-type BiP. By using this strategy, we are able to
discern BiP AMPylation-specific changes from other potential changes that are due to as-yetunknown targets of Fic AMPylation.

138 As previously reported in ERG recordings, *fic*-null flies display a reduction of the initial 139 response (termed the ON Transient, Figure 3A) to a light pulse compared to wild-type controls. Interestingly, BiP^{T366A} , but not BiP^{WT} flies, exhibited the same defect in ON Transients as fic^{30C} 140 mutants, consistent with BiP being the primary target of Fic AMPylation required for proper 141 142 visual neurotransmission (Figure 1- figure supplement 2). Of note, we used an eve-specific 143 RNAi construct against *white* to minimize any effect of the *mini-white* gene used as a marker in these BiP transgenes. When we compared ERG traces of fic^{30C} and BiP^{T366A} flies in white+ (red 144 145 eyed) backgrounds, the reductions in ON transients were no longer detectable (Figure 1- figure 146 supplement 3). This is likely due to the previously established protective effect provided by the 147 red pigment in *white*⁺ flies. Indeed, a similar *white*-dependent phenotype has been reported for 148 photoreceptor synaptic plasticity after prolonged light exposure (Damulewicz et al., 2017; Sugie 149 et al., 2015), consistent with previous observations that a functional *white* gene masks some 150 degenerative phenotypes in the retina (Lee & Montell, 2004; Soukup et al., 2013). Therefore, we used the *white*-eyed flies (referred to as w^{1118}) to test whether AMPylation may play a role in this 151 152 type of photoreceptor plasticity, which is induced by rearing flies in uninterrupted low light for 153 72 hours (Damulewicz et al., 2017; Sugie et al., 2015).

We conducted ERG recordings under different light conditions with four fly lines, w^{1118} , *fic*^{30C}, *BiP*^{WT} and *BiP*^{T366A} (**Figure 3B**). Compared to age-matched siblings reared under the standard 12 hr Light:12 hr Dark (LD) treatment, *fic*^{30C} and *BiP*^{T366A} flies reared for three days

157	under continuous light (LL) at 500 lux exhibited severe ERG defects. This included reduction in
158	the sustained negative potential (SNP), a measure of photoreceptor activation, and loss of ON
159	and OFF transients, which reflect synaptic transmission to downstream L1/L2 lamina neurons
160	(Figure 3C & D). Wild-type controls maintained healthy OFF transients following LL, but ON
161	transients were reduced, reflecting the sensitivity of this component to various light conditions
162	(Figure 3D). To test for behavioral consequences, we assayed w^{1118} and fic^{30C} flies after 72 hours
163	of LD or LL treatment for light-induced startle behavior using single-fly activity chambers (Ni et
164	al., 2017). Following a 5-min light pulse, LD-reared fic^{30C} flies exhibited a startle response
165	indistinguishable from control w^{1118} flies, whereas fic^{30C} flies, but not w^{1118} flies, failed to
166	respond to the light pulse after 72 hours of LL (Figure 3- figure supplement 1). Thus, Fic-
167	mediated AMPylation is required to maintain vision acuity under LL conditions.
168	We next designed experiments to test whether these functional ERG changes in flies
169	lacking AMPylation reflected light-induced neurodegeneration or a failure to adapt to constant
170	stimulation. First, we asked if the LL-induced ERG defects of BiP^{T366A} and fic^{30C} flies were
171	reversible. We reared mutant and control flies for 72 hours in LL followed by 72 hours of
172	recovery in LD (referred to as "Rec"; Figure 3B). This recovery period was sufficient to restore
173	both healthy OFF transients and SNPs in <i>BiP</i> ^{T366A} and <i>fic</i> ^{30C} flies (Figure 3C & D). Second, we
174	asked if the intensity of the light would exaggerate the defects of BiP^{T366A} and fic^{30C} flies.
175	Exposure of mutant or control flies with 5000 lux, instead of 500 lux, did not alter the severity of
176	ERG defects, indicating the changes were not simply a reflection of the increased amount of total
177	light exposure during LL treatment (Figure 3- figure supplement 2). Third, we asked if
178	prolonging the LL stress would alter the reversibility of these defects. Mutant flies reared under
179	LL for ten days retained the capability to recover healthy ERG traces after only three days on

LD, indicating that photoreceptors are not dying but maintained during prolonged light stress
 (Figure 3- figure supplement 3). Together, these data support a model for a dysregulated
 adaptive response, rather than phototoxicity, inducing the reversible loss of OFF transients and
 reduced SNPs.

184

185	Constant light induces severe but reversible morphological defects in AMPylation mutants
186	To determine if the underlying eye substructures were being altered in these AMPylation
187	deficient mutants, we performed TEM on ultrathin transverse eye sections. Under LD conditions,
188	fic^{30C} and BiP^{T366A} mutant and wild-type controls appeared indistinguishable (Figure 4A).
189	However, following 72 hours of LL (500 lux), fic^{30C} and BiP^{T366A} mutants, but not w^{1118} and
190	BiP ^{WT} controls, displayed severe defects in the integrity of rhabdomeres, the microvilli-like
191	membrane structures that house the phototransduction cascade (Figure 4B). After a three-day
192	recovery at LD, the rhabdomeres were nearly restored in both AMPylation-deficient mutants
193	(Figure 4C). To quantify these structural changes in large cohorts of flies, we assessed flies for
194	the presence of wild-type "deep pseudopupils" (DPP) (Figure 4D). Visualization of the DPP
195	affords an assessment of rhabdomere structural integrity in living flies (Franceschini &
196	Kirschfeld, 1971). Consistent with the TEM data, 3 days of LL caused loss of DPP in fic^{30C} and
197	<i>BiP</i> ^{T366A} , and DPPs returned after a 3-day recovery (Figure 4D). This suggests that proper
198	regulation of BiP through AMPylation is required for maintaining both function and structure of
199	photoreceptor cells.
200	

201 Fic regulates ER stress signaling in the retina and lamina neuropil

202	Given the unique role of Fic in both AMPylating and deAMPylating BiP to modulate its
203	chaperone activity and maintaining ER homeostasis, we evaluated fic^{30C} flies for changes in the
204	UPR under LD, LL, and Rec conditions. First, we performed immunohistochemistry against BiP,
205	a transcriptional target of the UPR, which is upregulated during states of ER stress (Gardner et
206	al., 2013; Ham et al., 2014). After 3 days of LL, sections of fic^{30C} revealed increased levels of
207	BiP in retinas and in the lamina neuropils where photoreceptor axons form synapses onto lamina
208	neurons. BiP levels returned to control levels following three days of recovery (Figure 5A & B).
209	To further assess UPR signaling in these tissues, we utilized a sensor for Ire1-mediated Xbp1
210	splicing (Sone et al., 2013) and an Atf4 translational reporter which serves as a proxy for Perk-
211	mediated phosphorylation of eIF-2a (Kang et al., 2015). In wild-type flies, Xbp1-GFP was
212	slightly induced in the lamina after 24 hours of LL in wild-type flies and the signal decreased
213	over time (Figure 5C, top row, & 5D). However, in <i>fic</i> ^{30C} flies, the Xbp1-GFP signal in the
214	lamina continued to increase after 48 hours of LL and remained elevated after 72 hours (Figure
215	bottom row, & 5D). In the retina, control flies showed little to no increase of Xbp1-GFP levels,
216	while fic^{30C} flies showed a significant transient increase after one and two days LL. With the
217	Atf4-DsRed reporter, we observed a significant increase of signal in both the retina and lamina
218	of wild-type flies after one day, but no difference in fic^{30C} mutants at one or two days LL when
219	compared to LD controls (Figure 5E & F). However, by three days of LL, Atf4-DsRed reporter
220	activity in the wild-type flies returned to control levels, while the fic^{30C} mutants showed a
221	significant increase in both the retina and lamina neuropil (Figure 5E & F). These changes in
222	UPR signaling were reversible as each of the reporters returned to near control intensity after
223	72 hours of LD recovery (Figure 5A, C & E, last columns). The elevated UPR response in

fic^{30C} mutants correlated with the timing of the observed severe defects in the integrity of
 rhabdomeres (Figure 4B). Together, these data identify a crucial role for Fic-mediated BiP
 AMPylation in regulating UPR signaling during homeostatic responses of photoreceptor
 neurons.

229	Discussion
230	Here we demonstrate that BiP is a critical <i>in-vivo</i> target of Fic-mediated AMPylation, as
231	an AMPylation-resistant BiP blocks over-expressed constitutively active AMPylating Fic ^{E247G}
232	lethality and recapitulates <i>fic</i> -null vision defects. This work also sheds light on a novel
233	physiological role for AMPylation/deAMPylation control of BiP: fine-tuning UPR signaling to
234	allow for visual system adaptation. We observe genetic interactions with the constitutively active
235	AMPylating Fic ^{E247G} and the UPR sensors Ire1 and PERK as well as their effectors, perhaps due
236	to the critical role of BiP as both a regulator (Amin-Wetzel et al., 2017; Bertolotti et al., 2000;
237	Carrara et al., 2015; Shen et al., 2005) and downstream transcriptional target of the UPR (Ham et
238	al., 2014; Kozutsumi et al., 1988). Indeed, we hypothesize that unregulated Fic ^{E247G} , in the
239	absence of deAMPylation activity, AMPylates excess BiP, excluding it from its normal
240	chaperone role and leading to cell death (Casey et al., 2017; Truttmann et al., 2017). In support
241	of this hypothesis, the developmental defects due to excessive unregulated AMPylation are
242	suppressed by AMPylation-resistant BiP ^{T366A} . Furthermore, the enhancement of the rough-eye
243	Fic ^{E247G} phenotype by knockdown of the Ire1 and PERK pathways suggest a protective role for
244	the UPR, perhaps through the known effects on translation by Ire1-mediated decay of mRNA,
245	Xbp1-driven transcription or PERK-mediated phosphorylation of eIF-2a (Gardner et al., 2013).

246	Our work supports an <i>in-vivo</i> requirement for Fic-mediated AMPylation of BiP ^{T366} in the
247	context of long-term adaptation to prolonged light exposure. BiP ^{T366} replacement mutants
248	phenocopy <i>fic</i> -null flies in both the light-induced blindness and the unexpected recovery from
249	this phenotype. These functional changes are mirrored in the structural changes of photoreceptor
250	rhabdomeres. Rhabdomere appearance of AMPylation deficient flies was reminiscent of retinal
251	degeneration mutants (Ryoo et al.; Smith et al., 1991), however the remarkable recovery of the
252	tissue structure in three days is unlike any reported retinal degeneration phenotype. Together,
253	this work demonstrates a seminal role for Fic-mediated AMPylation of BiP in vivo: enabling
254	photoreceptors to adapt and maintain both structural and functionality integrity during periods of
255	prolonged stress due to uninterrupted light stimulation. The exact mechanism through which
256	these defects in <i>fic</i> mutants arise remains undetermined, but previous studies have demonstrated
257	a requirement for maintaining normal ER folding and trafficking of transmembrane visual
258	signaling components, such as Rhodoposin (Colley et al., 1995; Rosenbaum et al., 2006). This
259	intense demand for proper ER stress regulation sensitizes the eye to otherwise mild defects in <i>fic</i>
260	mutants, and the additional demands posed by the stress of constant light stimulation.
261	We also observed that loss of BiP AMPylation deregulates, but does not block, the UPR
262	to this physiological stress. This observation supports previous claims that AMPylation and

262as any physiclogical stress. This observation supports previous chains that Thirl yithfor and263deAMPylation of BiP aids in maintaining ER homeostasis (Figure 1A) by establishing a reserve264pool of BiP that can readily be deAMPylated in response to acute ER insults (Casey et al., 2017;265Ham et al., 2014; Preissler, Rato, et al., 2017). This regulation would allow for fine-tuning of the266UPR response under specific contexts, comparable to findings in *C. elegans* in which *fic-1* and267*hsp3* (a BiP homologue) mutants are sensitive to bacterial infection (Truttmann et al., 2016). We268speculate that the eye requires tight control of BiP activity and suppression of UPR signaling, to

269	facilitate adaptation of the vision signaling cascade. Under standard LD conditions, only slight
270	differences are observed, presumably because ER stress is low (Figure 5C & D, 1st column).
271	However, exposure to constant light results in ER stress and UPR signaling, which wild-type
272	flies can clear, presumably because there is a reserve pool of AMPylated BiP to rapidly respond
273	to the stress. In <i>fic</i> mutants, we speculate, loss of the reserve BiP results in the UPR
274	dysregulation revealed by the IreI and PERK activity reporters (Figure 5C & D) as a larger
275	proportion of BiP would be previously engaged and not able to respond to the extra stress.
276	Additionally, the prolonged UPR response in the eyes with dysregulated AMPylation may result
277	in increased expression of UPR-regulated proteins while blocking production of the visual
278	signaling components necessary for adapting to transient stress.
279	BiP expression is subject to multiple levels of feedback regulation and is induced when
280	the UPR is activated (Kozutsumi et al., 1988; Ma & Hendershot, 2003). However, in a negative
281	feedback loop, BiP also inhibits activation of the UPR sensors Ire1, PERK, and Atf6, through
282	direct binding (Bertolotti et al., 2000; Shen et al., 2005). It remains unknown how AMPylation
283	affects the interactions of BiP with these proteins in vivo; however, in-vitro work suggests that
284	AMPylation of BiP abolishes its inhibitory effect on Ire1 dimerization and activation (Amin-
285	Wetzel et al., 2017). We speculate that the loss of BiP AMPylation/deAMPylation cycle in a <i>fic</i>
286	null affects both the ability of BiP to quickly respond to misfolded protein aggregates and to
287	regulate UPR activation. Future studies on the dynamic role of reversible BiP AMPylation and
288	its interaction with downstream UPR sensors should provide unique insight into neuronal
289	plasticity and regeneration.

291 Materials and Methods

292 Fly stocks and genetics

293	Bloomington Stock Center provided w ¹¹¹⁸ (BS# 3605), BiP ^{G0102} /FM7c (BS#11815), Da-
294	Gal4 (BS#55850), <i>LongGMR</i> -Gal4 (<i>BS</i> #8121) stocks. The fic^{30C} allele and UAS-Fic ^{E247G} flies
295	was previously described (Casey et al., 2017). Lines used in the RNAi screen are described in
296	Table S1 and were obtained from Bloomington Stock Center and the Vienna Drosophila
297	Resource Center (Dietzl et al., 2007). The Atf4 ^{5'UTR} -dsRed (Kang et al., 2015) and the Xbp1-
298	GFP (Sone et al., 2013) lines were a gift from Dr. Don Ryoo (NYU) and were recombined with
299	the <i>fic</i> ^{30C} allele. We generated the p[gen3xFLAG-BiP ^{WT}] ^{AttP-89E11} , p[gen3xFLAG-BiP ^{T366A}] ^{AttP-}
300	^{89E11} , p[gen3xFLAG-BiP ^{T518A}] ^{AttP-89E11} and p[GMR-dsRNA ^{white}] alleles using the Phi30C
301	integrase strategy (Venken et al., 2006). p[GMR-dsRNA ^{white}] was recombined with the fic ^{30C}
302	allele and white-eyed candidates were screened for the <i>fic</i> allele by PCR. <i>BiP</i> ^{G0102} ;;
303	p[gen3xFLAG-BiP ^{WT}] ^{AttP-89E11} and <i>BiP</i> ^{G0102} ;;p[gen3xFLAG-BiP ^{T366A}] ^{AttP-89E11} stocks were made
304	by crossing males harboring the genomic transgene to BiPG0102/FM7c female flies. Surviving
305	males were backcrossed to BiPG0102/FM7c female flies, and stable stocks were established from
306	the resulting progeny. None of the rare escaping <i>BiP</i> ^{G0102} ;; p[gen3xFLAG-BiP ^{T518A}] ^{AttP-89E11}
307	male flies were fertile. The LongGMR-Gal4, UAS ^{Scer} -V5-Fic ^{E247G_attP-B3} /TM6B, Hu and Da-
308	Gal4,UAS ^{Scer} -V5-Fic ^{E247G_attP-B3} /TM6B,hu stocks were made using standard Drosophila
309	recombination and crossed into w^{1118} and w^{1118} ; fic^{30C} backgrounds.
310	
311	List of flies strains and stocks used
	1118 (DO 110 (0.5)

312 w¹¹¹⁸ (BS#3605)

313 OreR

- w^{1118} ; fic^{30C} , p[GMR-dsRNA^{white}]; p[Da-Gal4]/ $p[UAS^{Scer}$ -Xbp1-GFP.hg] 334
- w¹¹¹⁸; p[GMR-dsRNA^{white}]; p[Da-Gal4]/p[UAS^{Scer}-Xbp1-GFP.hg] 333
- w^{1118} ; fic^{30C} , p[tub-Atf4^{5'UTR}-dsRed]/fic^{30C}, p[GMR-dsRNA^{white}] 332
- w¹¹¹⁸; p[*tub-Atf4⁵'UTR*-dsRed]/p[GMR-dsRNA^{white}] 331
- *BiP*^{G0102}; p[*GMR*-dsRNA^{white}]; p[Attb gen3xFLAG-BiP^{T366A}]^{89E11} 330
- *BiP*^{G0102}; p[*GMR*-dsRNA^{white}]; p[gen3xFLAG-BiP^{WT}]^{89E11} 329
- 328 *BiP*^{G0102};; p[gen3xFLAG-BiP^{T366A}]^{AttP-89E11}
- BiP^{G0102};; p[gen3xFLAG-BiP^{WT}]^{AttP-89E11} 327
- w^{1118} ; fic^{30C}; p[gen3xFLAG-BiP^{T518A}]^{AttP-89E11} 326
- w^{1118} ; fic^{30C}; p[gen3xFLAG-BiP^{T366A}]^{AttP-89E11} 325
- w^{1118} ; fic^{30C} ; p[gen3xFLAG-BiP^{WT}]^{AttP-89E11} 324
- 323 w¹¹¹⁸;; p[gen3xFLAG-BiP^{T518A}]^{AttP-89E11}
- w¹¹¹⁸;; p[gen3xFLAG-BiP^{T366A}]^{AttP-89E11} 322
- w^{1118} ;; p[gen3xFLAG-BiP^{WT}]^{AttP-89E11} 321
- 320 *BiP*^{G0102}/FM7c (BS#11815)
- w¹¹¹⁸; fic^{30C}/CyO; Da-Gal4, UAS^{Scer}-V5-Fic^{E247G}- attP-B3/TM6B, hu 319
- w¹¹¹⁸; fic^{30C}; LongGMR-Gal4,UAS^{Scer}-V5-Fic^{E247G}- attP-B3/TM6B,hu
- 318
- w^{1118} ; *fic*^{30C}, p[*GMR*-dsRNA^{white}] 317

- w^{1118} ; p[GMR-dsRNA^{white}] 316
- w^{1118} ; fic^{30C} 315
- ; *fic*^{30C} 314

336 Generation of genomic BiP transgenes

337	BiP cDNA sequence were subcloned into a pAttB vector and a 3X-FLAG tag was
338	inserted after the N-terminal signal sequence. To create the T366A and T518A mutations,
339	gBlocks (IDT, Coralville, IA) for the mutant sequences were synthesized and subcloned into the
340	pAttB_genomic BiP vector via NEB HiFi Assembly Kit (NEB, Ipswich, MA). These constructs
341	were sequence-verified and injected into embryos (BestGene, Chino Hills, CA) for insertion at
342	the 89E11 landing site. Expression levels of FLAG-BiP transgenes were determined with
343	western blotting. In brief, fly heads were homogenized in lysis buffer (10% SDS, 6M urea, and
344	50mM Tris-HCl, pH 6.8+ 10% DTT), sonicated for 5 min, boiled for 2 min, and centrifuged for
345	10 min at 10,000 g to remove debris. 10μ L were separated by SDS-PAGE and transferred to
346	nitrocellulose membranes. Blots were probed with anti-BiP (1:8000, gift from Dr. Don Ryoo,
347	NYU, NY), anti-FLAG (1:2000 M2- F3165, Millipore Sigma, St. Louis, MO) and anti-Actin
348	(1:4000, JLA-20, DSHB, Iowa City, IA) and detected using IRdye-labeled antibodies and an
349	Odyssey scanner (LI-COR Biosciences, Lincoln, NE).
350	
351	Generation of GMR_dsRNA ^{white} transgenes
352	To make the eye-targeted dsRNA constructs against the white gene, the dsRNA sequence
353	was obtained from a pAttb-UAS ^{S.cer} -dsRNA ^{white} vector (a gift from Dr. Dean Smith, UT

354 Southwestern Medical Center, TX) and the UAS^{S.cer}-Hsp40 promotor sequenced was replaced

with a 5X-*GMR* promotor sequence, synthesized as a gBlock (IDT) and cloned with NEB HiFi
Assembly Kit (NEB).

358 Fly rearing conditions

359	All flies were reared on standard molasses fly food, under room temperature conditions.
360	For light treatments, flies were collected within one to two days of enclosing, and placed in 5cm
361	diameter vials containing normal food, with no more than 25 flies, and placed at either LD (lights
362	ON 8am/lights OFF 8pm) or LL. ERGs, head dissections and behavior assays were performed
363	between 1pm and 4pm. The same intensity white LED light source was used for both conditions
364	and flies were kept the same distance away from the light source, which amounted to
365	approximately 500 lux. LD and LL treatments were done at 25°C. For the UPR and Fic ^{E247G}
366	rough-eye interaction experiments, all flies were raised at 28°C.
367	
368	Survival analysis of flies expressing genomic BiP construct
369	<i>BiP</i> ^{G0102} /FM7c female virgin flies were crossed to males with either gen3xFLAG-BiP ^{WT} ,
370	gen3xFLAG-BiP ^{T366A} or gen3xFLAG-BiP ^{T518A} . The number of surviving non-FM7c male flies
371	were scored by presence or lack of the Bar eye marker. Percent of expected was calculated from
372	the actual number or recovered flies of the relevant genotypes compared the expected Mendelian
373	number [# observed flies/ #expected flies]. Crosses were repeated three times (n=3). Total
374	number of flies scored was at least 100 for each BiP variant.
375	
376	Survival analysis of flies expressing BiP variants in a <i>Da</i> -Gal4, UAS-Fic ^{E247G} background
377	C-terminally V5-His6-tagged UAS-FicE247G (Casey et al., 2017) was expressed via the
378	ubiquitous <i>Da</i> -Gal4 driver in fic^{30C} /CyO heterozygous flies. These flies were crossed to w ; fic^{30C}
379	(controls), w ; fic^{30C} ; gen3xFLAGBiP ^{WT} , w-; fic^{30C} ; gen3xFLAG ^{T366A} , w-; fic^{30C} ; gen3xFLAG-

BiP^{T518A}, or BiP^{G0102} ; fic^{30C} ; gen3xFLAG^{T366A}. Offspring were scored and the number of adults

381	homozygous for <i>fic</i> ^{30C} with the <i>Da</i> -Gal4, UAS-Fic ^{E247G} allele and were compared to the number
382	of fic^{30C} heterozygous sibling controls. Percent of expected was calculated from the actual
383	number or recovered flies of the relevant genotypes compared the expected Mendelian number
384	[# observed flies/ #expected flies]. Crosses were repeated three times (n=3). Total number of
385	flies scored was at least 100 for each BiP variant each repeat.
386	
387	Electroretinograms
388	ERGs were recorded as previously described (Montell, 2012). Glass electrodes filled with
389	2M NaCl were placed in the fly thorax and surface of the corneal lens (recording). A computer-
390	controlled LED light source (MC1500; Schott, Mainz, Germany) was pulsed for 1s at 4s
391	intervals. The resulting ERG traces were collected by an electrometer (IE-210; Warner
392	Instruments, Hamden, CT), digitized with a Digidata 1440A and MiniDigi 1B system (Molecular
393	Devices, San Jose, CA), and recorded using Clampex 10.2 (Molecular Devices) and quantified
394	with Clampfit software (Molecular Devices). Flies were assayed in batches of eight to ten, and
395	resulting quantifications are pooled from three independent biological repeats.
396	
397	Deep pseudopupil analysis
398	Flies were anesthetized on CO2 and aligned with one eye facing up. Using a stereoscopic
399	dissection microscope, each fly was scored for presence or loss of the deep pseudopupil
400	(Franceschini & Kirschfeld, 1971), and the percentage of flies with intact pseudopupils was
401	calculated. For each genotype/treatment, over 50 flies were scored per replica and three
402	biological replicas were performed (n=3).
403	

404 Light-startle behavior assay

405	Assay was adapted from a previously described method (Ni et al., 2017). After 72 hours
406	of LD or LL treatment, 16 flies per genotype were collected at the same time each morning and
407	placed into individual Drosophila Assay Monitoring (DAM) chambers (TriKinetics Inc,
408	Waltham, MA). The DAM monitors were placed into a dark incubator. Two hours later, a 500-
409	lux light was turned on by a timer for five minutes. Data was collected with DAMSystem3.0 and
410	DAMFileScan11.0 (TriKinetics Inc). The resulting data was exported to Microsoft Excel and
411	graphed in GraphPad Prism. Three replica experiments were averaged and plotted as Time (min)
412	vs Average activity per 2 min. bin (n=3). The change in response to light was calculated for each
413	light pulse as [mean beam breaks for 10min. post-pulse] – [mean beam breaks for 10min. pre-
414	pulse].
415	
416	Scanning electron microscopy
416 417	Scanning electron microscopy SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed
417	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed
417 418	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.2% Tween 20, and 0.1 M cacodylate buffer, pH
417 418 419	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.2% Tween 20, and 0.1 M cacodylate buffer, pH 7.4, for 2 hours. Samples were washed four times with increasing ethanol (25–100%) for 12
417 418 419 420	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.2% Tween 20, and 0.1 M cacodylate buffer, pH 7.4, for 2 hours. Samples were washed four times with increasing ethanol (25–100%) for 12 hours each followed by a series of hexamethyldisilazane washes (25–100% in ethanol) for one
417 418 419 420 421	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.2% Tween 20, and 0.1 M cacodylate buffer, pH 7.4, for 2 hours. Samples were washed four times with increasing ethanol (25–100%) for 12 hours each followed by a series of hexamethyldisilazane washes (25–100% in ethanol) for one hour each. Flies were air dried for 24 hours, mounted on SEM stubs, and the bodies were coated
417 418 419 420 421 422	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.2% Tween 20, and 0.1 M cacodylate buffer, pH 7.4, for 2 hours. Samples were washed four times with increasing ethanol (25–100%) for 12 hours each followed by a series of hexamethyldisilazane washes (25–100% in ethanol) for one hour each. Flies were air dried for 24 hours, mounted on SEM stubs, and the bodies were coated in fast-drying silver paint. Flies were sputter coated with a gold/pallidum mixture for 60s and
 417 418 419 420 421 422 423 	SEMs of fly eyes were obtained as previously described (Wolff, 2011). Eyes were fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.2% Tween 20, and 0.1 M cacodylate buffer, pH 7.4, for 2 hours. Samples were washed four times with increasing ethanol (25–100%) for 12 hours each followed by a series of hexamethyldisilazane washes (25–100% in ethanol) for one hour each. Flies were air dried for 24 hours, mounted on SEM stubs, and the bodies were coated in fast-drying silver paint. Flies were sputter coated with a gold/pallidum mixture for 60s and imaged at 900X magnification, with extra high tension set at 3.0 kV on a scanning electron

427

428 Transmission electron microscopy

429	TEMs of retina sections were performed as previously described (Jenny, 2011; Rahman
430	et al., 2012). Briefly, 550 nm sections were cut and stained with toluidine blue to confirm
431	orientation and section depth. Blocks were subsequently thin-sectioned at 70 nm with a diamond
432	knife (Diatome, Hatfield, PA) on a Leica Ultracut 6 ultramicrotome (Leica Microsystems,
433	Wetzlar, Germany) and collected onto formvar-coated, glow-discharged copper grids, post-
434	stained with 2% aqueous uranyl acetate and lead citrate. Images were acquired on a Tecnai G2
435	spirit transmission electron microscope (FEI) equipped with a LaB6 source using a voltage of
436	120 kV. Blinding of the samples to the technicians performing the processing and the user
437	acquiring the images was performed. Two fly heads per genotype/condition and at least three
438	thin sections per sample were examined (n=2). Samples were unmasked after the images were
439	processed.

440

441 Immunohistochemistry for BiP and UPR reporters

442 Fly heads were dissected in HL3 hemolymph-like solution, fixed for four hours in ice-443 cold 4% para-formaldehyde in filtered PBS, washed overnight in 25% (wt/vol) sucrose in 444 phosphate buffer (pH 7.4), embedded in Optimal Cutting Temperature compound (EMS, 445 Hatfield, PA) frozen in dry ice and sectioned at 20-µm thickness on a cryostat microtome (CM 446 1950, Leica Microsystems, Wetzlar, Germany). Sections were probed overnight with primary 447 antibodies against Drosophila BiP (1:2000, Gift from Don Ryoo(Ryoo et al.), GFP (1:1000, 448 A10262, ThermoFisher Scientific, Waltham, MA) or RFP (1:1000, 600-401-379, Rockland, 449 Limerick, PA). Secondary antibodies were labeled with Alexa488-conjugated Goat anti-Chicken

450	(Molecular Probes, P/N# A-11039), Alexa488-conjugated Goat anti-Guinea Pig (Molecular
451	Probes, P/N# A-11073), or Alexa568-conjugated Goat anti-Rabbit (Molecular Probes, P/N# A-
452	11011). Alexa 647-conjugated phallodin was also added to label Actin for identifying structures.
453	Images were captured with an oil-immersion 63× NA-1.4 lens on an inverted confocal
454	microscope (LSM710, Carl Zeiss). For each genotype and light rearing conditions,
455	immunohistochemistry experiments were performed in two biological replicas with new sets of
456	flies, using identical acquisition settings. Blinding of the samples to the user acquiring the
457	images was performed when appropriate.
458	
459	Quantification of fluorescence staining
460	Fluorescence images were quantified using ImageJ (NIH) adapting previous methods
461	(Nandi et al., 2017). For each antibody, a threshold was determined, removing the lowest 10% of
462	signal in LD control samples (to reduce variation from low level background signals). This same
463	threshold was applied, and a mask was created for every image in a batch of staining. Within a 1-
464	μ m optical slice, the retina and lamina regions were selected manually using an Actin stain and
465	assigned as Regions of Interest. The integrated pixel intensity per unit area was measured within
466	this selected area, redirecting to the threshold mask. In each fly, four sequential optical slices
467	were quantified and averaged. For each genotype and treatment, four flies were quantified from
468	two independent biological replicas for a total of eight flies. Data was normalized to the wild-
469	type LD control for each replica. Outliers of greater than three standard deviations were omitted
470	from the analysis.
171	

4/1

472 Yeast plasmids and strains

473	Yeast genetic techniques were performed by standard procedures described previously.
474	(Sherman et al., 1981). All strains were cultured in either rich (YPD: 1% yeast extract, 2%
475	peptone, and 2% glucose) or complete synthetic minimal (CSM) media lacking appropriate
476	amino acids with 2% glucose. Yeast were grown to log phase, serially diluted, and spotted onto
477	agar plates to assay fitness and temperature sensitivity as previously described (Tran et al.,
478	2007).
479	DNA fragments of KAR2 was generated by PCR amplification of the endogenous KAR2
480	gene using the primers 5'-GCATCCGCGGATACTCTCGTACCCTGCCGC-3' and 5'-
481	ATGCGAGCTCCGTATATACTCAGTATAATC-3'. Plasmid pKAR2:LEU2 and pKAR2:URA3
482	were generated by subcloning genomic DNA fragments containing promoter and coding
483	sequence of KAR2 into the SacI and SacII sites of pRS315 and pRS316, respectively.
484	pKAR2T386A:LEU2 was generated by site directed mutagenesis of pKAR2:LEU2 using the
485	primers 5'-
486	GGTTGGTTCTGCTAGAATTCCAAGGTCCAACATTGATCATCTTGATGGTGGGTGGGTGGGTGGGGTGGGGTGGGGTGGGGTGGGGTGGGGTGGGGGTGGGGGTGGGGGTGGGGGGGGGG
487	5'-ACCTTTGGAATTCTAGCAGAACCACCAACCAAAACGATATCATCAACATCCTTCTTTTCC-3'.
488	pKAR2T538A:LEU2 was generated by site directed mutagenesis of pKAR2:LEU2 using the
489	primers 5'-AGATAAGGGAGCTGGTAAATCCGAATCTATCACCATCACTAACG-3' and 5'-
490	GGATTTACCAGCTCCCTTATCTGTGGCAGACACCTTCAGAATACC-3'.
491	ACY008 yeast (mat A kar2::KAN his3\Delta0 leu2\Delta0 LYS met15\Delta0 ura3\Delta0 pKAR2:URA)
492	were obtained by sporulation and dissection of KAR2 heterozygous null yeast (Mata/mat@
493	$KAR2::KAN/KAR2\ his 3\Delta0/his 3\Delta0\ leu 2\Delta0/leu 2\Delta0\ LYS/lys\ MET/met 15\Delta0\ ura 3\Delta0/ura 3\Delta0)$
494	(GE) transformed with pKAR2:URA. Standard plasmid shuffle techniques with 5-FOA(Zymo)

were utilized to obtain ACY016 (mat A kar2::KAN his3Δ0 leu2Δ0 LYS met15Δ0 ura3Δ0
pKAR2:LEU2) ACY017(mat A kar2::KAN his3Δ0 leu2Δ0 LYS met15Δ0 ura3Δ0
pKAR2T386A:LEU2), and ACY020(mat A kar2::KAN his3Δ0 leu2Δ0 LYS met15Δ0 ura3Δ0
pKAR2T538A:LEU2)

499

500 Statistics

501 Statistics were performed using GraphPad Prism 7. Normality of data distribution was 502 determined using D'Agostino's & Pearson's normality test. For the genetic analysis in Figure 1 503 and the ERG measurements in Supplemental Figures 2.3.5, and 6, significance was determined 504 using one-way ANOVA, followed by Tukey's multiple comparisons tests. Statistical significance 505 for non-parametric data, including the ERGs with light treatment quantifications in Figure 2, was 506 determined by Kruskal-Wallis tests followed by multiple comparisons testing with Dunn's 507 correction. For the image quantification data in Figure 4, significance was determined by two-508 way ANOVA followed by multiple comparisons with Benjamini-Krieger-Yekutieli's False 509 Discovery Rate correction. All tests were two-sided with no experimental matching. RStudio 510 (version 1.1.442, 2018, RStudio, Inc.) was used for Fisher's Exact Tests for the eye interaction 511 screen, with Bonferroni's multiple comparison method to determine significance. Standard R 512 functions were used, no custom scripts were developed. Tests were two-sided. When possible, 513 blinding of sample identities was performed for image acquisition and fluorescence intensity 514 quantification. Sample sizes for ERG assays, EM experiments, fluorescence quantifications and 515 fly genetic analysis were determined based from previous experience (Nandi et al., 2017; 516 Rahman et al., 2012; Stenesen et al., 2015).

517 **Competing Interests:**

518 The authors declare no competing interests.

520 **References:**

537

538

539

- Akbar, M. A., Ray, S., & Krämer, H. (2009). The SM protein Car/Vps33A regulates SNARE mediated trafficking to lysosomes and lysosome-related organelles. *Mol Biol Cell, 20*(6), 1705-1714. doi:10.1091/mbc.E08-03-0282
- Amin-Wetzel, N., Saunders, R. A., Kamphuis, M. J., Rato, C., Preissler, S., Harding, H. P., &
 Ron, D. (2017). A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and
 Repress the Unfolded Protein Response. *Cell*, *171*(7), 1625-1637 e1613.
 doi:10.1016/j.cell.2017.10.040
- Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., & Ron, D. (2000). Dynamic
 interaction of BiP and ER stress transducers in the unfolded-protein response. *Nat Cell Biol*, 2(6), 326-332. doi:10.1038/35014014
- Borycz, J., Borycz, J. A., Loubani, M., & Meinertzhagen, I. A. (2002). tan and ebony genes
 regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals. J
 Neurosci, 22(24), 10549-10557.
- Brown, M. S., Segal, A., & Stadtman, E. R. (1971). Modulation of glutamine synthetase
 adenylylation and deadenylylation is mediated by metabolic transformation of the P II regulatory protein. *Proc Natl Acad Sci U S A*, 68(12), 2949-2953.
 - Carrara, M., Prischi, F., Nowak, P. R., Kopp, M. C., & Ali, M. M. (2015). Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. *Elife*, *4*. doi:10.7554/eLife.03522
- Casey, A. K., Moehlman, A. T., Zhang, J., Servage, K. A., Krämer, H., & Orth, K. (2017). Ficmediated deAMPylation is not dependent on homodimerization and rescues toxic
 AMPylation in flies. *J Biol Chem*, 292(51), 21193-21204. doi:10.1074/jbc.M117.799296
 Casey, A. K., & Orth, K. (2018). Enzymes Involved in AMPylation and deAMPylation. *Chem*
 - Casey, A. K., & Orth, K. (2018). Enzymes Involved in AMPylation and deAMPylation. *Chem Rev, 118*(3), 1199-1215. doi:10.1021/acs.chemrev.7b00145
- Colley, N. J., Cassill, J. A., Baker, E. K., & Zuker, C. S. (1995). Defective intracellular transport
 is the molecular basis of rhodopsin-dependent dominant retinal degeneration. *Proc Natl Acad Sci US A*, 92(7).
- 548 Damulewicz, M., Mazzotta, G. M., Sartori, E., Rosato, E., Costa, R., & Pyza, E. M. (2017).
 549 Cryptochrome Is a Regulator of Synaptic Plasticity in the Visual System of Drosophila 550 melanogaster. *Front Mol Neurosci, 10*, 165. doi:10.3389/fnmol.2017.00165
- 551 Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., . . . Dickson, B. J.
 552 (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in 553 Drosophila. *Nature*, 448(7150), 151-156. doi:10.1038/nature05954
- Dolph, P. J., Ranganathan, R., Colley, N. J., Hardy, R. W., Socolich, M., & Zuker, C. S. (1993).
 Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo.
 Science, 260(5116), 1910-1916.
- 557 Franceschini, N., & Kirschfeld, K. (1971). [Pseudopupil phenomena in the compound eye of 558 drosophila]. *Kybernetik*, 9(5), 159-182.
- Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M., & Walter, P. (2013). Endoplasmic
 reticulum stress sensing in the unfolded protein response. *Cold Spring Harb Perspect Biol, 5*(3), a013169. doi:10.1101/cshperspect.a013169
- Gaut, J. R., & Hendershot, L. M. (1993). Mutations within the nucleotide binding site of
 immunoglobulin-binding protein inhibit ATPase activity and interfere with release of
 immunoglobulin heavy chain. *J Biol Chem, 268*(10), 7248-7255.

- Ham, H., Woolery, A. R., Tracy, C., Stenesen, D., Krämer, H., & Orth, K. (2014). Unfolded
 protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP
 chaperone during endoplasmic reticulum homeostasis. *J Biol Chem, 289*(52), 3605936069. doi:10.1074/jbc.M114.612515
- Harms, A., Stanger, F. V., & Dehio, C. (2016). Biological Diversity and Molecular Plasticity of
 FIC Domain Proteins. *Annu Rev Microbiol*, 70, 341-360. doi:10.1146/annurev-micro 102215-095245
- Hendershot, L. M., Ting, J., & Lee, A. S. (1988). Identity of the immunoglobulin heavy-chainbinding protein with the 78,000-dalton glucose-regulated protein and the role of
 posttranslational modifications in its binding function. *Mol Cell Biol*, 8(10), 4250-4256.
- Jenny, A. (2011). Preparation of adult Drosophila eyes for thin sectioning and microscopic
 analysis. *J Vis Exp*(54). doi:10.3791/2959
- 577Johnson, K., Grawe, F., Grzeschik, N., & Knust, E. (2002). Drosophila crumbs is required to578inhibit light-induced photoreceptor degeneration. Curr Biol, 12(19), 1675-1680.
- Kang, K., Ryoo, H. D., Park, J. E., Yoon, J. H., & Kang, M. J. (2015). A Drosophila Reporter for
 the Translational Activation of ATF4 Marks Stressed Cells during Development. *PLoS One, 10*(5), e0126795. doi:10.1371/journal.pone.0126795
- 582 Kingdon, H. S., Shapiro, B. M., & Stadtman, E. R. (1967). Regulation of glutamine synthetase.
 583 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in
 584 the regulatory properties of glutamine synthetase. *Proc Natl Acad Sci U S A*, 58(4), 1703585 1710.
 - Kiselev, A., Socolich, M., Vinos, J., Hardy, R. W., Zuker, C. S., & Ranganathan, R. (2000). A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. *Neuron*, 28(1), 139-152.

586

587

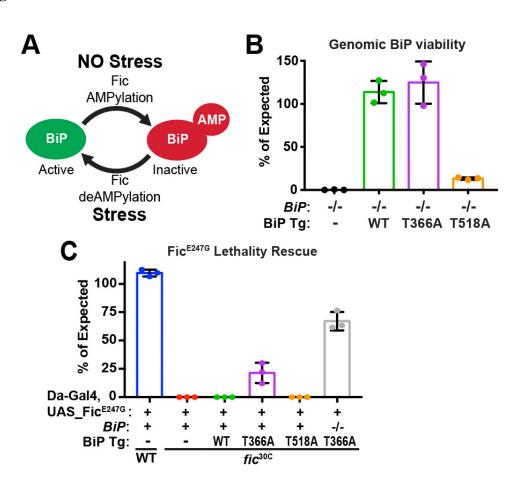
- Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., & Sambrook, J. (1988). The presence
 of malfolded proteins in the endoplasmic reticulum signals the induction of glucose regulated proteins. *Nature*, 332(6163), 462-464. doi:10.1038/332462a0
- Lee, S. J., & Montell, C. (2004). Suppression of constant-light-induced blindness but not retinal
 degeneration by inhibition of the rhodopsin degradation pathway. *Curr Biol*, 14(23),
 2076-2085. doi:10.1016/j.cub.2004.11.054
- Lee, S. J., Xu, H., Kang, L. W., Amzel, L. M., & Montell, C. (2003). Light adaptation through
 phosphoinositide-regulated translocation of Drosophila visual arrestin. *Neuron*, 39(1),
 121-132.
- Leonard, D. S., Bowman, V. D., Ready, D. F., & Pak, W. L. (1992). Degeneration of
 photoreceptors in rhodopsin mutants of Drosophila. *J Neurobiol*, 23(6), 605-626.
 doi:10.1002/neu.480230602
- Ma, Y., & Hendershot, L. M. (2003). Delineation of a negative feedback regulatory loop that
 controls protein translation during endoplasmic reticulum stress. *J Biol Chem*, 278(37),
 34864-34873. doi:10.1074/jbc.M301107200
- Meunier, L., Usherwood, Y. K., Chung, K. T., & Hendershot, L. M. (2002). A subset of
 chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum
 to bind nascent proteins. *Mol Biol Cell*, *13*(12), 4456-4469. doi:10.1091/mbc.E02-050311
- 608
 Montell, C. (2012). Drosophila visual transduction. *Trends Neurosci*, 35(6), 356-363.

 609
 doi:10.1016/j.tins.2012.03.004

- Nandi, N., Tyra, L. K., Stenesen, D., & Krämer, H. (2017). Stress-induced Cdk5 activity
 enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating
 acinus at serine(437). *Elife, 6.* doi:10.7554/eLife.30760
- Ni, J. D., Baik, L. S., Holmes, T. C., & Montell, C. (2017). A rhodopsin in the brain functions in
 circadian photoentrainment in Drosophila. *Nature*, 545(7654), 340-344.
 doi:10.1038/nature22325
- Preissler, S., Rato, C., Chen, R., Antrobus, R., Ding, S., Fearnley, I. M., & Ron, D. (2015).
 AMPylation matches BiP activity to client protein load in the endoplasmic reticulum.
 Elife, 4, e12621. doi:10.7554/eLife.12621
- Preissler, S., Rato, C., Perera, L., Saudek, V., & Ron, D. (2017). FICD acts bifunctionally to
 AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. *Nat Struct Mol Biol, 24*(1), 23-29. doi:10.1038/nsmb.3337
- Preissler, S., Rohland, L., Yan, Y., Chen, R., Read, R. J., & Ron, D. (2017). AMPylation targets
 the rate-limiting step of BiP's ATPase cycle for its functional inactivation. *Elife*, 6.
 doi:10.7554/eLife.29428
- Rahman, M., Ham, H., Liu, X., Sugiura, Y., Orth, K., & Kramer, H. (2012). Visual
 neurotransmission in Drosophila requires expression of Fic in glial capitate projections. *Nat Neurosci, 15*(6), 871-875. doi:10.1038/nn.3102
- Rosenbaum, E. E., Hardie, R. C., & Colley, N. J. (2006). Calnexin is essential for rhodopsin
 maturation, Ca2+ regulation, and photoreceptor cell survival. *Neuron*, 49(2), 229-241.
 doi:10.1016/j.neuron.2005.12.011

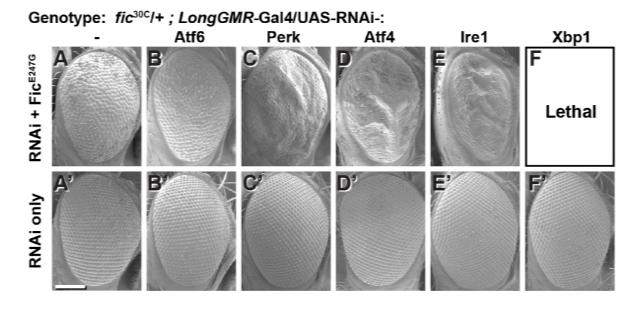
631

632

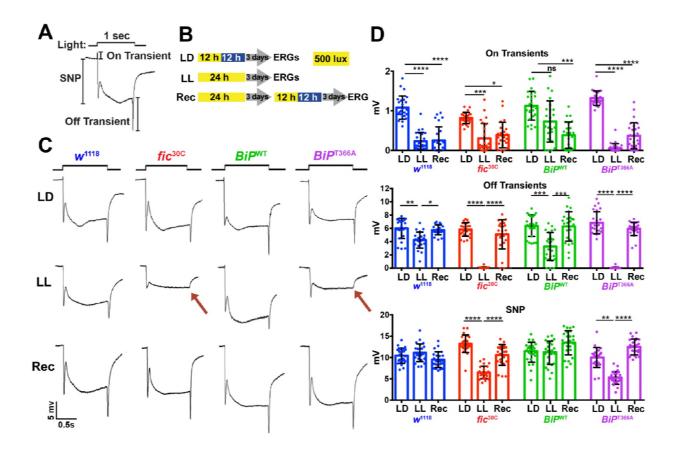

- Ryoo, H. D., Domingos, P. M., Kang, M. J., & Steller, H. (2007). Unfolded protein response in a Drosophila model for retinal degeneration. *EMBO J*, 26(1), 242-252. doi:10.1038/sj.emboj.7601477
- Scott, K., Becker, A., Sun, Y., Hardy, R., & Zuker, C. (1995). Gq alpha protein function in vivo:
 genetic dissection of its role in photoreceptor cell physiology. *Neuron*, 15(4), 919-927.
- Shen, J., Snapp, E. L., Lippincott-Schwartz, J., & Prywes, R. (2005). Stable binding of ATF6 to
 BiP in the endoplasmic reticulum stress response. *Mol Cell Biol*, 25(3), 921-932.
 doi:10.1128/MCB.25.3.921-932.2005
- 639 Sherman, F., Fink, G. R., Hicks, J. B., & Laboratory, C. S. H. (1981). *Methods in yeast genetics*:
 640 Cold Spring Harbor Laboratory.
- Smith, D. P., Ranganathan, R., Hardy, R. W., Marx, J., Tsuchida, T., & Zuker, C. S. (1991).
 Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. *Science*, *254*(5037), 1478-1484.
- Sone, M., Zeng, X., Larese, J., & Ryoo, H. D. (2013). A modified UPR stress sensing system
 reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila
 development. *Cell Stress Chaperones*, 18(3), 307-319. doi:10.1007/s12192-012-0383-x
- Soukup, S. F., Pocha, S. M., Yuan, M., & Knust, E. (2013). DLin-7 is required in postsynaptic
 lamina neurons to prevent light-induced photoreceptor degeneration in Drosophila. *Curr Biol, 23*(14), 1349-1354. doi:10.1016/j.cub.2013.05.060
- Stenesen, D., Moehlman, A. T., & Krämer, H. (2015). The carcinine transporter CarT is required
 in Drosophila photoreceptor neurons to sustain histamine recycling. *Elife, 4*, e10972.
 doi:10.7554/eLife.10972
- Sugie, A., Hakeda-Suzuki, S., Suzuki, E., Silies, M., Shimozono, M., Mohl, C., . . . Tavosanis,
 G. (2015). Molecular Remodeling of the Presynaptic Active Zone of Drosophila

655	Photoreceptors via Activity-Dependent Feedback. Neuron, 86(3), 711-725.
656	doi:10.1016/j.neuron.2015.03.046
657	Tran, E. J., Zhou, Y., Corbett, A. H., & Wente, S. R. (2007). The DEAD-box protein Dbp5
658	controls mRNA export by triggering specific RNA:protein remodeling events. <i>Mol Cell</i> ,
659 660	28(5), 850-859. doi:10.1016/j.molcel.2007.09.019 Truttmann, M. C., Cruz, V. E., Guo, X., Engert, C., Schwartz, T. U., & Ploegh, H. L. (2016). The
661	Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-
662	Shock 70 Family Proteins, Translation Elongation Factors and Histones. <i>PLoS Genet</i> ,
663	12(5), e1006023. doi:10.1371/journal.pgen.1006023
664	Truttmann, M. C., Zheng, X., Hanke, L., Damon, J. R., Grootveld, M., Krakowiak, J.,
665	Ploegh, H. L. (2017). Unrestrained AMPylation targets cytosolic chaperones and
666	activates the heat shock response. <i>Proc Natl Acad Sci U S A</i> , <i>114</i> (2), E152-E160.
667 668	doi:10.1073/pnas.1619234114 Venken, K. J., He, Y., Hoskins, R. A., & Bellen, H. J. (2006). P[acman]: a BAC transgenic
669	platform for targeted insertion of large DNA fragments in D. melanogaster. <i>Science</i> ,
670	<i>314</i> (5806), 1747-1751. doi:10.1126/science.1134426
671	Wieteska, L., Shahidi, S., & Zhuravleva, A. (2017). Allosteric fine-tuning of the conformational
672	equilibrium poises the chaperone BiP for post-translational regulation. <i>Elife, 6</i> .
673	doi:10.7554/eLife.29430
674 675	Wolff, T. (2011). Preparation of Drosophila eye specimens for scanning electron microscopy. <i>Cold Spring Harb Protoc, 2011</i> (11), 1383-1385. doi:10.1101/pdb.prot066506
676	Woolery, A. R., Yu, X., LaBaer, J., & Orth, K. (2014). AMPylation of Rho GTPases subverts
677	multiple host signaling processes. J Biol Chem, 289(47), 32977-32988.
678	doi:10.1074/jbc.M114.601310
679	
680	
681	
682	
683	Acknowledgments:
684	We thank Drs. Eric Olson and Joe Takahashi and the members of the Kramer and Orth labs for
685	discussion and technical assistance. We thank the Bloomington Stock Center (NIH
686	P40OD018537) and the Vienna Drosophila Resource Center (VDRC, www.vdrc.at) for flies and
687	the Molecular and Cellular Imaging Facility at the University of Texas Southwestern Medical
688	center for help with electron microscopy (NIH S10 OD020103-01).
	center for help with election interoscopy (1411 510 OD020105-01).
689	
690	Funding: K.O. is a Burroughs Welcome Investigator in Pathogenesis of Infectious Disease, a

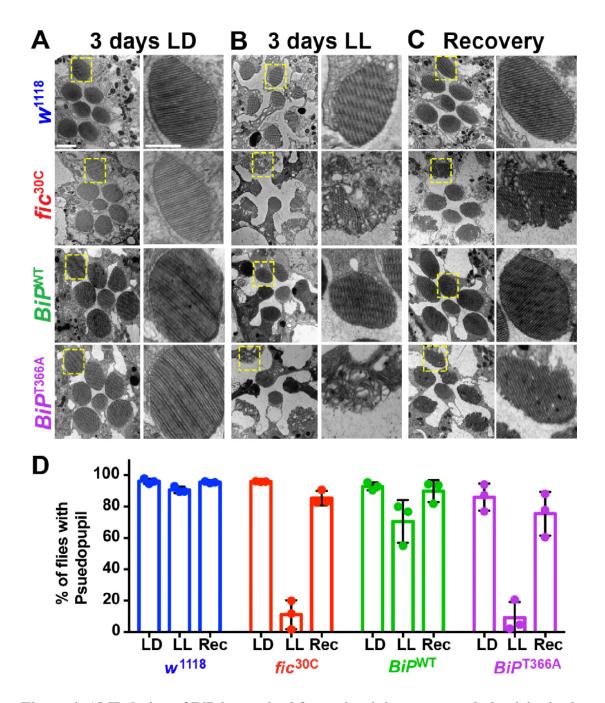
- Beckman Young Investigator, and a W. W. Caruth, Jr., Biomedical Scholar and has an Earl A.
- 692 Forsythe Chair in Biomedical Science.


694	Author contributions:
695	A.T.M, A.C. K.O and H.K. conceived, designed, and analyzed experiments and wrote the
696	manuscript. All experiments except yeast experiments were performed by A.T.M. A.C. and K.S.
697	performed mass spec experiments.
698	
699	Data and materials availability: Fly stocks are available upon request. All data are contained
700	in the source files.
701	
702	Correspondence to: <u>Helmut.Kramer@UTSouthwestern.edu and</u>
703	Kim.Orth@utsouthwestern.edu.
704	

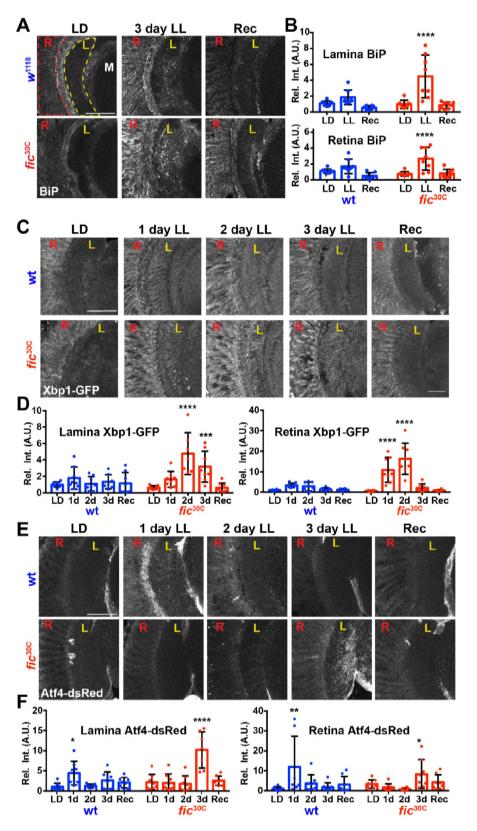
706


707 Figure 1. BiP is a target of Fic AMPylation and deAMPylation in vivo. (A) BiP AMPylation 708 during times of low ER stress reserves a portion of the chaperone to allow for a rapid, 709 deAMPylation-driven, response to high ER stress (Casey et al., 2017; Preissler, Rato, et al., 2017). (B) Bar graphs show the percentage of null mutant BiP^{G0102}/v males rescued by the 710 indicated genomic BiP^{WT}, BiP^{T366A} or BiP^{T518A} genomic transgene (Tg) relative to sibling 711 controls. N=3 biological replicas. At least 50 flies scored for each replica. Bar graphs show 712 means +/- Standard Deviation (SD). (C) Bar graphs show the percentage of viable flies of the 713 indicated wild type or fic^{30C} genotypes expressing the overactive Fic^{E247G} under the ubiquitous 714 Da-Gal4 driver relative to sibling controls. Among the indicated genomic BiP transgenes, only 715 BiP^{T366A} provides partial rescue of lethality in the *BiP*^{+/+} background and near complete rescue in 716 a *BiP*^{G0102} null background. N=3 biological replicas. At least 100 total flies scored for each 717 718 replica. Bar graphs show means +/- SD.

719


720Figure 2. Genetic interactions between Fic and UPR genes. Representative SEM images of721heterozygote mutant $fic^{30C/+}$ eyes expressing the indicated UAS-RNAi transgenes with (A-F) or

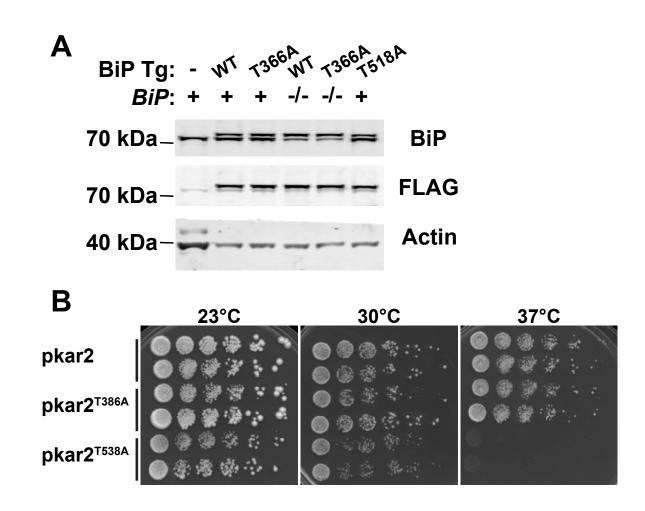
without (A'-F') UAS-Fic^{E247G} under *longGMR*-Gal4 control. See Supplemental Table 1 for
 quantification. Scale bar: 100µM.


724

725 Figure 3. Fic-mediated AMPylation of BiP is required for photoreceptor maintenance. (A) 726 A representative ERG trace in response to a 1-sec light pulse displaying the sustained negative potential (SNP), representing the depolarization within photoreceptor neurons, and the ON & 727 OFF transients, reflecting post-synaptic activity of lamina neurons. (B) Representation of the 728 729 different light treatments of flies before ERG recordings: 3 days of 12hr light (500 lux) and 12hr dark (LD), 3 days of continuous light (LL) or 3 days of continuous light followed by 3 days of 730 LD (Rec). 1-sec light pulses were performed at 4 sec intervals. (C) Representative traces from 731 w¹¹¹⁸, fic^{30C}, BiP^{WT} and BiP^{T366A} flies. Under LL, fic^{30C} and BiP^{T366A} mutants lose ON and OFF 732 transients (red arrows) and have reduced SNPs. The changes are reversed after 3-days of 733 734 recovery (Rec). (D) Quantification of key components of ERGs shown in panel C. Bar graphs show means +/- SD. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; n = 24 flies for 735 736 each genotype/condition, pooled from three independent biological replicas.

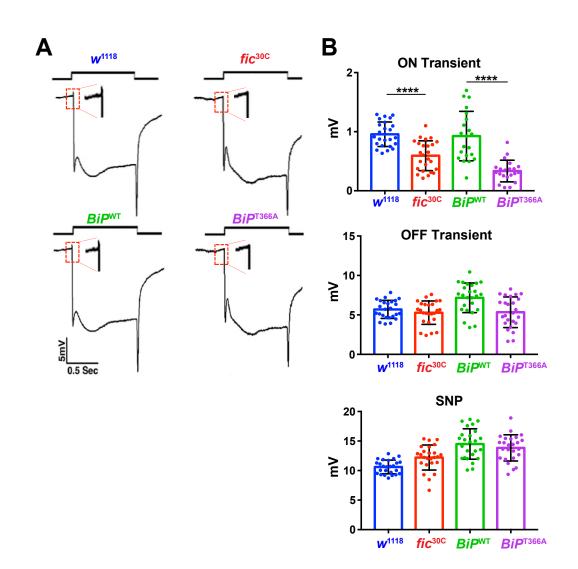
737

Figure 4. AMPylation of BiP is required for maintaining structural plasticity in the retina. (A-C) Representative TEM images of retina thin sections from the indicated genotypes with either standard LD (A), the stress-inducing LL (B) or recovery treatment (C). Scale bars: 1 μ M. Yellow boxes indicate rhabdomeres shown in high magnification images. High magnification scale bars: 0.5 μ M. (D) Percentages of flies with intact deep pseudopupil following LD, LL and Rec. N=3 independent biological replicas with approximately 50 flies scored per genotype per replica. Bar graphs show means +/- SD.



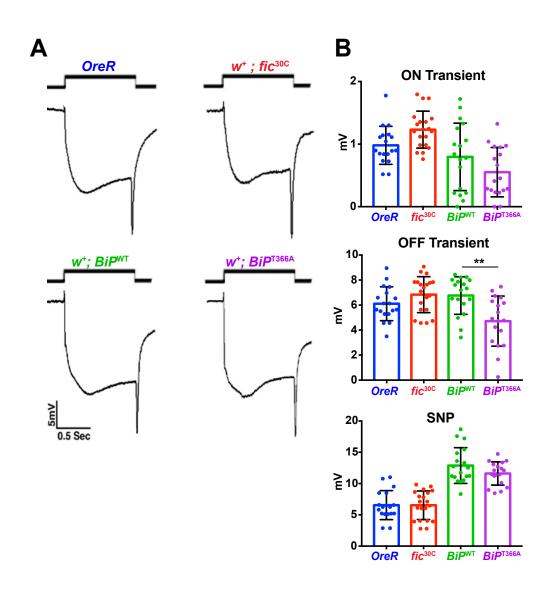
746 Figure 5. BiP AMPylation regulates ER homeostasis during prolonged light stimulation.

747 (A) Representative images of BiP immunohistochemistry in sections of w^{1118} and fic^{30C} flies


748	following 3 days LD, LL or Recovery treatments. (B) Quantification of BiP fluorescence
749	intensity, normalized to wild-type LD controls, in the lamina neuropil and retina from 2
750	independent experiments. (C) Representative images of a Xbp1-GFP splicing reporter in either a
751	Fic wild-type or the null <i>fic</i> ^{30C} background following LD, 1-day LL, 2-day LL, 3-day LL, and
752	Recovery conditions. (D) Quantification of GFP fluorescence intensity, normalized to wild-type
753	LD controls, in the lamina neuropil and retina from 2 independent experiments. (E)
754	Representative images of an Atf4-dsRed reporter in either a wild-type or fic ^{30C} background
755	following LD, 1-day LL, 2-day LL, 3-day LL, and Recovery conditions. (F) Quantification of
756	Atf4-dsRed intensity, normalized to wild-type LD controls, in the lamina neuropil and retina
757	from 2 independent experiments. For all experiments, n= 8 flies per genotype/condition, with
758	exceptions of outliers falling 3 standard deviations outside the mean. Bar graphs show means +/-
759	SD. For all experiments, significance is indicated for treatment compared to the LD condition for
760	the corresponding genotype. ****, $p < 0.0001$; ***, $p < 0.001$; **, $p < 0.01$; *, $p < 0.05$. All scale
761	bars: 50 μM.

762

Figure 1- figure supplement 1. Expression of genomic BiP transgenes


764(A) Western blots for FLAG-tagged BiP transgenes and total BiP in whole head lysates in *BiP*765wild type or homozygous mutant background as indicated. Actin (JLA-20) served as a loading766control. (B) Kar2^{T538A} mutants have temperature-sensitive growth defects. Yeast strains $kar2\Delta$ 767+pKar2, $kar2\Delta$ +pkar2^{T386A}, and $kar2\Delta$ +pkar2^{T538A} were grown at 25°C and five-fold serially768diluted onto plates of rich media incubated at the indicated temperatures.

769

770 Figure 1- figure supplement 2. AMPylation-resistant *BiP*^{T366A} phenocopies *fic*.

771(A) ERGs of fic^{30C} flies show reduced ON transients (arrows). Flies homozygous for a lethal772 BiP^{G0102} allele rescued by BiP^{WT} transgene have normal vision but flies rescued with the mutant773 BiP^{T366A} transgene display reduced ON transients. (B) Quantification of ERG traces. Bar graphs774show means +/- SD. ****, p < 0.0001; ***, p < 0.001; *, p < 0.05; n= 24 flies per genotype and</td>775condition.

- (A) ERGs of OreR and red-eyed fic^{30C} flies as well as BiP^{WT} and BiP^{T366A} animals. (B)
- 780 Quantification of ERG data. Bar graphs show means +/- SD. **, p < 0.01, n= 18 flies per
- 781 genotype and condition.

Figure 1- figure supplement 3. Red eye pigment suppresses ERG phenotypes of *fic*^{30C} and
 BiP^{T366A} mutants.

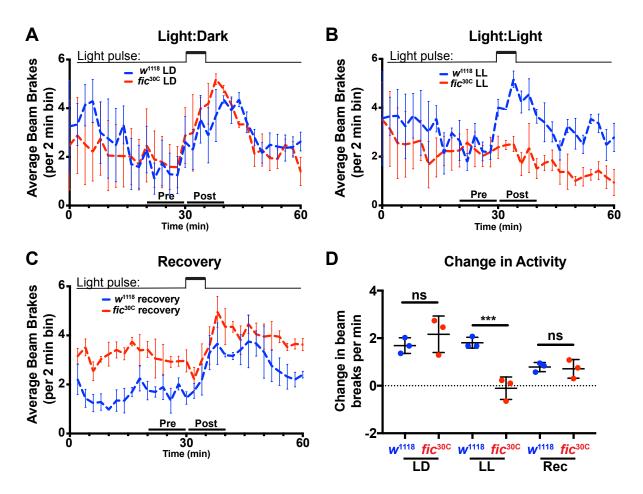
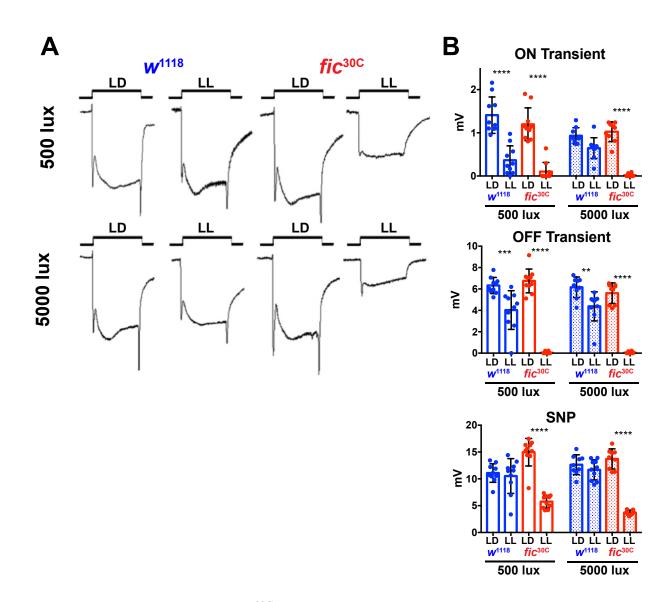



Figure 3- figure supplement 1. Light-induced defects in light-startle activity in *fic*^{30C}
 mutants.

782

(A, B, & C) Actogram of w^{1118} or fic^{30C} flies reared in LD for three days (A), LL for three days 785 786 (B), or recovery condition (three days in LL then three days in LD) (C). Light pulse is indicated by upper bars. Data is averaged from three biological replicas, each containing 16 flies per 787 genotype. Data were collected in two-minute bins. Error bars represent Standard Error. (D) 788 789 Quantification of change in beam breaks per 2-min bin for the 10 min intervals before and after 790 the onset of the light pulse in each experiment. Bar graphs show means +/- SD. ***, p < 0.01, n= 791 3 experimental repeats with 16 flies per genotype and condition. Dead flies and those with a 792 change in activity greater than 3 deviations from the median were excluded.

793

Figure 3- figure supplement 2. *fic*^{30C} mutants are sensitive to constant light, regardless of total intensity.

(A) Representative ERGs of flies following 3 days of LL or LD with either 500 lux or 5000 lux

light, showing fic^{30C} null animals lose ON/OFF transients and have reduced SNPs with constant

light, regardless of intensity, but under LD conditions, even at 5000 lux, have healthy ERG

responses. (B) Quantification of ERG data. Bar graphs show means +/- SD. ****, p < 0.0001;

800 ***, p < 0.001; *, p < 0.05; n= 10 flies per genotype and condition.

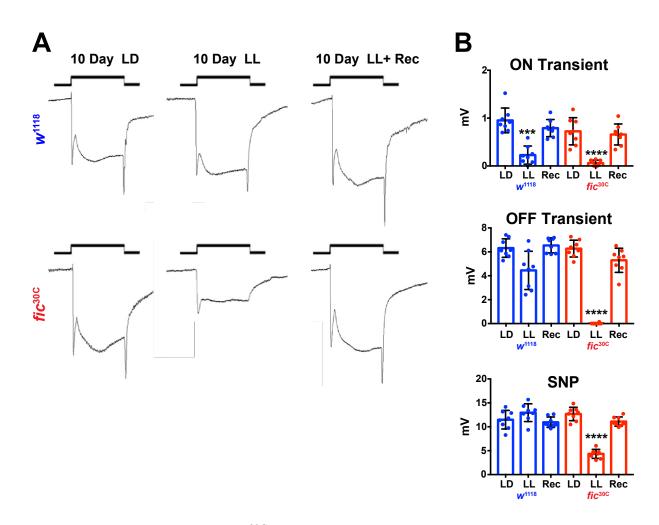


Figure 3- figure supplement 3. *Fic*^{30C} mutants recover ERG properties in 72 hours after 10
days of LL.

- (A) Representative ERGs of flies following 10 days of LL, 10 days LD (500 lux), and 3 days
- Recovery following 10 days. (B) Quantification of ERG data. Bar graphs show means +/- SD.
- 806 ****, p < 0.0001; ***, p < 0.001; *, p < 0.05; n= 8 flies per genotype and condition.

Line	RNAi Target	Eye Roughness Score					Weighted	Number	P-Value
	Gene	0	1	2	3	4	Average	of Flies	(Fisher's)
Control	None	0	1	68	3	0	2.03	72	n/a
BS36815	4EBP	0	0	96	0	0	2.00	96	0.032
v2935	ATF4	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal
BS25985	ATF4	0	0	51	98	0	2.66	149	2.20E-16
BS26211	ATF6	0	2	68	2	0	2.00	72	1.000
BS64873	CaBP1	0	3	42	0	0	1.93	45	0.137
BS58172	Calnexin	0	2	41	1	0	1.98	44	0.688
v7799	elF2a	0	2	54	0	0	1.96	56	0.302
v104562	elF2a	0	0	48	0	0	2.00	48	0.388
BS55657	ergic53	0	5	35	7	0	2.04	47	0.007
BS35023	Gadd45	0	0	45	3	0	2.06	48	0.811
BS34346	GP93	0	0	33	5	0	2.13	38	0.122
v39561	lre1	0	0	33	40	0	2.55	73	4.14E-12
v39562	lre1	0	0	15	47	0	2.76	62	2.20E-16
BS62156	lre1	0	0	0	57	2	3.03	59	2.20E-16
BS36743	lre1	0	0	0	14	13	3.48	27	2.20E-16
BS28039	PDI	0	0	20	2	0	2.09	22	0.685
v110278	PERK	0	0	3	45	4	3.02	52	2.20E-16
v16427	PERK	0	0	0	13	30	3.70	43	2.20E-16
BS35162	PERK	0	0	28	43	0	2.61	71	6.84E-14
BS42499	PERK	0	0	26	65	50	3.17	141	2.20E-16
BS36755	Xbp1	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal
BS25990	Xbp1	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal

807

808 Table 1. Genetic interactions between Fic and UPR genes.

809 UAS^{Scer}-driven RNAi transgenes (either TRIP or VDRC lines) were used to silence candidate 810 UPR and ER stress-related genes in a $fic^{30C/+}$ heterozygous background, with either LongGMR-Gal4, UAS-Fic^{E247G} or LongGMR-Gal4 only. Eve roughness was scored for individual flies and 811 812 averaged for each cross. Table reports number of flies scored in each group (0=no roughness, 813 2=mildly rough (control flies), 4= severely rough, 1 and 3 are intermediate phenotypes) and the 814 weighted average of the eye roughness. Significance differences are highlighted in yellow, and 815 p-value's were determined using Fisher's Exact Test for categorical data, comparing the effects of each gene knockdown with the control group (top line, $fic^{30C/+}$; LongGMR-Gal4, UAS-816

817 Fic^{E247G}). Interactions were considered significant for any individual test if p < 0.003 as

818 determined using Bonferroni's multiple comparison adjustment.