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Abstract 

Endophenotype refers to a measurable and heritable component between genetics and 

diagnosis and exists in both individuals with a diagnosis and their unaffected siblings. We 

aimed to identify a pattern of endophenotype consisted of multiple connections. We enrolled 

adult male individuals with autism spectrum disorder (ASD) endophenotype (i.e., individuals 

with ASD and their unaffected siblings) and individuals without ASD endophenotype (i.e., 

pairs of typical development (TD) siblings) and utilized a machine learning approach to 

classify people with and without endophenotypes, based on resting-state functional 

connections (FCs). A sparse logistic regression successfully classified people as to the 

endophenotype (area under the curve=0.78, classification accuracy=75%), suggesting the 

existence of endophenotype pattern. A binomial test identified that nine FCs were consistently 

selected as inputs for the classifier. The least absolute shrinkage and selection operator with 

these nine FCs predicted severity of communication impairment among individuals with ASD 

(r=0.68, p=0.021). In addition, two of the nine FCs were statistically significantly correlated 

with the severity of communication impairment (r=0.81, p=0.0026 and r=-0.60, p=0.049).  

The current findings suggest that an ASD endophenotype pattern exists in FCs with a 

multivariate manner and is associated with clinical ASD phenotype.  
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Introduction  

Autism spectrum disorder (ASD) is a developmental disorder characterised by deficits in 

social interaction and repetitive restricted behavior (American Psychiatric Association, 2013). 

Examples of these social interaction impairments among people with ASD include theory of 

mind, empathy, and facial emotion recognition (Simon Baron-Cohen, Leslie, & Frith, 1985; S. 

Baron-Cohen & Wheelwright, 2004; Uljarevic & Hamilton, 2013). Consistent with the findings 

that such social interactions depend on the social brain neural system (Adolphs, 2009), 

abnormalities within the social brain have been observed among individuals with ASD (Yuta 

Aoki, Cortese, & Tansella, 2015; Kana, Keller, Cherkassky, Minshew, & Just, 2009; Kleinhans, 

Richards, Greenson, Dawson, & Aylward, 2016; Murphy et al., 2017; Pelphrey, Shultz, Hudac, & 

Vander Wyk, 2011). Besides the anatomical extension of abnormalities, individuals with ASD 

consistently present atypical functional connections (FCs) (Cherkassky, Kana, Keller, & Just, 

2006; Di Martino et al., 2014; Uddin, Supekar, & Menon, 2013). Thus, atypical FCs within the 

social brain are of interest and may underlie the impairment in social interactions among 

individuals with ASD. 

 

ASD is a highly heritable condition (Colvert et al., 2015). Indeed, although the prevalence of 

ASD is about 1% in the general population (Autism & Developmental Disabilities Monitoring 

Network Surveillance Year Principal, 2014), the risk of developing ASD increases by up to 20% 
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among biological siblings of individuals with ASD (Ozonoff et al., 2011). Despite such obvious 

heritability, the concordance of clinical diagnoses among monozygotic twins is only about 

60% indicates, indicating that ASD is influenced by complex genetic interactions (Hallmayer et 

al., 2011). Reflecting this complex genetic contribution, autistic traits have a continuous 

distribution among people with incomplete genetic traits of ASD (Constantino & Todd, 2003). 

In fact, biological family members of individuals with ASD often have subclinical difficulties in 

social interactions (Piven & Palmer, 1999). 

 

Endophenotype refers to a measurable and heritable component between genes and disease 

diagnosis (Gottesman & Gould, 2003). Because of the complex genetic contribution, 

characterising the ASD endophenotype is particularly important because it may provide an 

objective intermediate marker and insight into the pathophysiology of ASD. Reflecting its 

heritability and consistently observed abnormalities among individuals with ASD (Di Martino 

et al., 2014; Glahn et al., 2010), resting-state functional magnetic resonance imaging (R-fMRI) 

is one of promising modalities that quantify ASD endophenotype (Khadka et al., 2013).  

 

To identify the ASD endophenotype, prior neuroimaging studies using several modalities have 

enrolled individuals with ASD, their unaffected siblings, and typical development (TD) 
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(Barnea-Goraly, Lotspeich, & Reiss, 2010; Jou et al., 2016; Moseley et al., 2015). These studies 

separately compared each connection across these three groups and showed the shared 

atypical findings among unaffected siblings of individuals with ASD and individuals with ASD. 

Most of prior studies recognised such shared abnormality, which is widely scattered 

throughout the brain, as an endophenotype. 

 

The aim of this study was three-folds. First, we aimed to classify pairs of people as to the ASD 

endophenotype using a multivariate machine learning approach. Motivation of applying a 

machine learning approach is that we recognised that ASD endophenotype likely consisted of 

multiple FCs with different weights (i.e., as a pattern of altered FCs), rather than an 

unweighted integration of abnormalities shared by individuals with ASD and their unaffected 

siblings. Second, we examined which FCs were consistently selected when classifying people 

as to the endophenotype. Finally, to confirm the relation between the selected FCs and the 

clinical ASD phenotype, we employed the least absolute shrinkage and selection operator 

(LASSO), to predict the severity of social interaction impairment among people with ASD 

using the FCs serving as the endophenotype. To do so, we obtained R-fMRI data from 60 

participants, consisting of 30 people with ASD endophenotype (15 individuals with ASD and 

15 of their unaffected siblings) and 30 people without the ASD endophenotype (15 pairs of 
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TDs). Since ASD is characterized by the impairment of social interactions, we focused on FCs 

within the social brain. To increase the homogeneity of the participants, we enrolled age- and 

IQ-matched males.  

 

Materials and methods 

Participants  

We analysed data from 60 adult males consisting of 30 pairs of biological siblings. Thirty 

people had the ASD endophenotype. Specifically, 15 pairs of participants were discordant for 

the diagnosis of ASD: namely, one of the siblings was affected with ASD, and the other was 

unaffected. Another 30 people did not have the endophenotype and consisted of 15 pairs of 

TD siblings. None of the TD siblings had a family member who had been diagnosed as having 

ASD. All the participants with ASD were diagnosed by experienced psychiatrists based on the 

DSM-IV-TR (American Psychiatric, 2000). The diagnosis was further supported by the Autism 

Diagnostic Observation Schedule (ADOS) (Lord et al., 2001). In addition, to confirm the 

absence of a diagnosis of ASD in the unaffected sibling, the parents of the siblings discordant 

for the diagnosis of ASD were interviewed using the Autism Diagnostic Interview-Revised 

(ADI-R) (Tsuchiya et al., 2013). We used the Edinburgh Handedness Inventory to evaluate 

handedness (Oldfield, 1971). The intelligence quotient (IQ) of each participant was assessed 
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using either the Wechsler Adult Intelligence Scale-Third Edition or the WAIS-Revised 

(Wechsler, 1997; Wechsler & De Lemos, 1981). All the participants completed the Japanese 

version of the Autism-Spectrum Quotient (AQ) (Wakabayashi, Baron-Cohen, Wheelwright, & 

Tojo, 2006). Psychiatric comorbidities were observed in two participants with ASD: one had 

attention-deficit/hyperactivity disorder, and the other had learning disabilities. Five of the 

participants were taking medication at the time of scanning: benzodiazepine (n = 3), 

anti-depressants (n = 3), and psychostimulant (n = 1). For inclusion in the TD group, we 

confirmed the absence of an ASD diagnosis among the family member and the absence of an 

Axis I diagnosis per the DSM-IV-TR using the Mini-International Neuropsychiatric Interview 

(Hergueta, Baker, & Dunbar, 1998). The absence of a history of psychotropic medication use 

was also required. The exclusion criteria for all the participants were known genetic diseases, 

an estimated full intelligence quotient (IQ) of 80 or below, or the total AQ score of 33 or above. 

Written informed consent was obtained from all the participants, after they had received a 

complete explanation of the study. The Ethics Committee of Showa University approved the 

study protocol. The study was prepared in accordance with the ethical standards of the 

Declaration of Helsinki.  

MRI acquisition 
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All MRI data were acquired using a 3.0 T MRI scanner (MAGNETON Verio, Siemens Medical 

Systems, Erlangen, Germany) with a 12ch head coil. Functional images were acquired with an 

echo planar imaging sequence (repetition time [TR]: 2500 ms, echo time [TE]: 30 ms, flip 

angle: 80°, field of view [FOV]: 212 mm, matrix size: 64 × 64, slice thickness: 3.2 mm with a 

0.8-mm gap, 40 axial slices) at rest for 10 min 10 s (244 volumes). During the resting-state 

scans, participants were asked to gaze at a cross-hair displayed at the center of the screen, not 

to think about specific things, and to stay awake. To correct for the distortion of the functional 

image, gradient echo field mapping images were acquired immediately after the resting-state 

scans (TR: 488 ms, short TE: 4.92 ms, long TE: 7.38 ms, flip angle: 60°, FOV: 212 mm, matrix 

size: 64 × 64, slice thickness: 3.2 mm with a 0.8-mm gap, 40 axial slices). For normalisation 

purpose, a T1-weighted image was acquired using an MPRAGE sequence (TR: 2.3 s, TE: 2.98 

ms, flip angle: 9°, FOV: 256 mm, matrix size: 256 × 256, slice thickness: 1mm, 240 sagittal 

slices, voxel size: 1 × 1× 1 mm). 

 

R-fMRI data preprocessing 

All the functional images were preprocessed using the Statistical Parametric Mapping 

(SPM12; Wellcome Department of Cognitive Neurology, London, UK) and functions 

implemented in FMRIB’s Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). 
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Preprocessing was performed as follows: 1) the first four volumes were discarded to allow for 

T1 equilibration; 2) slice timing correction; 3) head motion correction using mcflirt 

implemented in the FSL (Jenkinson, Bannister, Brady, & Smith, 2002), 4) distortion correction 

using the FUGUE implemented in the FSL, 5) co-registration of functional images to an 

anatomical image, 6) spatial normalisation and resampling to a resolution of 2 × 2 × 2 mm, 

and 7) spatial smoothing (6-mm full-width at half-maximum). 

 

To remove the effects of subtle head motions during the scans (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012), ICA-AROMA was applied (Pruim, Mennes, Buitelaar, & Beckmann, 

2015; Pruim, Mennes, van Rooij, et al., 2015). After ICA-AROMA was performed, nuisance 

regression was further performed. Nuisance signals consisted of signals averaged over white 

matter, cerebrospinal fluid, and grey matter, respectively (Parkes, Fulcher, Yu Cel, & Fornitod, 

2017; Yahata et al., 2016). A band-pass filter (0.008 – 0.1 Hz) was then applied to the residual 

time-series in a voxel-wise manner. For each participant, the mean frame-wise displacement 

(FD) was calculated from head motion parameters to quantify the amount of head motion 

during scans (Jenkinson et al., 2002). The mean FD of each group is shown in Table 1. 

 

The social brain connectome atlas was used for network construction (Alcala-Lopez et al., 
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2017). This atlas consists of 36 brain regions associated with social functioning, such as 

theory of mind, empathy, and facial emotion recognition. For each participant, the mean 

time-series was extracted from each region of interest (ROI) and the correlation coefficients 

between all possible pairs of ROIs were calculated, resulting in a 36 × 36 correlation matrix 

for each participant. Finally, Fisher’s r-to-z transformation was applied to each correlation 

coefficient. This procedure generated 630 features for each participant. 

 

Statistical analysis 

Identification of endophenotype pattern of FCs 

Since our aim was to identify a pattern of FCs serving as an endophenotype from a given data, 

we formulated the problem in the following manner. Based on previous findings that 

individuals with ASD and their unaffected siblings shared a pattern of alterations when 

compared to TDs (Moseley et al., 2015), we recognised that endophenotype was a measurable 

component satisfying the following conditions: 

1. individuals with ASD have higher values than TDs (i.e., ASD > TD); 

2. unaffected siblings of individuals with ASD also have higher values than TDs (i.e., 

unaffected sibling > TD); 

3. TD sibling pairs have similar values (i.e., TD P TD sibling). 
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According to the conditions (1) and (2), our aim could be achieved by solving a classification 

problem, in which we intended to identify FCs that could discriminate persons with a high 

endophenotype value from persons with a low endophenotype value. Individuals with ASD 

and their unaffected siblings were regarded as having the ASD endophenotype, while TD and 

TD siblings were regarded as not having the endophenotype throughout this manuscript. 

 

To examine whether the FCs serve as an endophenotype, we employed sparse logistic 

regression (SLR) (Yamashita, Sato, Yoshioka, Tong, & Kamitani, 2008). SLR can train a logistic 

regression model while automatically selecting endophenotype-related FCs. Briefly, SLR relies 

on a hierarchical Bayesian estimation, in which the prior distribution of each element of the 

parameter vector is represented as a Gaussian distribution. Based on the automatic relevance 

determination, irrelevant features are not used in the classification because the respective 

Gaussian prior distributions have a sharp peak at zero. Such efficient feature elimination 

method implemented in SLR can mitigate the problems of over-fitting caused by a small 

sample size. To evaluate the performance of the classifier, a leave-one-pair-out 

cross-validation (LOPOCV) was performed. Of note, the term ‘pair’ stands for sibling pairs. In 

each fold, all-but-one pair was used to train the SLR classifier, while the remaining pair was 

used for the evaluation. 
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To further examine the statistical significance of the classification accuracy, a permutation test 

was performed. At each iteration, a permuted dataset was generated by shuffling the 

endophenotype label while keeping the pair information. Then, LOPOCV was performed to 

calculate the classification accuracy for the permuted dataset. This procedure was repeated 

5,000 times to construct a null distribution. Statistical significance was set at P < 0.05. 

 

Binomial test 

SLR selects a small number of relevant FCs from a given data. To confirm that FCs selected by 

the classifier were not randomly selected, the statistical significance of the selection counts 

was examined using a binomial test. The classifier selected 8.13 ± 0.94 (mean ± standard 

deviation [SD]) out of 630 FCs in each of the 30 validation folds (see Results). Thus, we 

assumed a binomial distribution, Bi(n, p), where n stands for the number of validation folds 

(i.e., n = 30) and p stands for the probability of being selected from the set of FCs (i.e., p = 

8/630). 

 

Relation between endophenotype-related FCs and clinical phenotype 

Once the endophenotype-related FCs had been identified by the classifier with binomial tests, 
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we predicted the severity of the clinical symptoms measured by the ADOS. The score of each 

individual was predicted using LASSO with nine FCs consistently selected in the classifier 

(Tibshirani, 1996). While an optimal regularization parameter in the LASSO was determined 

by an internal 10-fold CV, the weight parameters were determined through a 

leave-one-subject-out CV (LOSOCV), in which the scores of all-but-one participants were 

linearly regressed using the nine FCs as explanatory variables. Given the notion that 

age-related differences might have an impact on the severity of clinical symptoms (Lee, Park, 

James, Kim, & Park, 2017), we added age as an additional explanatory variable. To evaluate 

how predicted and actual scores matched, the correlation coefficient was calculated. We 

further examined the extent to which the FCs were significantly correlated with the severity of 

clinical symptoms by calculating correlation coefficient. Because of the explorative of this 

analysis nature, we used a liberal statistical threshold of P < 0.05.  

 

Results 

Identification of endophenotype pattern of FCs 

We discriminated participants with the ASD endophenotype (i.e., individuals with ASD and 

their unaffected siblings) from TDs using an SLR with the LOPOCV. This classifier separated 

participants with endophenotype from TDs with 75% accuracy (sensitivity = 76.67% and 
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specificity = 73.33%) and an area under the curve (AUC) of 0.78 (permutation test with 5,000 

iterations, p < 0.001; Figures 1a and 1b), suggesting that FCs selected by this classifier 

captured the endophenotype-related features.  

 

Post-hoc paired t-tests were performed to examine whether the conditions (see Methods) 

were satisfied. As shown in Figure 1c, paired t-tests demonstrated that the weighted linear 

summation (WLS) of FCs selected in the classifier was not statistically significantly different 

between individuals with ASD and their unaffected siblings (t-value = -0.03, df = 14, p = 0.98). 

In contrast, a two-sample t-test showed statistically significant differences between people 

with endophenotype (i.e., individuals with ASD and their unaffected siblings) and those 

without endophenotype (t-value = 10.28, df = 58, p < 0.001). These results indicate that the 

WLS of FCs selected by the classifier satisfied the set of conditions regarding endophenotype, 

but not the clinical diagnosis. Furthermore, the analysis did not show any significance 

difference between TD sibling pairs (t-value = 1.14, df = 14, p = 0.27). 

 

To rule out the possibility that nuisance covariates (i.e., head motion and age) have potential 

to be important features for classification, we repeated the same classification analysis while 

adding the two nuisance variables as additional explanatory variables (i.e., 630 FCs + 2 
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nuisance variables). If the nuisance variables could explain the endophenotype label over the 

previously selected FCs, then the SLR would automatically select these nuisance variables as 

input for the logistic function. We confirmed that the classification accuracy and the AUC were 

not changed by adding these nuisance variables (accuracy = 75% and AUC = 0.78). 

Furthermore, in each fold, the SLR never selected the two nuisance variables as inputs for the 

logistic function (i.e., the weighted parameters for these variables were zero). 

 

Binomial test 

Furthermore, we investigated which FCs were stably selected by the SLR across the LOPOCV. 

In each fold, the classifier selected 8.13 ± 0.94 (mean ± SD) out of the 630 FCs across 30 

validation folds. We counted how many times each FC was selected. Under the null hypothesis 

that eight FCs were randomly selected from 630 FCs, a binomial test was applied to examine 

the probability of the selection count. We found that nine FCs were selected at a significant 

frequency (p < 0.05, Bonferroni corrected for 630 connections; Figure 2 and Table 2). The 

selection count for these nine FCs was 22.78 ± 7.61 while that for the remaining FCs was 

0.0627 ± 0.33. This result indicates that the nine FCs were consistently selected across the 

validation folds. 
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Relation between endophenotype-related FCs and clinical phenotype 

We predicted the severity of the clinical symptoms measured by the ADOS using the nine FCs 

identified in the classifier for endophenotype. LASSO with LOSOCV was individually applied to 

determine the weights of the nine FCs so that their weighted linear summation was used as a 

predictor for the corresponding severity score. We found that the communication domain of 

the ADOS was well predicted from the nine FCs with a statistically significant correlation (r = 

0.68, p = 0.021; Figure 3a). Furthermore, we found that two of nine FCs were significantly 

correlated with the severity of impaired communication measured by ADOS: one was FC 

between the right temporo-parietal junction and right inferior frontal gyrus (r = 0.81, p = 

0.0026; Figure 3b), and the other was FC between the right nucleus accumbens and anterior 

middle cingulate cortex (r = -0.60, p = 0.049; Figure 3c). 

 

Discussion 

Our novel framework was motivated by 1) the observation that neural correlates of ASD 

emerge as a pattern of FCs and 2) the lack of any previous study attempting to identify the 

endophenotype as a pattern of FCs. Thus, we applied the machine learning approach to 

classify people as to the ASD endophenotype. Subsequent binomial tests identified nine FCs 

serving as the endophenotype. The LASSO further revealed that the selected FCs were 
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associated with the clinical phenotype among individuals with ASD. This high-performance 

proof-of-concept study shows the importance and relevance of using the machine learning 

approach to identify the endophenotype as a pattern of FCs. 

 

We utilised the SLR to classify participants as to the ASD endophenotype. Most prior 

neuroimaging studies identified abnormalities shared by individuals with ASD and their 

unaffected siblings or abnormalities in the siblings that were intermediate between ASD and 

TD as an endophenotype (Barnea-Goraly et al., 2010; Jou et al., 2016; Moseley et al., 2015). In 

these studies, each variable (i.e., connectivity index) was separately examined to determine 

whether it belonged to the endophenotype. In contrast, we applied a multivariate and 

data-driven approach to classify individuals with or without the ASD endophenotype using all 

the available variables (i.e., 630 FCs within the social brain). This approach inherently 

assumes that the endophenotype emerges as a pattern of altered FCs and allows all the 

variables to contribute to the endophenotype to different extents. In the case of ASD, the 

genetic abnormalities vary across individuals (Geschwind & Levitt, 2007; Miles, 2011). In 

addition, multiple FCs are altered (Di Martino et al., 2014; Uddin et al., 2013). Thus, the 

genetic influence is not identical across FCs (Ameis & Szatmari, 2012; Meyer-Lindenberg & 

Weinberger, 2006; Zhan et al., 2014), and the endophenotype should emerge as multiple FCs 
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with different extents. The consistency with the definition of the endophenotype might 

explain the good performance of classification. 

 

The current study identified an ASD endophenotype among the FCs within the social brain. 

Since not all individuals with the endophenotype develop ASD clinical diagnosis (Ozonoff et al., 

2011), the neural correlates for the endophenotype and the diagnosis may differ. Although we 

did not investigate the neural correlates for the diagnosis because of the small sample size, 

neural correlates for the clinical diagnosis of ASD might be located within the social brain 

(Yuta Aoki et al., 2015; Kana et al., 2009; Kleinhans et al., 2016; Murphy et al., 2017; Pelphrey 

et al., 2011). Given that there was no significant difference in the WLS of the selected FCs 

between individuals with ASD and their unaffected siblings, the selected FCs represent the 

ASD endophenotype, rather than the ASD diagnosis. Although it is beyond the scope of this 

proof-of-concept study, future research involving a large sample size is expected to dissociate 

the neural correlates of the ASD clinical diagnosis and the ASD endophenotype.   

 

Using the LASSO, the selected FCs successfully predicted the severity of communication 

deficits among individuals with ASD. This relationship corroborates the assumption that the 

selected FCs are associated with the pathophysiology of ASD. Since we lacked any ADOS scores 
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from the unaffected siblings of individuals with ASD, this relationship was observed only 

among the individuals with ASD. However, even if the ADOS scores were available from the 

unaffected siblings, the scores might not reflect the distribution of behaviour well, since the 

ADOS aims to measure clinical symptoms, not subclinical ones observed among people with 

the ASD endophenotype (Toth, Dawson, Meltzoff, Greenson, & Fein, 2007). Future studies 

enrolling unaffected siblings should obtain both MRI data and psychological evaluations that 

reflect the differences in ASD traits among subclinical individuals. 

 

Several limitations should be considered in this study. First, although we successfully added 

the condition that the FCs should not differ between TD siblings (see Method), which was not 

possible in prior studies with only one TD group, the current study had a small sample size 

because of practical difficulties in recruitment. Thus, because of the lack of statistical power, 

we could not address brain regions outside of the social brain. However, brain regions outside 

the social brain are also likely to be involved in the endophenotype of ASD. In addition, 

although the sparseness of FC selection by the SLR mitigates over-fitting to the current sample, 

the current sample size was relatively small, compared with the number of FCs. A future study 

with a sample size large enough to avoid over-fitting is needed to examine the whole brain. 

Second, although the machine learning approach successfully classified individuals with or 
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without the ASD endophenotype, the endophenotype may not be categorical, as with ASD 

diagnosis (Y. Aoki et al., 2017). Research using a large sample is encouraged to stratify 

individuals with an ASD endophenotype. Third, to increase the homogeneity of participants, 

we recruited only adult males in the current study. Given that the ASD brain shows an atypical 

developmental trajectory (Y. Aoki, Kasai, & Yamasue, 2012), the current finding may not be 

generalised to other age ranges. In addition, atypical sex differences have been observed 

among individuals with ASD (Lai et al., 2017). Thus, further studies that include only female 

ASD participants are expected.  

 

Conclusion 

Using the machine learning approach, we demonstrated that the ASD endophenotype emerges 

as a pattern of FCs within the social brain. The FCs selected as inputs for the classifier were 

associated with the clinical ASD severity. 
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Figure Legends 

Figure 1. Classification results and post-hoc tests. (a) Receiver operating characteristic curve. A 

sparse logistic regression with leave-one-pair-out cross validation exhibited an area under the curve of 

0.78. (b) Null distribution of classification accuracy derived by a permutation test with 5,000 iterations. 

The permutation test demonstrated that the observed classification accuracy (75%) was significantly 

higher than that obtained by the permuted classifier (p < 0.001). (c) Post-hoc paired t-tests 

demonstrated that there were no statistically significant differences between individuals with autism 

spectrum disorder (ASD) and their unaffected siblings in the weighted linear summation of selected 

FCs (t-value = -0.03, df = 14, p= 0.98) as well as between TD pairs (t-value = 1.14, df = 14, p = 0.27). On 

the other hand, persons with endophenotype exhibited significantly higher values than those without 

endophenotype (t-value = 10.28, df = 58, p < 0.001). ***: P < 0.001. 
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Figure 2. Results of identified functional connections (FCs) stably selected for the classification. 

The left panel shows the results of binomial tests. The red circle indicates the statistical significance of 

the selected count after multiple comparison correction. The right panel displays the distribution of 

nine FCs exhibiting statistical significance after multiple comparison corrections. The colors of nodes 

represent the sub-systems within the social brain atlas defined in (Alcala-Lopez et al.) Red: 

visual-sensory system, Yellow: limbic system, Green: intermediate-level system, Cyan: higher-level 

system. Abbreviations: AI: anterior insula, aMCC: anterior middle cingulate cortex, Amy: amygdala, 

Cb: cerebellum, dmPFC: dorsomedial prefrontal cortex, FFA: fusiform face area, FP: frontal pole, HC: 

hippocampal cortex, IFG: inferior frontal gyrus, MT/V5: middle temporal V5 area, MTG: middle 

temporal gyrus, NAcc: nucleus accumbens, PCC: posterior cingulate cortex, PCu: precuneus, pSTS: 

posterior superior temporal sulcus, SMA: supplementary motor area, SMG: supramarginal gyrus, TPJ: 

temporo-parietal junction, vmPFC: ventromedial prefrontal cortex 
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Figure 3: Associations between the severity of clinical symptoms and functional connectivity 

(FCs) selected by the classifier. (a) Prediction of the severity of communication measured by the 

Autism Diagnostic Observation Schedule (ADOS) using the least absolute shrinkage and selection 

operator with leave-one-subject-out cross-validation. The correlation coefficient between the 

predicted and measured scores exhibited a significant positive correlation (r = 0.68, p = 0.021). (b) The 

connectivity strength between the right temporo-parietal junction and right inferior frontal gyrus was 

significantly correlated with the severity of impaired communication as measured by the ADOS-A (r = 

0.81, p = 0.0026). (c) The connectivity strength between the right nucleus accumbens and anterior 

middle cingulate cortex was significantly correlated with the severity of communication impairment as 

measured by the ADOS-A (r = -0.60, p = 0.049). 
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Table 1: Characteristics of the participants 

 
People with endophenotype (n=30) Statistics (a) 

 
People without endophenotype (n=30) Statistics (d) 

 
ASD 

unaffected  

siblings 

df t-value  P-value 

 
TD (b) TD (c) 

df t-value  P-value 
(n=15) (n=15) (n=15) (n=15) 

  Mean SD Mean SD  Mean SD Mean SD 

Age (years) 28.3 6.1 28 7.3 14 0.45 0.657 28.4 6.5 25.1 5.3 14 5.62 <0.001 

Full IQ 111.8 16 107.4 13.2 14 0.77 0.452 115.9 15.7 114.9 12.1 14 0.24 0.815 

Verbal IQ 106.3 31.2 107.1 16.8 14 0.08 0.94 117.1 15.9 116.7 12.5 14 0.18 0.859 

Performance IQ 108.1 16.4 105.3 9.8 14 0.62 0.547 109.4 13.6 107.7 7.9 14 0.42 0.678 

Handedness 61.8 68.4 99.3 2.9 14 2.11 0.054 89.2 26.4 80.7 51.4 14 0.55 0.594 

ADI-R* 

 Social interaction 20.7 6.3 0.8 1.4 13 11.56 <0.001 - - - - - - - 

 Communication 

(verbal) 
12.6 5 0.4 1.1 13 8.83 <0.001 

 
- - - - - - - 

 RRB 3.9 2 0 0 13 7.02 <0.001 - - - - - - - 

ADOS** 

 Communication 4.45 1.13 - - - - - - - - - - - - 

 Social interaction 7.91 2.12 - - - - - - - - - - - - 

 Communication + 

Social interaction  
12.36 2.73 - - - - - 

 
- - - - - - - 

 RRB 0.18 0.40 - - - - - - - - - - - - 

AQ  

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted June 18, 2018. 

; 
https://doi.org/10.1101/348599

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/348599


 33

  Total 34.2 6.2 19.4 6.9 12 6.27 <0.001 17.6 5.5 14.9 6 14 1.12 0.28 

  AS 7.4 1.6 3.9 1.8 12 6.3 <0.001 4 2.1 3.7 1.4 14 0.54 0.596 

  ATD 5.4 1.9 3.2 1.9 12 2.67 0.02 3.4 2.1 3.9 1.6 14 0.88 0.396 

  COM 7.6 1.6 3.6 2.6 12 4.16 0.001 3.1 2.5 2.6 2.3 14 0.5 0.625 

  IMG 6 2 4.1 1.4 12 2.31 0.04 3.7 1.7 2.8 1.7 14 1.26 0.229 

  SS 7.9 2 4.5 2.7 12 4.26 0.001 
 

3.4 2.7 2 2.1 14 1.38 0.191 

SES (e 5.5 1.1 5.5 1.1 14 0.2 0.843 5.9 1.2 5.7 1.1 13 0.46 0.655 

Mean FD 0.17 0.07 0.14 0.05 14 1.51 0.153 0.16 0.07 0.18 0.10 14 0.687 0.503 

(a) Statistics show the results of comparisons between adult males with ASD and their unaffected brothers. (b) Older siblings. (c) Younger siblings. (d) Statistics show the results of 

comparisons between typical older and younger siblings. (e) A higher score indicates a lower socioeconomic status (Okada et al., 2014) . Abbreviations: ADOS-2: Autism Diagnostic 

Observation Schedule Second Edition, ADI-R: Autism Diagnostic Interview-Revised, AQ: autism-spectrum quotient, AS: attention switching/tolerance of change, ASD: autism spectrum 

disorder, ATD: attention to detail, COM: communication skills, IMG: imagination, IQ: intelligence quotient, RRB: restricted repetitive behaviors, SD: standard deviation, SES: 

socioeconomic status, SS: social skills, TD: typical development. *The ADI-R score was missing for one person. **ADOS scores are missing for four people.  
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Table 2. The list of functional connections (FCs) stably selected for classification. 

ID Terminal region 1 Terminal region 2 Mean 

weight Name Hemi. Sub-system Label Hemi. Sub-system 

1 SMA R Intermediate pSTS L Visual-sensory 5.75 

2 TPJ R Higher IFG R Intermediate 2.42 

3 NAcc R Limbic NAcc L Limbic -0.81 

4 pMCC L Intermediate HC L Limbic -3.02 

5 pSTS R Visual-sensory Pcu M Higher -5.71 

6 NAcc R Limbic aMCC M Intermediate -6.49 

7 Amy R Limbic SMG R Intermediate -6.69 

8 SMG R Intermediate IFG L Intermediate -6.84 

9 MTG R Higher rACC M Limbic -7.75 

Brain regions and sub-systems were based on (Alcala-Lopez et al.)   

Abbreviations: aMCC: anterior middle cingulate cortex, Amy: amygdala, HC: hippocampal cortex, 

Hemi: hemisphere, IFG: inferior frontal gyrus, L: left, M: middle, MTG: middle temporal gyrus, NAcc: 

nucleus accumbens, PCu: precuneus, pMCC: posterior medial cingulate cortex, pSTS: posterior 

superior temporal sulcus, R: right, rACC: right anterior cingulate cortex, SMA: supplementary motor 

area, SMG: supramarginal gyrus, TPJ: temporo-parietal junction 
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