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 2 

Abstract 15 

A comprehensive understanding of the stimulus-response properties of individual neurons is necessary to 16 

crack the neural code of sensory cortices. However, a barrier to achieving this goal is the difficulty of 17 

analyzing the nonlinearity of neuronal responses. In computer vision, artificial neural networks, especially 18 

convolutional neural networks (CNNs), have demonstrated state-of-the-art performance in image 19 

recognition by capturing the higher-order statistics of natural images. Here, we incorporated CNN for 20 

encoding models of neurons in the visual cortex to develop a new method of nonlinear response 21 

characterization, especially nonlinear estimation of receptive fields (RFs), without assumptions regarding 22 

the type of nonlinearity. Briefly, after training CNN to predict the visual responses of neurons to natural 23 

images, we synthesized the RF image such that the image would predictively evoke a maximum response 24 

("maximization-of-activation" method). We first demonstrated the proof-of-principle using a dataset of 25 

simulated cells with various types of nonlinearity, revealing that CNN could be used to estimate the 26 

nonlinear RF of simulated cells. In particular, we could visualize various types of nonlinearity underlying 27 

the responses, such as shift-invariant RFs or rotation-invariant RFs. These results suggest that the method 28 

may be applicable to neurons with complex nonlinearities, such as rotation-invariant neurons in higher 29 

visual areas. Next, we applied the method to a dataset of neurons in the mouse primary visual cortex (V1) 30 

whose responses to natural images were recorded via two-photon Ca2+ imaging. We could visualize 31 

shift-invariant RFs with Gabor-like shapes for some V1 neurons. By quantifying the degree of 32 

shift-invariance, each V1 neuron was classified as either a shift-variant (simple) cell or shift-invariant 33 

(complex-like) cell, and these two types of neurons were not clustered in cortical space. These results 34 

suggest that the novel CNN encoding model is useful in nonlinear response analyses of visual neurons and 35 

potentially of any sensory neurons. 36 

 37 

Author summary 38 

A goal of sensory neuroscience is to comprehensively understand the stimulus-response properties of 39 

neuronal populations. However, a barrier to achieving this goal is the difficulty of analyzing the 40 
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nonlinearity of neuronal responses, and existing methods for nonlinear response analyses are often 41 

designed to address specific types of nonlinearity of responses. In this study, we present a novel 42 

assumption-free method for nonlinear characterization of visual responses, especially nonlinear estimation 43 

of receptive fields (RFs), using a convolutional neural network (CNN), which has achieved state-of-the-art 44 

performance in computer vision. The proposed method was validated as follows. First, when trained to 45 

predict neuronal responses to natural images, the model yielded the best prediction accuracy among several 46 

machine-learning-based encoding models. Second, nonlinear RFs were successfully visualized from the 47 

trained CNN. Third, the shift-invariance of the responses, a well-known nonlinear property in V1 complex 48 

cells, was quantified from the visualized RFs. These results support the efficacy of a CNN encoding model 49 

for nonlinear response analyses that does not require explicit assumptions regarding the nonlinearity of 50 

neuronal responses. This study will contribute to the elucidation of nonlinear computations performed in 51 

neurons in the visual cortex and possibly any sensory cortex. 52 

 53 

Introduction 54 

A goal of sensory neuroscience is to comprehensively understand the stimulus-response properties of 55 

neuronal populations. In the visual cortex, such properties were first characterized by Hubel and Wiesel, 56 

who discovered the orientation and direction selectivity of simple cells in the primary visual cortex (V1) 57 

using simple bar stimuli [1]. Later studies revealed that the responses of many visual neurons, including 58 

even simple cells [2–5], display nonlinearity, such as shift-invariance in V1 complex cells [6]; size, 59 

position, and rotation-invariance in inferotemporal cortex [7–9]; and viewpoint-invariance in a face patch 60 

[10]. Nevertheless, nonlinear response analyses of visual neurons have been limited thus far, and existing 61 

analysis methods are often designed to address specific types of nonlinearity underlying the neuronal 62 

responses. For example, the spike-triggered average [11] assumes linearity; moreover, the second-order 63 

Wiener kernel [12] and spike-triggered covariance [13–15] address second-order nonlinearity at most. In 64 

this study, we aim to analyze visual neuronal responses using an encoding model that does not assume the 65 

type of nonlinearity. 66 
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 An encoding model that is useful for nonlinear response analyses of visual neurons must 67 

capture the nonlinear stimulus-response relationships of neurons. Thus, the model should be able to predict 68 

neuronal responses to stimulus images with high accuracy [16] even if the responses are nonlinear. In 69 

addition, the features that the encoding model represents should be visualized at least in part so that we can 70 

understand the neural computations underlying the responses. Artificial neural networks are promising 71 

candidates that may meet these criteria. Neural networks are mathematically universal approximators in 72 

that even one-hidden-layer neural network with many hidden units can approximate any smooth function 73 

[17]. In computer vision, neural networks trained with large-scale datasets have yielded state-of-the-art and 74 

sometimes human-level performance in digit classification [18], image classification [19], and image 75 

generation [20], demonstrating that neural networks, especially convolutional neural networks (CNNs) 76 

[21,22], capture the higher-order statistics of natural images through hierarchical information processing. 77 

In addition, recent studies in computer vision have provided techniques to extract and visualize the features 78 

learned in neural networks [23–26]. 79 

Several previous studies have used artificial neural networks as encoding models of visual 80 

neurons. These studies showed that artificial neural networks are highly capable of predicting neuronal 81 

responses with respect to low-dimensional stimuli such as bars and textures [27,28] or to complex stimuli 82 

such as natural stimuli [29–35]. Furthermore, receptive fields (RFs) were visualized by the principal 83 

components of the network weights between the input and hidden layer [29], by linearization [31], and by 84 

inversion of the network to evoke at most 80% of maximum responses [32]. However, these indirect RFs 85 

are not guaranteed to evoke the highest response of the target neuron. 86 

In this study, we first investigated whether nonlinear RFs could be directly estimated by CNN 87 

encoding models (Fig 1) using a dataset of simulated cells with various types of nonlinearities. We 88 

confirmed that CNN yielded the best accuracy among several encoding models in predicting visual 89 

responses to natural images. Moreover, by synthesizing the image such that it would predictively evoke a 90 

maximum response ("maximization-of-activation" method), nonlinear RFs could be accurately estimated. 91 

Specifically, by repeatedly estimating RFs for each cell, we could visualize various types of nonlinearity 92 

underlying the responses without any explicit assumptions, suggesting that this method may be applicable 93 
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to neurons with complex nonlinearities, such as rotation-invariant neurons in higher visual areas. Next, we 94 

applied the same procedures to a dataset of mouse V1 neurons, showing that CNN again yielded the best 95 

prediction accuracy among several encoding models and that shift-invariant RFs with Gabor-like shapes 96 

could be estimated for some cells from the CNNs. Furthermore, by quantifying the degree of 97 

shift-invariance of each cell using the estimated RFs, we classified V1 neurons as shift-variant (simple) 98 

cells and shift-invariant (complex-like) cells. Finally, these cells were not spatially clustered in cortical 99 

space. These results verify that nonlinear RFs of visual neurons can be characterized using CNN encoding 100 

models. 101 

 102 

Results 103 

Nonlinear RFs could be estimated by CNN encoding models for simulated cells with 104 

various types of nonlinearities. 105 

We generated a dataset comprising the stimulus natural images (2200 images) and the corresponding 106 

responses of simulated cells. To investigate the ability of CNN to handle various types of nonlinearities, we 107 

incorporated various basic nonlinearities for the data generation, including rectification, shift-invariance, 108 

and in-plane rotation-invariance, which were found in V1 simple cells [2], V1 complex cells [6], and 109 

inferotemporal cortex [9], respectively. We generated the responses of simple cells (N = 30), complex cells 110 

(N = 70), and rotation-invariant cells (N = 10) using the linear-nonlinear model [2], energy model [36,37], 111 

and rotation-invariant model, respectively (Figs 2A, 2B, and 3A; see Materials and Methods for details). 112 

The responses were generated using one Gabor-shaped filter for a simple cell, two phase-shifted 113 

Gabor-shaped filters for a complex cell, and 36 rotated Gabor-shaped filters for a rotation-invariant cell. 114 

We also added some noise sampled from a Gaussian distribution such that the trial-to-trial variability of 115 

simulated data was similar to that of real data.  116 

 We first used a dataset of simulated simple cells and complex cells and trained the CNN for 117 

each cell to predict responses with respect to the natural images (Fig 1). For comparison, we also 118 

constructed the following types of encoding models: an L1-regularized linear regression model (Lasso), 119 
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L2-regularized linear regression model (Ridge), support vector regression model (SVR) with a radius basis 120 

function kernel, and hierarchical structural model (HSM) [31]. The prediction accuracy, defined as the 121 

Pearson correlation coefficient between the predicted responses and actual responses in a 5-fold 122 

cross-validation manner, of CNN was high and better than that of other models for both simple cells and 123 

complex cells (Fig 2C), ensuring that the stimulus-response relationships of these cells were successfully 124 

captured by CNN. 125 

 Next, we visualized the RF of each cell using the maximization-of-activation approach (see 126 

Materials and Methods) [23,24] where the RF was regarded as the image that evoked the highest activation 127 

of the output layer of the trained CNN. We performed this RF estimation 100 times independently for each 128 

cell, utilizing the empirical fact that an independent iteration of RF estimation processes creates different 129 

RF images by finding different maxima [23]. Fig 2D and 2F show 20 out of the 100 RF images estimated 130 

by the trained CNN (CNN RF images) for a representative simple cell and complex cell, respectively. The 131 

predicted responses with respect to these RF images were all > 99% of the maximum response in the actual 132 

data of each cell, ensuring that the activations of the CNN output layers were indeed maximized. All 133 

visualized RF images had clearly segregated ON and OFF subregions, and the structure was close to the 134 

Gabor-shaped filters used in the response generations (Fig 2D vs. Fig 2A and Fig 2F vs. Fig 2B). 135 

Furthermore, when RF images were compared within a cell, RF images of cell #29 had ON and OFF 136 

subregions in nearly identical positions, while some RF images of cell #31 were shifted in relation to one 137 

another. These observations are consistent with the assumption that cell #29 is a simple cell and cell #31 is 138 

a complex cell.  139 

For complex cells, we expect that RF estimation using linear methods would fail to generate an 140 

image with clearly segregated ON and OFF subregions, whereas nonlinear RF estimation would not [14]. 141 

Thus, the similarity between a linearly estimated RF image (linear RF) and a nonlinearly estimated RF 142 

image is expected to be low for complex cells. We performed linear RF estimations following a previous 143 

study [38]. Although the linear RF image and CNN RF image were similar for cell #29 (Fig 2E), the linear 144 

RF image for cell #31 was ambiguous, lacked clear subregions, and was in sharp contrast to the CNN RF 145 

image (Fig 2G). These results are again consistent with the assumption that cell #29 is a simple cell and 146 
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cell #31 is a complex cell. 147 

Next, we comprehensively analyzed the RFs of populations of simulated simple cells and 148 

complex cells. Cells with a CNN prediction accuracy ≤ 0.3 were omitted from the analyses (Fig 2C). First, 149 

the similarity between a linear RF image and CNN RF image, measured as the maximum normalized 150 

pixelwise dot product between a linear RF image and 100 CNN RF images, was distinctly different 151 

between simple cells and complex cells (Fig 2J), reflecting different degrees of nonlinearity. Second, the 152 

accuracy of Gabor-kernel fitting of the CNN RF image, measured as the pixelwise Pearson correlation 153 

coefficient between a CNN RF image and the fitted Gabor kernel, was high among all analyzed cells (Fig 154 

2H), confirming that the estimated RFs had a shape similar to a Gabor kernel. Third, the maximum 155 

similarity between each filter used in the response generation and 100 CNN RF images were high for both 156 

simple cells and complex cells (Fig 2I). Fourth, the orientations of the CNN RF images, estimated by 157 

fitting them to Gabor kernels, were nearly identical to the orientations of the filters of the response 158 

generators (circular correlation coefficient [39] = 0.92; Fig 2K). These results suggest that the RFs 159 

estimated by the CNN encoding models had similar structure to the ground truth and that the 160 

shift-invariant property of complex cells was successfully visualized from iterative RF estimations. 161 

 We also performed similar analyses using a dataset of simulated rotation-invariant cells. When 162 

trained to predict the responses with respect to the natural images, CNNs again yielded high prediction 163 

accuracy (Fig 3B). Next, we estimated RFs using the maximization-of-activation approach independently 164 

1000 times for each cell. The predicted responses with respect to these RF images were all > 99% of the 165 

maximum response in the actual data of each cell, ensuring that the activations of CNN output layers were 166 

indeed maximized. As shown in Fig 3C, the visualized RF images of cell #1 had Gabor shapes close to the 167 

filters used in the response generation (Fig 3A). In addition, some RF images were rotated in relation to 168 

one another, consistent with the rotation-invariant response property of this cell. Finally, we quantitively 169 

compared the RFs (1000 RF images for each cell) and the filters of the response generator (36 filters for 170 

each cell). For each filter, the maximum similarity with 1000 CNN RF images was high (Fig 3D), 171 

suggesting that the estimated RFs had various orientations and similar structure to the ground truth. Thus, 172 

using the proposed RF estimation approach, RFs were successfully estimated by the CNN encoding 173 
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models, and various types of nonlinearity could be visualized from multiple RFs without assumptions, 174 

although the hyperparameters and layer structures of CNNs were unchanged across cells. 175 

 176 

CNN yielded the best accuracy for prediction of the visual response of V1 neurons. 177 

Next, we used a dataset comprising the stimulus natural images (200−2200 images) and corresponding real 178 

neuronal responses (N = 2465 neurons, 4 planes), which were recorded using two-photon Ca2+ imaging 179 

from mouse V1 neurons. To investigate whether CNN was able to capture the stimulus-response 180 

relationships of V1 neurons, we trained the CNN for each neuron to predict the neuronal responses to the 181 

natural images (Fig 1). The prediction accuracy was again measured by the Pearson correlation coefficient 182 

between the predicted responses and actual responses of the held-out test data in a 5-fold cross-validation 183 

manner (N = 2455 neurons that were not used for the hyperparameter optimizations; see Materials and 184 

Methods). Comparison of the prediction accuracies among several types of encoding models revealed that 185 

CNN outperformed other models (Fig 4A), and the prediction of the CNNs were accurate (Fig 4B and 4C). 186 

These results show that the stimulus-response relationships of V1 neurons were successfully captured by 187 

CNN, demonstrating the efficacy of using CNN for further RF analyses of V1 neurons. 188 

 189 

Estimation of nonlinear RFs of V1 neurons from CNN encoding models. 190 

Next, we visualized the RF of each neuron by the maximization-of-activation approach (see Materials and 191 

Methods) [23,24]. Neurons with a CNN prediction accuracy ≤ 0.3 were omitted from this analysis (Fig 4B). 192 

The resultant RF images for two representative neurons are shown in Fig 5B. Both RF images have clearly 193 

segregated ON and OFF subregions and were well fitted with two-dimensional Gabor kernels (Fig 5C), 194 

consistent with known characteristics of simple cells and complex cells in V1 [14,40]. The accuracy of 195 

Gabor-kernel fitting, measured as the pixelwise Pearson correlation coefficient between the RF image and 196 

fitted Gabor kernel, was high among all analyzed neurons (median r = 0.77; Fig 5E), suggesting that the 197 

RF images generated from the trained CNNs (CNN RF images) successfully captured the Gabor-like 198 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/348060doi: bioRxiv preprint 

https://doi.org/10.1101/348060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

structure of RFs observed in V1. We also performed linear RF estimations following a previous study [38]. 199 

Although the linear RF image and CNN RF image were similar for neuron #639, the linear RF image for 200 

neuron #646 was ambiguous, lacked clear subregions, and was in sharp contrast to the CNN RF image (Fig 201 

5A and 5B), suggesting that neuron #639 would be linear and neuron #646 would be nonlinear. Supporting 202 

this idea, further analysis (see below) revealed that neuron #639 was a shift-variant (simple) cell, and 203 

neuron #646 was a shift-invariant (complex-like) cell. The similarity between a linear RF image and a 204 

CNN RF image, measured as the normalized pixelwise dot product between these two images, varied 205 

among all analyzed neurons (Fig 5D), reflecting the distributed nonlinearity of V1 neurons. 206 

 207 

Estimated RFs of some V1 neurons were shift-invariant. 208 

We then performed 100 independent CNN RF estimations for each V1 neuron to characterize the 209 

nonlinearity of RFs. We especially focused on the shift-invariance, the most well-studied nonlinearity in 210 

V1 complex cells [6]. Fig 6 shows 20 of the 100 CNN RF images for two representative neurons. The 211 

predicted responses with respect to these RF images were all > 99% of the maximum response in the actual 212 

data of each neuron, ensuring that the activations of the CNN output layers were indeed maximized. 213 

Importantly, RF images of neuron #639 had ON and OFF subregions in nearly identical positions (Fig 6A). 214 

In contrast, some RF images of neuron #646 were horizontally shifted in relation to one another (Fig 6B), 215 

suggesting that neuron #646 is shift-invariant and could be a complex cell. 216 

 217 

Characterization of shift invariance from iteratively estimated RF images. 218 

To quantitatively understand the shift-invariance, we then developed predictive models of visual responses 219 

for each simulated complex cell and V1 neuron, termed simple model and complex model, inspired by the 220 

stimulus-response properties of simple and complex cells. In the simple model, the response to a stimulus 221 

was predicted as the normalized dot product between the stimulus image and an RF image. The RF image 222 

that yielded the best prediction accuracy was chosen and used for all stimulus images (Fig 7A). In contrast, 223 
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in the complex model, the response to each stimulus was predicted as the maximum of the normalized dot 224 

products between the stimulus image and several RF images (Fig 7B). Here, RF images used in these 225 

models were selected from 100 RF images as ones that were shifted to one another. If there was no shifted 226 

RF image, the complex model was identical to the simple model (see Materials and Methods). Fig 7 shows 227 

examples of predictions from the simple and complex models for V1 neuron #646. Although the response 228 

to one image (Stim 1) was predicted moderately well by both the simple model and complex model, the 229 

prediction for another image (Stim 2) by the simple model was far poorer than the prediction by the 230 

complex model. This difference is probably because the ON/OFF phase of the RF image used in the simple 231 

model (RF 4) did not match with that of Stim 2. On the other hand, the complex model had multiple RF 232 

images, and one RF image (RF 1) matched with Stim 2. These results suggest that the responses of this 233 

neuron are somewhat tolerant to phase shifts and that such complex cell-like properties were better 234 

captured by the complex model than by the simple model. 235 

 We then measured the prediction accuracy of each model for all stimulus images by the Pearson 236 

correlation coefficient between the predicted responses and actual responses. As expected, the accuracy of 237 

the complex model was better than that of the simple model for this neuron #646 (Fig 8A and 8B), 238 

reflecting its shift-invariant property (Figs 5, 6 and 7). 239 

We compared the accuracy of the simple model and complex model for populations of V1 240 

neurons (Fig 8C), simulated simple cells, and simulated complex cells. We defined the complexness index 241 

for each cell by 242 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑛𝑒𝑠𝑠 =
𝐴𝐶𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐴𝐶𝐶𝑠𝑖𝑚𝑝𝑙𝑒

𝐴𝐶𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑥
 (1) 243 

where ACCsimple and ACCcomplex are the response prediction accuracy of the simple model and complex 244 

model, respectively. Cells with a Gabor fitting accuracy (Figs 2H and 5E) ≤ 0.6, ACCsimple < 0, or 245 

ACCcomplex < 0 were omitted from this analysis. Then, we defined simple cells as cells with complexness ≤ 246 

0 and complex-like cells as cells with complexness > 0. The sensitivity (recall) of this classification for 247 

simulated data was 89% for simple cells and 85% for complex cells (Fig 2L), ensuring the validity of this 248 

classification. In addition, the ratio of complex-like cells (26%, 258/997 neurons; Fig 8D and 8E) among 249 
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V1 neurons was consistent with that in a previous study [41]. 250 

 We also compared complexness with other indices of linearity and nonlinearity using a dataset 251 

of V1 neurons. First, linear prediction accuracy, measured as the prediction accuracy of the L1-regularized 252 

linear regression model (Lasso), significantly anti-correlated with complexness for complex-like cells (Fig 253 

8F) (r = −0.35, p < 0.001, N = 258; Student’s t-test), suggesting that the linear regression models could not 254 

accurately predict the responses of neurons with high complexness. Similarity between linear RF images 255 

and CNN RF images also anti-correlated significantly with complexness (Fig 8G) (r = −0.35, p < 0.001, N 256 

= 258; Student’s t-test), suggesting that linear RFs could not accurately capture the RFs of neurons with 257 

high complexness. Furthermore, the nonlinearity index ((CNN prediction accuracy – Lasso prediction 258 

accuracy) / CNN prediction accuracy; see Materials and Methods) significantly correlated with 259 

complexness (Fig 8H) (r = 0.34, p < 0.001, N = 258, Student’s t-test), suggesting that the nonlinearity of 260 

V1 neurons was at least in part introduced by the nonlinearity of complex-like cells.  261 

 262 

Simple cells and complex-like cells were not spatially clustered in V1. 263 

Finally, we tested whether simple cells and complex-like cells were spatially organized in the cortical 264 

space. We first investigated the spatial structure of complexness by comparing the difference in 265 

complexness with the cortical distance between all neuron pairs (N = 129451 neuron pairs). We found no 266 

correlation between complexness and cortical distance (r = −0.01), suggesting no distinct spatial 267 

organization of complexness (Fig 9A left and B). We also calculated the cortical distances of all simple 268 

cell-simple cell pairs and complex-like cell-complex-like cell pairs. The cumulative distributions of these 269 

distances, normalized by the area, were both within the first and 99th percentiles of the position-permuted 270 

simulations (1000 times for each plane; see Materials and Methods for the permutations), demonstrating no 271 

cluster organization of simple cells or complex-like cells (Fig 9 right and 9B). 272 

 273 
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Discussion 274 

Estimation of nonlinear RFs from CNN encoding models. 275 

We first revealed that the accuracy of CNN in predicting responses to natural images was high for both 276 

simulated cells and V1 neurons (Figs 2C, 3B, 4B). This finding is not surprising in light of the recent 277 

successes of artificial neural networks, especially CNN, in computer vision [18–20]. Such successes could 278 

be attributed to the ability of CNN to acquire sophisticated statistics of high-dimensional data [42]. 279 

Likewise, the high prediction accuracy of CNN shown in this study is possibly due to its ability to capture 280 

higher-order nonlinearity between stimulus images and responses. Notably, the prediction accuracy of 281 

CNN was high even though the hyperparameters and layer structures of CNNs were identical for all types 282 

of cells, suggesting that CNN might be used as a general-purpose encoding model of visual neurons. 283 

 Using simulated cells, we showed that nonlinear RFs could be accurately estimated by CNN 284 

encoding models by the maximization-of-activation approach. In particular, various types of response 285 

nonlinearity could be visualized, including RFs with different phases for complex cells (Figs 2D, 2F) and 286 

RFs with different orientations for rotation-invariant cells (Fig 3C). One advantage of this RF estimation 287 

method is that it does not require an explicit assumption regarding the nonlinearities of RFs, whereas most 288 

methods for nonlinear RF estimation in previous studies do. Second-order Wiener kernel [12] and 289 

spike-triggered covariance [13–15] are capable of estimating RFs with second-order nonlinearity at most, 290 

and Fourier-based methods [43,44] estimate RFs that are linearized in the Fourier domain. The second 291 

advantage is that our method can directly visualize the image that is predicted to evoke the highest 292 

response of the target cell, in contrast to previously proposed RF estimations from artificial neural 293 

networks [29,31,32]. As suggested in [45], the disadvantage of the maximization-of-activation approach is 294 

that it may produce unrealistic images even if the maximization of activation was successful because the 295 

candidate image space is extremely vast. To avoid this issue, we constrained the candidate image space to 296 

natural images by using Lp-norm and total variance regularizations. Although the hyperparameters of 297 

regularizations were fixed across all analyzed cells, these regularizations worked well when considering 298 

the quality of the resultant RF images. 299 
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 We then applied the RF estimation method to a dataset of V1 neurons and revealed that 300 

shift-invariant RFs could be estimated for complex-like cells from CNNs. Although direct quantification of 301 

the shift-invariant property of each cell from these RF images (e.g., by calculating the maximum shift 302 

distance orthogonal to the Gabor orientation) is indeed possible, it could lead to incorrect conclusions since 303 

the prediction accuracies of CNNs were imperfect (Figs 2C and 4B). For example, a CNN trained with low 304 

accuracy for a simple cell might not accurately implement the stimulus-response relationship of this cell 305 

and might accidentally generate some shifted RF images. Instead, the complexness was calculated as the 306 

difference in accuracies of the simple model and complex model (Figs 7 and 8) so that the complexness 307 

reflects the stimulus-response statistics of the data. 308 

 309 

Association between animal vision and deep learning. 310 

Although artificial neural networks and cortical neural networks have much in common [46], the former 311 

might not be an exact in silico implementation of the latter (e.g., the learning algorithms discussed in [47]). 312 

However, recent studies have suggested that the representations of CNNs and the activity of the visual 313 

cortex share hierarchical similarities [48–52]. These studies raise the possibility that the CNN encoding 314 

model could be applicable to neurons with complex nonlinearities, such as rotation-invariant neurons in the 315 

inferotemporal cortex [9]. Thus, the CNN encoding model and nonlinear RF characterization proposed in 316 

this paper will contribute to future studies of neural computations not only in V1 but also in higher visual 317 

areas. 318 

 319 

Materials and methods 320 

Acquisition of neural data 321 

All experimental procedures were performed using C57BL/6 male mice (N = 3; Japan SLC, Hamamatsu, 322 

Shizuoka, Japan), which were approved by the Animal Care and Use Committee of Kyushu University and 323 

the University of Tokyo. Anesthesia was induced and maintained with isoflurane (5% for induction, 1.5% 324 
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during surgery, and ~0.5% during imaging with a sedation of ~0.5 mg/kg chlorprothixene; Sigma-Aldrich, 325 

St Louis, MO, USA). After the skin was removed from the head, a custom-made metal head plate was 326 

attached to the skull with dental cement (Super Bond; Sun Medical, Moriyama, Shiga, Japan), and a 327 

craniotomy was made over V1 (center position: 0−1 mm anterior from lambda, +2.5−3 mm lateral from 328 

midline). Then, 0.8 mM Oregon green BAPTA-1 (OGB-1; Life Technologies, Grand Island, NY, USA), 329 

dissolved with 10% Pluronic (Life Technologies) and 25 µM sulforhodamine 101 (SR101; Sigma-Aldrich) 330 

was pressure-injected using Picospritzer III (Parker Hannifin, Cleveland, OH, USA) approximately 400 331 

µm below the cortical surface. The craniotomy was sealed with a coverslip and dental cement. 332 

 Neuronal activity was recorded using two-photon microscopy (A1R MP; Nikon, Minato-ku, 333 

Tokyo, Japan) with a 25× objective lens (NA = 1.1; PlanApo, Nikon) and Ti:Sapphire mode-locked laser 334 

(Mai Tai DeepSee; Spectra Physics, Santa Clara, CA, USA). OGB-1 and SR101 were both excited at a 335 

wavelength of 920 nm, and their emissions were filtered at 525/50 nm and 629/56 nm, respectively. 336 

507×507 µm or 338×338 µm images were obtained at 30 Hz using a resonant scanner with a 337 

512×512-pixel resolution. 338 

 Visual stimuli were presented using PsychoPy [53] on a 32-inch LCD monitor (Samsung 339 

Electronics, Yeongtong, Suwon, South Korea) at a refresh rate of 60 Hz. Stimulus presentation was 340 

synchronized with imaging using transistor-transistor logic signal of image acquisition timing and its 341 

counter board (USB-6501, National Instruments, Austin, TX, USA).  342 

 First, the retinotopic position was determined using moving grating patches (contrast: 99.9%, 343 

spatial frequency: 0.04 cycles/degree, temporal frequency: 2 Hz). We first determined the coarse 344 

retinotopic position by presenting a grating patch with a 50-degree diameter at each 5×3 position covering 345 

the entire monitor. Then, a grating patch with a 20-degree diameter was presented at each 4×4 position 346 

covering an 80×80-degree space to fine-tune the position. The retinotopic position was defined as the 347 

position with the highest response. 348 

 Natural images (200, 1200, or 2200 images, 512×512 pixels) were obtained from the van 349 

Hateren Database [54] and McGill Calibrated Colour Image Database [55]. After each image was 350 
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gray-scaled, it was preprocessed such that its contrast was 99.9% and its mean intensity across pixels was 351 

at an intensity level of approximately 50%, and then masked with a circle with a 60-degree diameter. The 352 

stimulus presentation protocol consisted of 3−12 sessions. In one session, images were ordered 353 

pseudo-randomly, and each image was flashed three times in a row. Each flash was presented for 200 ms 354 

with 200-ms intervals between flashes in which a gray screen was presented. 355 

 356 

Acquisition of simulated data 357 

The following types of artificial cells were simulated in this study: simple, complex, and rotation-invariant 358 

cells. A simple cell was modeled using a "linear-nonlinear" cascade formulated as shown below where the 359 

response to a stimulus was defined as the dot product between the stimulus image s and a Gabor-shaped 360 

filter f1, followed by a rectifying nonlinearity [2] and a Gaussian noise (Fig 2A).  361 

𝑅𝑠𝑖𝑚𝑝𝑙𝑒 = max(𝑠 ∗ 𝑓1, 0) + 𝑛𝑜𝑖𝑠𝑒 (2) 362 

A complex cell was modeled using an energy model with two subunits [36,37]. In this model, 363 

each subunit calculated the dot product between the stimulus image s and a Gabor-shaped filter f1, f2. Then, 364 

the outputs of these two subunits were squared, summed together, and the squared root was taken. Finally, 365 

a Gaussian noise was added to define the response (Fig 2B). Here, the Gabor-shaped filters used in this 366 

model had identical amplitude, position, size, spatial frequency, and orientation; the phase was shifted by 367 

90 degrees. Note that this procedure, formulated as follows, can also be viewed as a 368 

"linear-nonlinear-linear-nonlinear" cascade [30,56]. 369 

𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = √(𝑠 ∗ 𝑓1)
2

+ (𝑠 ∗ 𝑓2)
2

+ 𝑛𝑜𝑖𝑠𝑒 (3) 370 

 A rotation-invariant cell was modeled using 36 subunits. The i-th subunit (1 ≤ i ≤ 36) calculated 371 

the dot product between the stimulus image s and a Gabor-shaped filter fi. After the maximum of the 372 

outputs of the subunits was taken, a Gaussian noise was added to define the response (Fig 3A). Here, the 373 

Gabor-shaped filters used in this model fi had identical amplitude, position, size, spatial frequency, and 374 
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phase; the orientation of the i-th subunit was 5 (i - 1) degree. 375 

𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛−𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 = max (𝑠 ∗ 𝑓𝑖) + 𝑛𝑜𝑖𝑠𝑒 (4) 376 

 We simulated 30 simple cells, 70 complex cells, and 10 rotation-invariant cells. For each cell 377 

simulation, we performed 4 trials with a different random noise. The stimuli used in these three models 378 

were identical to the stimuli used in the acquisition of real neural data (2200 images), which were 379 

down-sampled to 10×10 pixels. The Gabor-shaped filter used in these models, a product of a 380 

two-dimensional Gaussian envelope and a sinusoidal wave, was formulated as follows: 381 

𝐺(𝑥, 𝑦) = 𝐴 exp (− (
𝑥′2

2𝜎1
2

+ 
𝑦′2

2𝜎2
2

)) cos (𝑘0𝑦′ +  𝜏) (5) 382 

𝑥′ = (𝑥 − 𝑥0) cos 𝜃 + (𝑦 − 𝑦0) sin 𝜃 (6) 383 

𝑦′ =  −(𝑥 − 𝑥0) sin 𝜃 + (𝑦 − 𝑦0) cos 𝜃 (7) 384 

where A is the amplitude, σ1 and σ2 are the standard deviations of the envelopes, k0 is the frequency, τ is the 385 

phase, (x0, y0) is the center coordinate, and θ is the orientation. The parameters for f1 of simple cells and 386 

complex cells were sampled from a uniform distribution over the following range: 0.1 ≤ x0 / Lx ≤ 0.9, 0.1 ≤ 387 

y0 / Ly ≤ 0.9, 0 ≤ A ≤ 1, 0.1 ≤ σ1 / Lx ≤ 0.2, 0.1 ≤ σ2 / Ly ≤ 0.2, π/3 ≤ k0 ≤ π, 0 ≤ θ ≤ 2π, and 0 ≤τ≤ 2π, 388 

where Lx and Ly are the size of the stimulus image in the x and y dimension, respectively. The parameters 389 

for f1 of rotation-invariant cells were sampled from a uniform distribution over the following range: 0 ≤ A 390 

≤ 1, 0.15 ≤ σ1 / Lx ≤ 0.2, 0.15 ≤ σ2 / Ly ≤ 0.2, π/3 ≤ k0 ≤ 2/3 π, and 0 ≤τ≤ 2π. x0, y0 and θ were set as Lx/2, 391 

Ly/2, and 0, respectively. 392 

 The noise was randomly sampled from a Gaussian distribution with a mean of zero and 393 

standard deviation of one, which resulted in trial-to-trial variability similar to that of real data. 394 

 395 
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Data preprocessing 396 

Data analyses were performed using Matlab (Mathworks, Natick, MA, USA) and Python (2.7.13, 3.5.2, 397 

and 3.6.1). For real neural data, images were phase-corrected and aligned between frames [57]. To 398 

determine regions of interest (ROIs) for individual cells, images were averaged across frames, and slow 399 

spatial frequency components were removed from the frame-averaged image with a two-dimensional 400 

Gaussian filter whose standard deviation was approximately five times the diameter of the soma. ROIs 401 

were first automatically identified by template matching using a two-dimensional difference-of-Gaussian 402 

template and then corrected manually. SR101-positive cells, which were considered putative astrocytes 403 

[58], were removed from further analyses. The time course of the fluorescent signal of each cell was 404 

calculated by averaging the pixel intensities within an ROI. Out-of-focus fluorescence contamination was 405 

removed using a method described previously [59,60]. The neuronal response to each natural image was 406 

computed as the difference between averaged signals during the last 200 ms of presentation and averaged 407 

signals during the interval preceding the image presentation.  408 

 For both real data and simulated data, responses were averaged across all trials and scaled such 409 

that the values were between zero and one. Natural images used in further analyses were down-sampled to 410 

10×10 pixels. We finally standardized the distribution of each pixel by subtracting the mean and then 411 

dividing it by the standard deviation.  412 

 413 

Encoding models 414 

Encoding models were developed for each cell. An L1-regularized linear regression model (Lasso), 415 

L2-regularized linear regression model (Ridge), and SVR with radius basis function kernel were 416 

implemented using the Scikit-learn (0.18.1) framework [61]. The hyperparameters of these encoding 417 

models were optimized by exhaustive grid search with 5-fold cross-validation for data of 10 real V1 418 

neurons. The optimized hyperparameters were as follows: the regularization coefficients of Lasso and 419 

Ridge were 0.01 and 104, respectively, and the kernel coefficient and penalty parameter of SVR were both 420 

0.01. The HSM was implemented as previously proposed [31] with hyperparameters identical to the ones 421 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2018. ; https://doi.org/10.1101/348060doi: bioRxiv preprint 

https://doi.org/10.1101/348060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

used in the study. 422 

CNNs were implemented using the Keras (2.0.3 and 2.0.6) and Tensorflow (1.1.0 and 1.2.1) 423 

framework [62]. A CNN consisted of the input layer, several hidden layers (convolutional layer, pooling 424 

layer, or fully connected layer), and the output layer. The activation of a convolutional layer was defined as 425 

the rectified linear (ReLU) [63] transformation of a two-dimensional convolution of the previous layer 426 

activation. Here, the number of convolutional filters in one layer was 32, the size of each filter was (3, 3), 427 

the stride size was (1, 1), and valid padding was used. The activation of a pooling layer was 2×2 428 

max-pooling of the previous layer activation, and valid padding was also used. The activation of a fully 429 

connected layer was defined as the ReLU transformation of the weighted sum of the previous layer 430 

activation. If the previous layer had a two-dimensional shape, the activation was flattened to one 431 

dimension. The activation of the output layer was the sigmoidal transformation of the weighted sum of the 432 

previous layer. The size of the mini batch, dropout [64] rate, type of optimizer (stochastic gradient descent 433 

(SGD) or Adam [65]), learning rate decay coefficient of SGD, and number and types of hidden layers 434 

(convolutional, max-pooling, or fully connected) were optimized with 5-fold cross-validation for the data 435 

of 10 real V1 neurons. The optimized hyperparameters of CNN were as follows: the size of the mini batch 436 

was 5 or 30 (depending on the size of the dataset), the dropout rate of fully connected layers was 0.5, the 437 

optimizer was SGD, the learning rate decay coefficient was 5 × 10−5, and the hidden layer structure was 4 438 

successive convolutional layers and one pooling layer, followed by one fully connected layer (Fig 1). Other 439 

hyperparameters were fixed.  440 

The training was formulated as follows: 441 

𝑊∗  = argmin
𝑊

∑ 𝐸(𝑓(𝐼; 𝑊), 𝑡)
𝐼,𝑡

(8) 442 

where I is an image, t is the response, W is the parameters, and f is the model. E is the loss function defined 443 

as the mean squared error between the predicted responses and actual responses in the training dataset. The 444 

prediction accuracy was defined as the Pearson correlation coefficient between the predicted responses and 445 

actual responses. The training procedures of CNNs were as follows. First, the training data were 446 

subdivided into data used to update the parameters (90% of training data) and data used to monitor 447 
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generalization performances (10% of training data: validation set). After the parameters were initialized by 448 

sampling from Glorot uniform distributions [66], they were updated iteratively by backpropagation [67], 449 

which was performed to minimize the loss function in either a SGD or Adam manner. SGD was formulated 450 

as follows: 451 

𝑣 ← 𝑚𝑣 +  𝜀
𝜕𝐸(𝑤)

𝜕𝑤
(9) 452 

𝑤 ←  𝑤 −  𝑣 (10) 453 

where w is the parameter we want to update, m is the momentum coefficient (0.9), v is the momentum 454 

variable, ε is the learning rate (initial learning rate was 0.1), and E(w) is the loss with respect to the batched 455 

data. Adam was formulated as previously suggested [65]. The training iterations were stopped upon 456 

saturation of the prediction accuracy for the validation set. 457 

 The response prediction accuracy of each encoding model was evaluated in a 5-fold 458 

cross-validation manner for each cell not used for hyperparameter optimizations. To quantify the 459 

nonlinearity of each cell, we defined a nonlinearity index for each cell by comparing the response 460 

prediction accuracy of Lasso and CNN in the following way: 461 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝐴𝐶𝐶𝐶𝑁𝑁 − 𝐴𝐶𝐶𝐿𝑎𝑠𝑠𝑜

𝐴𝐶𝐶𝐶𝑁𝑁
(11) 462 

where ACCCNN and ACCLasso are the response prediction accuracy of CNN and Lasso, respectively. 463 

 464 

RF estimation 465 

Nonlinear RFs were estimated from trained CNNs using a regularized version of a 466 

maximization-of-activation approach [23,24]. Cells with a CNN prediction accuracy ≤ 0.3 were omitted 467 

from this analysis. First, CNN was trained using all data for each cell. Then, starting with a randomly 468 

initialized image, an image I was updated iteratively (10 times) by gradient ascent to maximize the 469 

following objective function E(I): 470 
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𝐸(𝐼) =  𝑓(𝐼; 𝑊∗
) −

𝜆1

𝑀
‖𝐼‖𝛼

𝛼 −
𝜆2

𝑀
∫ ((

𝜕𝐼

𝜕𝑥
)

2

+ (
𝜕𝐼

𝜕𝑦
)

2

)

𝛽/2

𝑑𝑥𝑑𝑦 (12) 471 

where f is the trained CNN model; W* is the trained parameters, which is fixed in this procedure; λ1, λ2, α, 472 

and β are the regularization parameters, which are fixed as 10, 2, 6, and 1, respectively; and M is the size 473 

of the image. The second and third terms are regularization terms to minimize the α-norm and total 474 

variation [26] of the image, respectively. The RMSprop algorithm [68] was used as the gradient ascent 475 

formulated as follows: 476 

𝐼 ← 𝐼 + 
𝛼

√𝑟 + 10−7

𝜕𝐸(𝐼)

𝜕𝐼
 (13)

 477 

𝑟 ← 𝛾𝑟 + (1 − 𝛾) (
𝜕𝐸(𝐼)

𝜕𝐼
)

2

(14) 478 

where γ is the decay coefficient (0.95) and α is the learning rate (1.0). The generated image was finally 479 

processed such that its mean was zero and standard deviation was one (RF image). To confirm that the 480 

generated RF image maximally activates the output layer, the whole process was repeated independently 481 

until we generated an image to which the predicted response was high (for most cells, > 95% of the 482 

maximum response of the actual data of each cell). Note that for representative cells (Figs 2D, 2E, 3C, and 483 

4B), the predicted responses to the generated RF images were > 99% of the maximum response of the 484 

actual data. 485 

 To quantitatively assess the generated RF images, we fitted each RF image with a Gabor kernel 486 

G(x, y) using sequential least-squares programming implemented in Scipy (0.19.0). A Gabor kernel, a 487 

product of a two-dimensional Gaussian envelope and a sinusoidal wave, was formulated as follows: 488 

𝐺(𝑥, 𝑦) = 𝐴 exp (− (
𝑥′2

2𝜎1
2

+ 
𝑦′2

2𝜎2
2

)) cos (𝑘0𝑦′+  𝜏) (15) 489 

𝑥′ = (𝑥 − 𝑥0) cos 𝜃 + (𝑦 − 𝑦0) sin 𝜃 (16) 490 
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𝑦′ =  −(𝑥 − 𝑥0) sin 𝜃 + (𝑦 − 𝑦0) cos 𝜃 (17) 491 

where A is the amplitude, σ1 and σ2 are the standard deviations of the envelopes, k0 is the frequency, τ is the 492 

phase, (x0, y0) is the center coordinate, and θ is the orientation. The goal of fitting was to minimize the 493 

pixelwise absolute error between the RF image and a Gabor kernel. This optimization was started with 494 

seven different initial x0 and seven different initial y0 to ensure that the optimization fell in the global 495 

minima. In addition, to create a reasonable Gabor kernel, we set bounds for some of the parameters: 0 ≤ x0 496 

/ Lx ≤ 1, 0 ≤ y0 / Ly ≤ 1, 0 ≤ σ1 / Lx ≤ 0.2, 0 ≤ σ2 / Ly ≤ 0.2, and π/3 ≤ k0 ≤ π, where Lx and Ly are the size of 497 

the RF image in the x and y dimension, respectively. The accuracy of Gabor fitting was evaluated by the 498 

pixelwise Pearson correlation coefficient between the original RF image and the fitted Gabor kernel. 499 

Linear RF images were created by a regularized pseudoinverse method described previously 500 

[38]. The regularization parameter was optimized for each cell by exhaustive grid search in a 10-fold 501 

cross-validation manner. For each value in the grid, responses to the held-out test data were predicted using 502 

the created RF image. Prediction accuracy was calculated as the Pearson correlation coefficient between 503 

the predicted responses and actual responses. The linear RF image was created using the value with the 504 

highest prediction accuracy as the regularization parameter. 505 

 506 

Quantification of shift-invariance (complexness) 507 

To distinguish between simple cells and complex-like cells, we then created a "shifted image set", which 508 

contained CNN RF images that were shifted with respect to one another, selected from the 100 CNN RF 509 

images. For this purpose, a zero-mean normalized cross correlation (ZNCC) was calculated for every pair 510 

of RF images (I1, I2): 511 

𝑍𝑁𝐶𝐶(𝑢, 𝑣) =
∑ ∑ (𝐼1(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼1̅)(𝐼2(𝑥, 𝑦) − 𝐼2̅)𝑥𝑦

√∑ ∑ (𝐼1(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼1̅)
2

𝑥𝑦 √∑ ∑ (𝐼2(𝑥, 𝑦) − 𝐼2̅ )
2

𝑥𝑦

(18)
 512 

where (u, v) is a pixel shift and 𝐼1̅ is the mean of I1. If the ZNCC was above 0.95 for a (u, v) pair ((u, v) 513 
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≠ (0, 0)), these two RF images were defined as shifted to each other by (u, v) pixels. Then, for each pair 514 

of shifted RF images, we calculated the shift distance as the maximum length of (u, v) vectors projected 515 

orthogonally to the Gabor orientation. Finally, starting with the two RF images with the largest shift 516 

distance, we iteratively collected RF images that were shifted from the already collected RF images to 517 

create the "shifted image set". If none of the 100 RF images were shifted to another, the "shifted image set" 518 

consisted of the RF image with the highest predicted response. 519 

A simple model and complex model were created for each cell as follows (Fig 7). In the simple 520 

model, the response to a stimulus image was predicted as the normalized dot product between the stimulus 521 

image and one RF image selected from the "shifted image set". The RF image that yielded the best 522 

prediction accuracy was chosen and used for all stimulus images. In the complex model, the response to a 523 

single stimulus image was predicted as the maximum of the normalized dot products between the stimulus 524 

image and RF images in the "shifted image set". The RF image with the maximal dot product was selected 525 

for each stimulus image separately. The prediction accuracy for each model was quantified as the Pearson 526 

correlation coefficient between the predicted responses and actual responses among all stimulus-response 527 

datasets. Finally, the complexness index for each cell was defined by 528 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑛𝑒𝑠𝑠 =
𝐴𝐶𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐴𝐶𝐶𝑠𝑖𝑚𝑝𝑙𝑒

𝐴𝐶𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑥
 (19) 529 

where ACCsimple and ACCcomplex are the response prediction accuracy of the simple model and complex 530 

model, respectively. Cells with the Gabor fitting accuracy ≤ 0.6, ACCsimple < 0, or ACCcomplex < 0 were 531 

omitted from this analysis. 532 

 533 

Spatial organizations of simple cells and complex-like cells 534 

The spatial organizations of simple cells and complex-like cells were evaluated in two ways. First, for each 535 

pair of neurons, we calculated the in-between cortical distance and the difference in complexness. A 536 

relationship between the cortical distances and the complexness differences is indicative of a spatial 537 

organization [57]. Second, we calculated the cumulative distributions of the in-between cortical distances 538 
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for all pairs of simple cells and for all pairs of complex-like cells. To statistically evaluate the cumulative 539 

distributions, we permuted the cell positions 1000 times independently for each plane. For each 540 

permutation, cell positions of simple cells were randomly sampled from original cell positions of simple 541 

and complex-like cells. Other positions were allocated for complex-like cells. After the cell positions were 542 

determined, the cumulative distributions of the in-between cortical distances were calculated. After 543 

repeating this procedure independently 1000 times for each plane, the first and 99th percentiles of the 544 

permuted cumulative distributions were calculated for the significance levels. 545 
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Figures 739 

 740 

Fig 1. Scheme of CNN encoding model.  741 

The Ca2+ response to a natural image was predicted by convolutional neural network (CNN) consisting of 742 

4 successive convolutional layers, one pooling layer, one fully connected layer, and the output layer 743 

(magenta circle). See Materials and Methods for details. Briefly, a convolutional layer calculates a 3×3 744 

convolution of the previous layer followed by a rectified linear (ReLU) transformation. The pooling layer 745 

calculates max-pooling of 2×2 regions in the previous layer. The fully connected layer calculates the 746 

weighted sum of the previous layer followed by a ReLU transformation. The output layer calculates the 747 

weighted sum of the previous layer followed by a sigmoidal transformation. During training, parameters 748 

were updated by backpropagation to reduce the mean squared error between the predicted responses and 749 

actual responses. 750 
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 752 

Fig 2. Nonlinear RFs could be estimated by CNN encoding models for simulated simple cells and 753 

complex cells.  754 

(A) Scheme of response generation for simulated simple cells. The response to a stimulus was defined as 755 

the rectified dot product between the stimulus image and a Gabor-shaped filter, followed by an additive 756 

Gaussian noise. The Gabor-shaped filter of simulated simple cell #29 is displayed in this panel. (B) 757 
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Scheme of response generation for simulated complex cells. The response to a stimulus was defined as the 758 

square root of the squared sum of the output of two subunits, followed by an additive Gaussian noise. Each 759 

subunit, which had a Gabor-shaped filter with a shifted phase, calculated the dot product between the 760 

stimulus image and the filter (See Materials and Methods for details). The Gabor-shaped filters of 761 

simulated complex cell #31 are displayed in this panel. (C) Left: comparison of the response prediction 762 

accuracies among the following encoding models: the L1-regularized linear regression model (Lasso), 763 

L2-regularized linear regression model (Ridge), support vector regression model (SVR), hierarchical 764 

structural model (HSM), and CNN. Data are presented as the mean ± s.e.m. (N = 30 simulated simple cells 765 

and N = 70 simulated complex cells). Right: cumulative distribution of CNN prediction accuracy. 766 

Simulated cells with a CNN prediction accuracy ≤ 0.3 (indicated as the red arrow) were removed from the 767 

following receptive field (RF) analysis. (D, F) Results of iterative CNN RF estimations for simulated 768 

simple cell #29 (D) and complex cell #31 (F). Only 20 of the 100 generated RF images are shown in these 769 

panels. Grids are depicted in cyan. Although the simulated simple cell #29 had RFs in nearly identical 770 

positions, the simulate complex cell #31 had RFs in shifted positions. (E, G) Linearly estimated RFs (linear 771 

RFs) of simulated simple cell #29 (E) and complex cell #31 (G), using a regularized pseudoinverse method. 772 

(H) Gabor-fitting accuracy of CNN RFs. Accuracy was defined as the Pearson correlation coefficient 773 

between the CNN RF and fitted Gabor kernel. (I) Maximum similarity between each generator filter and 774 

100 CNN RFs. (J) Similarity between linear RFs and CNN RFs. Similarity was defined as the normalized 775 

pixelwise dot product between the linear RF and CNN RF. (K) Relationship of the Gabor orientations 776 

between generator filters and CNN RFs. (L) Distribution of complexness. Only cells with a CNN 777 

prediction accuracy > 0.3 were analyzed in H–L (N = 19 simple cells and N = 47 complex cells). 778 
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 780 

Fig 3. Nonlinear RFs could be estimated by CNN encoding models for simulated rotation-invariant 781 

cells.  782 

(A) Scheme of response generation for simulated rotation-invariant cells. The response to a stimulus was 783 

defined as the maximum of the output of 36 subunits followed by an additive Gaussian noise. Each subunit, 784 

which had a Gabor-shaped filter with different orientations, calculated the dot product between the 785 

stimulus image and the filter (See Materials and Methods for details). The filters of simulated cell #1 are 786 

displayed in this panel. (B) Cumulative distribution of CNN prediction accuracy (N = 10 cells). Simulated 787 

cells with a CNN prediction accuracy ≤ 0.3 (indicated as the red arrow) were removed from the following 788 

RF analysis. (C) Results of iterative CNN RF estimations for simulated cell #1. Only 20 of the 1000 789 
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generated RF images are shown in this panel. RF images had Gabor-like shapes but their orientations were 790 

different in different iterations. (D) Maximum similarity between each generator filter and 1000 CNN RFs. 791 

Only cells with a CNN prediction accuracy > 0.3 were analyzed (N = 9 cells). 792 
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 794 

Fig 4. Prediction accuracy of the CNN for V1 neurons.  795 

(A) Comparison of the response prediction accuracies among various encoding models: the L1-regularized 796 

linear regression model (Lasso), L2-regularized linear regression model (Ridge), SVR, HSM, and CNN. 797 

Data are presented as the mean ± s.e.m. (N = 2455 neurons). (B) Cumulative distribution of CNN 798 

prediction accuracy. Neurons with a CNN prediction accuracy ≤ 0.3 (indicated as the red arrow) were 799 

removed from the following RF analysis. (C) Distributions of actual responses and predicted responses of 800 

the neuron with the best prediction accuracy in a plane (top) and the neuron with the median prediction 801 

accuracy in a plane (bottom). Each dot in the right panel indicates data for each stimulus image. Solid lines 802 

in the right panels are the linear least-squares fit lines. Only data for 200 images are shown.  803 
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 804 

Fig 5. Estimating RFs of V1 neurons from trained CNNs.  805 

(A) Linearly estimated RFs (linear RFs) of two representative neurons (#639 and #646), using a 806 

regularized pseudoinverse method. (B) RFs estimated from the trained CNNs (CNN RFs) of the two 807 

representative neurons. (C) Gabor kernels fitted to CNN RFs of the two representative neurons. (D) 808 

Similarity between linear RFs and CNN RFs. Similarity was defined as the normalized pixelwise dot 809 

product between the linear RF and the CNN RF. (E) Gabor fitting accuracy of CNN RFs. Accuracy was 810 

defined as the Pearson correlation coefficient between the CNN RF and the fitted Gabor kernel. Only 811 

neurons with a CNN prediction accuracy > 0.3 were analyzed in D and E (N = 1160 neurons). 812 
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 814 

Fig 6. Examples of iterative CNN RF estimation for V1 neurons.  815 

Results of iterative CNN RF estimations for neuron #639 (A) and neuron #646 (B). Only 20 out of the 100 816 

generated RF images are shown in this figure. The number above each RF image indicates the shift pixel 817 

distance between the RF image and the top left RF image. The shift distance between two images was 818 

calculated as the maximum distance of pixel shifts with which the zero-mean normalized cross correlation 819 

(ZNCC) > 0.95, projected orthogonally to the Gabor orientation. "NA" indicates that the ZNCC was not 820 

above 0.95 for any shift. While shift distances were zero or NA for RF images of neuron #639, some RF 821 

images of neuron #646 were shifted to another by one pixel. 822 
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 824 

Fig 7. Schemes of the simple model and complex model.  825 

Schemes of the simple model and complex model are illustrated using RFs and actual responses of neuron 826 

#646. (A) The simple model is a linear predictive model, which predicts the neuronal response as the 827 

normalized dot product between the stimulus image and one RF image (RF 4). (B) The complex model 828 

predicts the neuronal response as the maximum of the normalized dot products of the stimulus image and 829 

several RF images (RF 1–4). Note that the complex model predicted the neuronal response to Stim 2 better 830 

than the simple model for this neuron. 831 
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 833 

Fig 8. Simple cells and complex-like cells.  834 

(A) Distributions of the actual responses (cyan lines) and responses predicted by the simple model (green 835 

line in the top panel) and the complex model (magenta line in the bottom panel) for neuron #646. (B) 836 

Cumulative distributions of prediction errors of the simple model (green) and the complex model 837 

(magenta) for neuron #646. Prediction error was defined as the difference between the predicted response 838 
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and actual response. (C) Relationship of accuracies between the simple model and complex model (N = 839 

997 neurons). Neurons with the Gabor fitting accuracy ≤ 0.6, accuracy of the simple model < 0, or 840 

accuracy of the complex model < 0 were omitted from this analysis. (D) Distribution of complexness. 841 

Simple cells (green) and complex-like cells (magenta) were classified with threshold = 0 (black arrow). (E) 842 

Proportion of classified cells, simple cells, and complex-like cells among neurons with the CNN response 843 

prediction accuracy > 0.3. Classified cells were neurons with the Gabor fitting accuracy > 0.6, the response 844 

prediction accuracy of the simple model > 0, and the response prediction accuracy of the complex model > 845 

0. Simple cells were neurons with complexness ≤ 0. Complex-like cells were neurons with complexness > 846 

0. (F–H) Relationships between complexness and linear (Lasso) prediction accuracy (F), similarity 847 

between linear RFs and CNN RFs (G), and the nonlinearity index (H). Data of simple cells are presented 848 

as the mean ± s.d. (N = 739 neurons, green). Solid lines are the linear least-squares fit lines for 849 

complex-like cells. Both linear prediction accuracy and RF similarity of complex-like cells (magenta) 850 

negatively correlated with complexness (r = –0.35, p < 0.001, N = 258 neurons: F and r = –0.29, p < 0.001, 851 

N = 258 neurons: G), while the nonlinearity index of complex-like cells positively correlated with 852 

complexness (r = 0.34, p < 0.001, N = 258 neurons: H), suggesting that complexness defined here indeed 853 

reflected nonlinearity. 854 
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 856 

Fig 9. Spatial organizations of simple cells and complex-like cells.   857 

(A) Left: cortical distribution of complexness for the representative plane. Position of each neuron is 858 

represented as the circle annotated by the complexness (cyan to magenta for complex-like cells 859 
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(complexness > 0) and white for simple cells (complexness ≤ 0)). Right: cortical distribution of simple 860 

cells (N = 238 neurons, green) and complex-like cells (N = 70 neurons, magenta) for the representative 861 

plane. (B) Relationship between cortical distances and differences of complexness for all simple cells and 862 

complex-like cells. (C) Cumulative distributions of the number of simple cell-simple cell pairs (left) or 863 

complex-like cell-complex-like cell pairs (right) as a function of the cortical distance, normalized by the 864 

area. Dark shadows indicate the range from the first to 99th percentile of 1000 position-permuted 865 

simulations for each plane. The cumulative distributions were both within the first and 99th percentiles of 866 

simulations, indicating no distinct spatial arrangements of simple cells or complex-like cells. 867 
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