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Abstract. A recurring set of small sub-networks have been identified
as the building blocks of biological networks across diverse organisms.
These network motifs have been associated with certain dynamical be-
haviors and define key modules that are important for understanding
complex biological programs. Besides studying the properties of motifs
in isolation, existing algorithms often evaluate the occurrence frequency
of a specific motif in a given biological network compared to that in
random networks of similar structure. However, it remains challenging
to relate the structure of motifs to the observed and expected behavior
of the larger network. Indeed, even the precise structure of these bio-
logical networks remains largely unknown. Previously, we developed a
formal reasoning approach enabling the synthesis of biological networks
capable of reproducing some experimentally observed behavior. Here, we
extend this approach to allow reasoning about the requirement for spe-
cific network motifs as a way of explaining how these behaviors arise. We
illustrate the approach by analyzing the motifs involved in sign-sensitive
delay and pulse generation. We demonstrate the scalability and biolog-
ical relevance of the approach by revealing the requirement for certain
motifs in the network governing stem cell pluripotency.
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1 Introduction

Network motifs [2, 19] are basic interaction patterns that recur throughout bi-
ological networks, where they are observed more frequently than in random
networks with similar properties (e.g. a comparable number of components and
interactions). The same small set of network motifs appears to serve as the build-
ing blocks of biological networks for diverse organisms [16, 31, 3]. Each network
motif can operate as an elementary circuit with a well-defined function, which
is integrated within a larger network and has a role in performing the required
information processing [21]. Since the introduction of the concept of network
motifs and the identification and experimental validation of initial instances [2],
a wide range of additional motifs with new roles have been uncovered. Network
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motifs have been identified within transcriptional networks [26, 15], signaling net-
works [3], neuronal networks [24], and metabolic networks [23]. In addition to
biological networks, recurring motifs have been identified in engineered systems,
including electronic circuits and the world wide web [19].

The study of network motifs provides an attractive research direction to-
wards understanding complex biological programs and uncovering modularity
and reusable patterns of computation in the design of biological circuits. While
many of the associated problems are challenging, especially when dealing with
large biological networks, a wide range of computational methods have been de-
veloped [12, 28]. For example, novel motifs have been identified by comparing the
occurrence frequency of a sub-network in a known biological network to that in
random networks of similar structure, while various graph methods have been ap-
plied to algorithmically scan a network for specific motifs. Substantial research
effort has been devoted to dealing with the algorithmic challenges of network
motif identification and the related graph algorithms [17, 22, 1, 28]. This has led
to the development of a number of computational tools, including mfinder [12],
MAVisto [25], NeMoFinder [6], FANMOD [29], Grochow-Kellis [9], Kavosh [11],
MODA [30], NetMODE [14], Acc-MOTIF [18] and QuateXelero [13] (see also
[28] for a review and detailed comparisons). Verification techniques have also
been applied to study network motifs. In [5], certain motifs and their dynamic
properties were characterized using temporal logic, and parallel model checking
was used to verify properties of networks with around ten components. In [10],
approximate methods for analyzing gene regulatory networks were developed
utilizing network motifs.

Following the identification of biologically-relevant motifs and the exploration
of their dynamical properties in isolation, understanding how their presence or
absence within a larger biological network defines that network’s behavior be-
comes a central problem. This problem is compounded by the fact that the
precise structure of such biological networks often remains largely unknown, due
to noisy and sometimes irreproducible experimental data. This makes it chal-
lenging to search for motifs within the network or to explore the connections
between a network’s structure and its behavior.

Previously, we developed a formal reasoning approach enabling the synthesis
and analysis of biological networks (e.g. incorporating gene regulation, signaling,
etc.) that were only partially known [8, 32]. The method, summarized briefly in
Sec. 2.1, introduced the concept of an Abstract Boolean Network as a formal-
ism for describing discrete dynamical models of biological networks, where the
precise interactions or update rules were unknown. These models could then
be constrained with specifications of some required behaviors, thereby provid-
ing a characterization of the set of all networks capable of reproducing some
experimental observations.

In this paper, we extend the approach from [8, 32] to enable automated rea-
soning about the requirement for specific network motifs as part of a biological
network that is only partially known. This allows us to incorporate within the
same framework constraints relating to the structure of the network, represented
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as logical formulas over the presence or absence of different motifs, together with
constraints about the network’s dynamic behavior. Our reasoning approach then
allows us to draw conclusions about certain motifs being essential or disallowed
for reproducing the required behavior, thus helping explaining how the observed
behaviors arise from various motifs.

We illustrate the approach by analyzing the motifs involved in sign-sensitive
delay and pulse generation – two distinct behaviors that have been associated
with certain network structures and observed biological properties [15, 16]. We
consider a generic 3-layered network topology that serves as a prototype for
a variety of biological programs and find that under the qualitative, Boolean
modeling formalism of [8, 32], positive feedback is required to implement both
behaviors.

To demonstrate the scalability and biological relevance of the approach, we
apply the proposed method to identify the motifs requirements in the network
governing stem cell pluripotency [8, 7]. This reveals that positive feedback, as well
as a particular incoherent feed-forward motif, is also essential for maintaining
pluripotency in the qualitative model.

We envision that the method proposed in this paper will provide a powerful
tool for researchers interested in exploring the structural properties of biologi-
cal networks and understanding how different motifs lead to various biological
behaviors. In the future, this tool could support theoretical studies, where the
connections between network structure and function are explored, as well as ex-
perimental studies, for example allowing researches to focus on the core, essential
modules of biological networks.

2 Methods

In the following, we introduce some notation and summarize the approach from
[32], which is implemented in the computational tool RE:IN (Sec. 2.1) and serves
as a foundation for the extensions we propose in this paper (Sec. 2.2 and Sec. 2.3).

2.1 Abstract Boolean Network Analysis

Following the notation from [32], an Abstract Boolean Network (ABN) is a tuple
A = (C, I, I?, r), where

– C is the finite set of components,
– I is the set of definite (positive and negative) interactions between the com-

ponents from C,
– I? is the set of possible (positive and negative) interactions, and
– r assigns a subset of regulation conditions (possible update functions) to

each component from C.

ABNs are discrete, dynamic models suitable for studying biological systems,
when often the existence of interactions between components are hypothesized,
but not definitively known [8, 32]. An example of an ABN is illustrated in Fig. 1a.
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Fig. 1. Abstract Boolean Networks constrained against experimental ob-
servations. a) The generic network architecture we consider is comprised of
three layers (Input/Computation/Output). The input and output layers each in-
clude a single component, while the number of computation components n can
be varied (in this case n = 1). This simple ABN includes 4 optional in-
teractions and 1 definite interaction. Formally, the ABN is defined as A =
(C, I, I?, r), where C = {Signal, TF0, Decision}, I = {(Signal, Signal,+)}, I? =
{(Signal, TF0,+), (Signal, TF0,−), (TF0, Decision,+), (TF0, Decision,−)}, and r al-
lows all regulation conditions for each component. b) Experimental constraints encode
expected states along different network trajectories. Here, two experimental constraints
are illustrated, which specify the initial state of the signal and decision components,
and their state at step 10. c) A single, concrete network that is consistent with the
constraints in (b) is generated using our SMT-based approach. d) Experiment trajec-
tories from the concrete model in (c) illustrate how the experimental constraints are
satisfied by this network.
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Each component c ∈ C describes a different chemical signal, protein, gene, etc.
that can exist in one of two states: active or inactive. The dynamics of the
system are defined by the regulation condition assigned to each component,
which serves as an ‘update function’ that specifies the state of the component
at step k + 1, given the state of all of its regulators (other components c′ ∈ C
with interactions to c) at step k. Here we consider synchronous updates, such
that deterministic trajectories emerge from each initial state, though RE:IN also
allows the exploration of asynchronous trajectories.

ABNs are abstract models because of the uncertainty in the precise network
topology and regulation rules for each component. An ABN is transformed into a
concrete Boolean Network by instantiating a subset of the possible interactions,
discarding all other optional interactions, and assigning a specific regulation
condition for each gene. By virtue of the unique combination of interactions and
regulation conditions, different concrete models derived from the same ABN can
have different dynamical behaviors.

The concept of a Constrained Abstract Boolean Network (cABN) was intro-
duced in [32] as a formalism for describing a set of Boolean Network models that
are consistent with some experimentally observed biological behaviors. A cABN
is defined in terms of an ABN, together with a set of constraints over the states
of the components from C. These constraints encode experimental observations,
where separate executions of the system correspond to different biological ‘ex-
periments’. For example, the observations encoded in Fig. 1b specify a biological
program where cells make a particular decision only in the absence of some sig-
nal. Experiment 1 requires that there exists a trajectory, where both the ‘Signal’
and ‘Decision’ components are initially inactive and ‘Decision’ becomes active
at step 10. Similarly, Experiment 2 requires that there exists a trajectory, where
both the ‘Signal’ and ‘Decision’ components are initially active and ‘Decision’
becomes inactive at step 10. These constraints limit the feasible assignments of
regulation conditions and possible interactions, such that all concrete networks
from the cABN are guaranteed to reproduce all experimental observations.

cABN analysis was solved in [32] by encoding it as a Satisfiability Modulo
Theories (SMT) problem. This enables the enumeration of individual concrete
models that are consistent with the experimental observations. For example,
the concrete model from Fig. 1c is generated from the ABN in Fig. 1a and is
consistent with the constraints from Fig. 1b. This is demonstrated using the
trajectories visualized in Fig. 1d. The SMT-based approach from [32] also allows
reasoning about hypotheses describing unknown biological behaviors to make
novel predictions from all consistent models collectively, without the need to
enumerate individual concrete networks.

In addition to the above, the analysis can reveal both required and disallowed
interactions of the cABN. An interaction i ∈ I? is required if the experimentally
observed behavior cannot be reproduced without it (i.e. all concrete models
of the cABN include the interaction i). Similarly, an interaction is disallowed
if including it in a concrete model means that the observed behavior can no
longer be reproduced. The analysis of required and disallowed interactions yields
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insight into how network structures lead to certain dynamic behaviors, and is
the starting point for the extensions we propose here.

In the following, we use set notation to denote the existence or non-existence
of interactions in an ABN or a cABN. For example, (c, c′,+) ∈ I denotes that a
definite, positive interaction exists in A, (c, c′,−) ∈ I? denotes that an optional,
negative interaction exists, and (c, c′, ∗) 6∈ I denotes that no definite interactions
(i.e. the wild card ∗ stands for either + or −) exist between c and c′.

2.2 Motif Assignment

Definition 1 (Motif). A motif is a tupleM = {C, I, I?}, where C is the finite
set of components, I is the set of definite and I? the set of possible interactions
(similarly to the definition of ABNs).

Examples of several different motifs are illustrated in Fig. 3. In contrast to
ABNs, motifs (Def. 1) are static networks, without regulation conditions (update
functions) to make them dynamical systems. However, because interactions from
I? are uncertain, motifs are abstract – a motif defined as in Def. 1 with a non-

empty I? describes a set of 2|I
?| concrete, static networks.

Definition 2 (Motif Assignment). Given an ABN A = (CA, IA, I
?
A, r) and

a motif M = {CM, IM, I?M} a motif assignment is a map θ : CM → CA.

Note that Def. 2 can also be applied to cABNs instead of ABNs by omitting the
set of experimental observations from the cABN.

Given an ABN A = (CA, IA, I
?
A, r) and a motif M = {CM, IM, I?M}, let

ĪA = IA ∪ I?A and ĪM = IM ∪ I?M denote the set of all interactions (definite and
optional) in the ABN and the motif. Given a motif assignment θ : CM → CA,
let IA,θ,M = {(θ(c), θ(c′), ∗) ∈ IA | c ∈ CM ∧ c′ ∈ CM} denote the set of
definite interactions from the ABN between components that the motif maps to.
Similarly, let I?A,θ,M = {(θ(c), θ(c′), ∗) ∈ I?A | c ∈ CM ∧ c′ ∈ CM} denote the set

of optional interactions from the ABN between components that M maps to5.

Definition 3 (Valid Motif Assignment). A given motif assignment θ be-
tween ABN A and motif M is valid if and only if

1. ∀(c, c′,+) ∈ IA,θ,M . (θ−1(c), θ−1(c′),+) ∈ ĪM,
2. ∀(c, c′,−) ∈ IA,θ,M . (θ−1(c), θ−1(c′),−) ∈ ĪM,
3. ∀(c, c′,+) ∈ IM . (θ(c), θ(c′),+) ∈ ĪA, and
4. ∀(c, c′,−) ∈ IM . (θ(c), θ(c′),−) ∈ ĪA

The conditions from Def. 3.1-3.4 ensure that the motif components are assigned
to ABN components in such a way that the interactions match. In other words,
each definite (positive or negative) interaction in the ABN (between components
that the motif maps to) matches an interaction (definite or optional) in the motif

5 While, in general, the motif assignment θ is not invertible, θ−1(c) and θ−1(c′) can
be defined for the interactions (c, c′, ∗) ∈ IA,θ,M and (c, c′, ∗) ∈ I?A,θ,M
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(Def. 3.1-3.2) and each definite interaction in the motif matches an interaction
in the ABN (Def. 3.3-3.4).

Given an optional interaction (c, c′, ∗) ∈ I?A, let I∗c,c′ ∈ B denote the Boolean
choice variable representing whether the interaction is included in a concrete
model (see [32] for details of the SMT encoding of ABNs and cABNs). Asserting
that I∗c,c′ is true can be interpreted as modifying the ABN such that (c, c′, ∗) 6∈
I?A and (c, c′, ∗) ∈ IA (i.e. ensuring that the interaction is definitely present).
Similarly, asserting that I∗c,c′ is false can be interpreted as modifying the ABN

such that (c, c′, ∗) 6∈ I?A but (c, c′, ∗) 6∈ IA (i.e. ensuring that the interaction is
definitely absent).

The notion of a valid motif assignment (Def. 3) is sufficient to guarantee
that the components of the motif are mapped to components of the ABN in
such a way that all definite interactions are matched. However, it is possible
that optional interactions of the ABN map to definite interactions of the motif
or do not match any motif interactions. Therefore, while the interactions of the
ABN match that of the motif, it is not possible to guarantee that every concrete
network represented by the ABN matches the motif. The additional constraints
defined in the following ensure that this is indeed the case.

Definition 4 (Motif Assignment Constraints). Given a motif assignment
θ between ABN A and motif M, the motif assignment constraints are

Cθ = {I+c,c′ | (c, c
′,+) ∈ IM ∧ (θ(c), θ(c′),+) ∈ I?A} ∪

{I−c,c′ | (c, c
′,−) ∈ IM ∧ (θ(c), θ(c′),−) ∈ I?A} ∪

{¬I+c,c′ | (c, c
′,+) 6∈ ĪM ∧ (θ(c), θ(c′),+) ∈ I?A} ∪

{¬I−c,c′ | (c, c
′,−) 6∈ ĪM ∧ (θ(c), θ(c′),−) ∈ I?A}.

The additional constraints from (Def. 4) assert that an optional interaction
in the ABN that matches a definite interaction of the motif is always included.
Similarly, an optional ABN interaction that does not match any motif interaction
is never included. These additional constraints guarantee that the interactions
of all concrete networks of the ABN match those of the motif, under the given
motif assignment.

2.3 Motif Constraints

The motif assignment constraints (Def. 4) ensure that a given motifM is imple-
mented in all concrete networks of an ABN A between the specific components
defined by the motif assignment θ. In general, however, we are interested in guar-
anteeing that motif M is implemented in the ABN A by any of its components
rather than the the specific set of components specified by θ.

Definition 5 (Motif Constraints). Given an ABN A and a motif M, the
motif constraints CM,A are defined in terms of the motif assignment constraints

(Def. 4) as CM,A =
∨
θ∈Θ̂ Cθ, where Θ̂ is the set of valid motif assignments

between A and M (Def. 2).
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The motif constraints from Def. 5 guarantee that motif M is implemented by
every concrete network of ABN A, even though the precise components used to
implement M might differ.

Given an ABN A and a set of motifs, logical formulas (e.g. ¬M, M∨M′,
M∧M′, etc) could be constructed and interpreted by replacing each motif M
with its corresponding motif constraints CM,A.

2.4 Implementation

As part of the RE:IN framework [8, 32], a high-level, domain specific language
was proposed for describing cABNs by defining the sets of components and
interactions, as well as associated experimental observations. We implement the
methods described in Sec. 2.2 and Sec. 2.3 as an extension of RE:IN that enables
the reasoning about cABNs with additional structural constraints about the
presence or absence of various motifs.

Currently, the generation of motif constraints (Def. 5) is implemented as
a pre-processing step using a straightforward, exhaustive algorithm, where all
motif assignments are first generated and then filtered to preserve only the valid
ones using the conditions from Def. 3. Various cABN analysis problems are then
encoded and solved using an SMT solver as shown previously [8, 32], while the
additional motif constraints are also incorporated.

Two notable modifications are introduced to the method described in Sec. 2.2
and Sec. 2.3 for improved usability. First, when the name of a motif component
matches the name of a cABN component, no other assignments are considered
for that component. This enables the specification of partially known motifs,
where the mapping of some of the motif components to the cABN components
is given. Second, a dummy ‘Context’ component is always included within the
set of motif components. Given a motif assignment, the ‘Context’ component
matches any cABN component that is not already mapped to by the motif.
This provides additional control in specifying how a motif could be implemented
as part of the cABN’s network. For example, including optional positive and
negative interactions from ‘Context’ to every motif component and vice versa
does not impose additional constraints on the motif’s implementation. Without
any additional ‘Context’ interactions, on the other hand, the motif can only be
fully isolated and disconnected from all other components of the cABN.

2.5 Reasoning about Motifs

Combining the previously-developed SMT-based reasoning strategies [8, 32] with
an encoding of the motif constraints from Sec. 2.3 enables the automated rea-
soning about structural (motif) properties of a network, together with the re-
quirements about reproducing certain dynamical behaviors. Among the different
analysis questions this method could support, in this work we focus specifically
on identifying required (essential) and disallowed motifs. Similarly to the identifi-
cation of required and disallowed interactions (Sec. 2.1), a motifM is required if
the experimentally observed behavior could not be reproduced without it, while
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it is disallowed if enforcing that the motif is present in the network guarantees
that the observed behavior can no longer be reproduced. These hypotheses can
be tested as follows. Applying the SMT analysis of an ABN, if no concrete mod-
els are identified with the constraintM (the motif is present in the cABN) then
the motif is disallowed. If, on the other hand, no concrete models are identified
with the constraint ¬M (the motif is not present in the network), then the motif
is essential.

3 Results

To illustrate the analysis method proposed in Sec. 2, we apply it to study the
importance of certain motifs for biological networks. First, we consider a generic
network architecture (Fig. 2a) composed of an input, computation, and output
layer, which serves as a prototype for many biological programs (Sec. 3.1). We
study the models consistent with this network topology that could give rise
to two distinct dynamical behaviors (Fig. 2b) and identify the motifs from a
given set (Fig. 3) that are required or disallowed for producing this behavior as
described in Sec. 2.5. Then, in Sec. 3.2 we apply our motif analysis method to
the recently identified biological program governing stem cell decision making
[7], demonstrating the scalability and biological relevance of the approach.

3.1 Biological Program Prototype

We construct a simple abstract network topology in order to explore how vari-
ous motifs give rise to different dynamical behaviors. The network has a single
input component that represents some biochemical signal and a single output
(readout) component. The output component might represent a biochemical sig-
nal that affects a downstream process or, as in this example, could represent a
particular cellular decision (e.g. to differentiate, divide, etc). Information pro-
cessing is performed in the ‘computation’ layer, which includes a number of
components. While all interactions in the network are unknown, we assume that
information flows from the input layer, through the computation layer, and into
the output layer. As a result, we consider a network with a densely connected
computation layer (possible positive and negative interactions between each pair
of computation components). The input (signal) component might affect any of
the computation components, so possible positive and negative interactions from
the input (signal) to all computation components are included. Similarly, possi-
ble positive and negative interactions from each computation component to the
output (decision) component are included. A definite self-activation is included
for the signal to guarantee that once set at the beginning of computation, its
value does not change, but no other self-regulation interactions are allowed. The
resulting network architecture with n = 3 computation components is visualized
in Fig. 2a. In all subsequent analysis, we impose the additional constraint that
a positive and a negative interaction between the same components are never
included together in concrete models.
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Fig. 2. A generic network architecture generates biological programs im-
plementing either sign-sensitive delay or pulse generation. (a) The ABN we
consider is comprised of three computation components, with optional positive and
negative interactions between them. (b) The sign-sensitive delay and pulse generation
behaviors are represented graphically as transitions between different cellular states.
Signs on the edges indicate the presence (+) or absence (-) of input signal, while the
output is active only in the cell type shown in green (right-most cell). (c) An example
of a biological program implementing sign-sensitive delay has the characteristic delay
during activation (top trajectories) but responds faster during deactivation (bottom
trajectories). (d) An example of a biological program implementing pulse generation
produces a single pulse of the output when the input signal is present (top trajectories),
while the output remains inactive when the signal is not present (bottom trajectories).
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Fig. 3. The set of 15 network motifs we define and use to analyze biological
programs. These are sub-divided into a set of feedforward and feedback motifs. An
optional positive and negative interaction from the ‘Context’ component to every motif
component, and from every motif component to ‘Context’, is also included but not
shown in the figure. This ensures that the motif of interest can be identified in the
ABN being explored regardless of how the motif components are connected within the
network external to the motif (see Sec 2.4).

Sign-sensitive delay The first dynamical behavior we consider requires that a sys-
tem produce an output in response to some input (e.g. the ‘Decision’ component
becomes active if and only if ‘Signal’ is present in Fig. 2a). However, while the
effect on the output is immediate when the signal is withdrawn, there is a delay
on the output’s activation when the signal is supplied6. Due to the asymmetric
response to changes in the input signal, the behavior is called sign-sensitive delay
[15, 16] and was shown to have a potential role for making decisions based on
noisy inputs by filtering out fluctuations in input stimuli [15, 16].

We encode the requirement for a sign-sensitive delay as depicted in Fig. 2b.
When no signal is present, the system can stabilize in a state where the output
is inactive (shown in gray). When the signal is supplied, a transition to an
intermediate state occurs (light green), although the output is still not activated.
Withdrawing the signal at this point resets the system to the initial state, while
continuous application of the signal leads to a transition to a state where the
output is active (green). This active state is stable as long as the signal is present,

6 Depending on the exact implementation, the delay can be observed when the signal
switches from active to inactive instead, but this variation of a sign-sensitive delay
is not considered here.
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but withdrawal of the signal leads quickly back to the initial, inactive state. The
number of steps before the output is activated upon supplying the signal is the
delay.

We find that for delays greater than a single step, a network with at least
n = 3 computation components is required, and with n = 3, delays of up to
4 steps can be produced. An example of a concrete network implementing this
behavior is shown in Fig. 2c, but many such networks consistent with the cABN
from Fig. 2a exist, involving a variety of network motifs. To investigate further
the network structures capable of producing sign-sensitive delays, we defined a
number of feed-forward and feed-back motifs shown in Fig. 3.

We found that, while several motifs (IFFa, IFFc-d, PFB3a-b, NFB3a-b)
were disallowed (possible due to the limited number of computation nodes), no
motifs were required for producing a sign-sensitive delay of 4 steps (see Table 2).
We then considered pairs of motifs (e.g. by testingM∧M′ and ¬M∧¬M′) and
found that, while many pairs were jointly disallowed, only the pair PFB2a and
PFB2b was jointly required (see Table 2). This indicates that a positive feed-
back motif between two components (either PFB2a or PFB2b) is essential for
implementing a 4-step sign-sensitive delay in a network with n = 3 computation
components, but one of these motifs can be substituted for the other.

Pulse generation The second dynamical behavior we consider requires that a
system produce a transient output pulse in response to some input. We encode
this behavior as depicted in Fig. 2b. While no signal is present, the system
remains stably in a state where the output is inactive (shown in gray). When the
signal is supplied, a transition to an intermediate state occurs (green) where the
output is activated. Further application of the signal causes a transition to a state
where the output is no longer active (light green). Currently, no ‘resetting’ (i.e.
withdrawal of the signal causing a transition to the initial state) is considered.
The number of steps during which the output is active upon supplying the signal
is the pulse width.

We find that for pulse widths greater than a single step, a network with at
least n = 3 computation components is required, and with n = 3, pulse widths
up to 4 steps can be produced. An example of a concrete network implementing
this behavior is shown in Fig. 2d.

As in the previous case study, we were interested in exploring how the mo-
tifs from Fig. 3 affect the capacity for pulse generation. We found that, several
motifs (CPFFa, IFFc-d, PFB3a-b, NFB3a-b) were disallowed and PFB2b
was required. This indicates that a positive feedback motif between two com-
ponents, implemented specifically through two negative interactions, is essential
for implementing a generator for pulses of width 4 in a network with n = 3
computation components.

3.2 Stem Cell Pluripotency Program

The sign-sensitive delay and pulse generation examples demonstrate the utility
of our approach in revealing how different network motifs give rise to different
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dynamic behaviors within a relatively simple network. Here we apply our anal-
ysis to a realistic biological network. Previously, we used RE:IN to study the
biological program governing maintenance of näıve pluripotency: the property
uniquely exhibited by embryonic stem cells (ESCs) to generate all adult cell
types, as well as the germline. This capacity is lost as cells begin to differentiate
into the different adult lineages throughout embryogenesis. While the critical
transcription factors (TFs) that regulate pluripotency had been identified, and
the culture environments required to sustain the cells progressively refined [20], it
was not previously understood how environmental signals were processed by the
core TFs to govern the pluripotent state. We investigated the biological program
governing pluripotency by defining an ABN based on gene expression profiles of
mouse ESCs, which was subsequently constrained against a rich set of behav-
iors derived from experiments in which ESCs are subject to different culture
conditions and molecular perturbations [8]. This network has since been further
refined with additional data [7] (Fig. 4a). It is of interest to learn from this com-
plex starting set of networks whether there are specific motifs that are required
to generate, and thereby explain, the experimental observations of pluripotency.

Our analysis revealed that three motifs are required in all concrete mod-
els, IFFa, PFB2a, PFB3a, and four are disallowed, CNFFa, IFFc, NFB2,
NFB3a. The set of disallowed motifs is a trivial result, as none of these are
present in the ABN, regardless of how the optional interactions are instanti-
ated. In contrast, there are a number of possible configurations of components
in the ABN that are equivalent to the three motifs identified as required. We
subsequently tested the requirement for specific component assignments of these
motifs, and found that there are four cases present in all concrete models that
are consistent with the experimental constraints. The four required motifs are
shown in Fig. 4b, revealing that these models all require both feed-forward and
feed-back motifs between specific network components.

This example demonstrates how our approach scales to complex networks
that explain critical aspects of cellular decision-making, and can reveal essen-
tial elements of these biological programs required to explain observed behavior.
Further analysis could reveal whether the motifs we have identified serve to
determine the robustness of the pluripotency network, which is known to vary
between different culture conditions [8]. Furthermore, it would be of interest to
study whether these required motifs are repeated throughout networks governing
similar biological behaviors, and in particular, whether they arise in pluripotency
networks from other mammals, revealing elements of pluripotency that are con-
served between species.

4 Discussion

The SMT-based formal reasoning approach from [8, 32] allows us to encode dy-
namic Boolean models of biological networks, where the precise set of interactions
and regulation conditions for each component are unknown. These models can
be constrained against specifications of experimental observations in order to
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Fig. 4. Network motifs required for stem cell pluripotency. (a) The ABN de-
fined for three input signals provided as culture conditions to mouse ESCs - LIF, CH
and PD - and 13 downstream components that have been functionally validated as
critical pluripotency factors [7]. (b) Four instantiations of the three motifs required to
satisfy the experimental constraints.
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identify concrete models capable of reproducing the required behavior, or to test
novel hypotheses without selecting a particular concrete model from the set of
models consistent with the experiments.

Certain structural constraints can also be handled directly by the previous
method. For example, assigning an interaction as definite guarantees that only
concrete models that incorporate that interaction are considered. Similarly, re-
moving an interaction as either optional or definite guarantees that none of the
considered models incorporate this interaction. However, expressing more com-
plex structural properties, such as those required for reasoning about motifs, is
challenging using the approach from [8, 32]. The extensions we propose in this
work allow for complex properties describing the presence or absence of arbi-
trary motifs to be specified and tested, even when the network being studied
is partially unknown. This leads to a natural framework for incorporating rich
structural constraints and jointly reasoning about motifs and dynamical prop-
erties.

While the problem of identifying motifs does not scale favorably to large
networks [4, 27], in [8] it was demonstrated that relatively small networks of
core components can explain a rich set of biologically-relevant behaviors and
cellular decisions. Therefore, even the straightforward, exhaustive algorithm im-
plemented currently to generate motif constraints (Sec. 2.4) proves suitable for
examining networks of biological significance. Indeed, the computation times for
generating motif constraints are negligible compared to the task of verifying
whether any concrete models exist that satisfy all constraints (see results in Ap-
pendix A). All analysis reported in this paper was accomplished on the order of
seconds to minutes for simple networks (Sec. 3.1) and tens of minutes for the
biological network governing stem cell pluripotency on a 3.6GHz Intel Xeon (E5-
1620) computer with 32GB RAM (Sec. 3.2). Even so, many of the algorithmic
advances towards more efficient identification of motifs in large networks [17,
12, 28] could be adapted as part of the pre-processing step of motif constraint
generation.

An obvious limitation of the proposed method is that the cABN models be-
ing analyzed are qualitative (Boolean), discrete, and also deterministic, due to
the synchronous update semantics we assume (although asynchronous updates
are also supported by the method from [8, 32]). Therefore, dynamical behaviors
associated with motifs or networks that require more detailed modeling assump-
tions cannot be handled directly. Thus, certain properties, for example relating
to noise propagation and attenuation, or precise timing of signals, are not cur-
rently supported by our motif analysis.

Still, a number of interesting biological questions can be framed in terms of
the analysis of structural, motif-based properties of partially known networks
with respect to the dynamical behaviors they produce. In this work, we focused
specifically on identifying motifs that are essential or disallowed for producing
certain behaviors. The proposed approach can also be used for more in-depth
studies, for example in order to identify whether an essential motif must always
involve specific components in the network, as illustrated in the stem cell case
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study from Sec. 3.2. This is achieved by testing whether concrete models without
a given motif involving a particular network component exist. Further detailed
studies could also explore not just the presence of absence of motifs, but also how
these motifs must be connected to the rest of the network (e.g. for a particular
flow of information between components) in order to achieve the required be-
havior by exploring different combinations of optional and definite interactions
between motif components and the ‘Context’.

Another interesting question is what additional insights the motif analysis
proposed in this work can provide beyond the identification of required and dis-
allowed interactions, already possible with the methods from [8, 32]. Intuitively,
if a given motif must be implemented by specific components of a network,
then all the motif’s interactions would be identified as required, which is the
case for some of the motifs from the stem cell case study (Sec. 3.2). However,
identifying motifs that are essential but appear in different places in different
concrete networks that are consistent with experimental observations, reveals
deeper connections between structure and behavior. The degree to which a net-
work is constrained, either by reducing the number of optional interactions or by
specifying additional behaviors that must be reproduced, limits the possibility of
implementing motifs between different components and could lead to more pre-
dictions about essential or disallowed motifs. In contrast, larger, less-constrained
biological networks can achieve the same behavior in different ways and certain
motifs would no longer be required.

The case studies presented here illustrate how the proposed method can
be used for theoretical studies of the properties and requirements for different
motifs (Sec. 3.1) and demonstrate that the approach scales up to and provides
useful insights about realistic biological networks (Sec. 3.2). Extending these
studies and experimentally validating the motif requirements in these networks
is a direction for future research.

5 Summary

To deal with the challenge of studying the connections between the structure
and function of biological networks, even when these networks are only partially
understood, we extended the SMT-based reasoning approach RE:IN from [8, 32].
The proposed methods involve the algorithmic generation of motif constraints,
encoding the requirement that a given motif is present in some cABN. Rich
structural requirements can then be incorporated in addition to the functional
properties encoded as part of the cABN through logical formulas over such motif
constraints. We illustrated the method by predicting that certain motifs are
essential or disallowed for producing sign-sensitive delay and pulse generation in
a network representing a prototype of biological programs, and in the biological
network governing stem cell pluripotency [7]. The proposed methods enable the
study of network motifs in the context of partially unknown, abstract networks
and can support future theoretical and experimental studies, where reasoning
about network structure and function in the same framework is essential.
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A Appendix: Detailed Analysis Results

Motif M ¬M tM (t′M) t¬M (t′¬M)

CPFFa true true 13.63(0.09) 3.32(0.07)
CPFFb true true 9.63(0.06) 9.29(0.07)
IFFd false true 105.28(0.07) 8.11(0.17)
CNFFa true true 6.89(0.06) 4.85(0.08)
CNFFb true true 1.80(0.06) 9.79(0.07)
IFFa false true 122.59(0.08) 4.72(0.17)
IFFb true true 50.49(0.06) 4.69(0.07)
IFFc false true 79.28(0.06) 8.47(0.18)
PFB2a true true 4.91(0.07) 9.30(0.06)
PFB2b true true 2.41(0.07) 7.72(0.06)
NFB2 true true 3.06(0.06) 4.41(0.06)
PFB3a false true 3.66(0.07) 1.50(0.07)
PFB3b false true 9.72(0.06) 1.63(0.07)
NFB3a false true 1.62(0.06) 3.45(0.06)
NFB3b false true 1.69(0.06) 2.69(0.06)

Table 1. Single-motif analysis results for the 4-step sign-sensitive delay prop-
erty of the n = 3 generic network. Column M indicates whether solutions were
present that include the specified motif (if false, then the motif is disallowed). Column
¬M indicates whether solutions were present that do not include the specified motif
(if false, then the motif is required). tM and t¬M denote the computation times (in
seconds) for testing if the motif was disallowed and required. t′M and t′¬M denote the
computation times (in seconds) for generating and encoding the motif constraints.
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Motif1 Motif2 M∧M′ ¬M∧ ¬M′ tM∧M′ (t′M∧M′ ) t¬M∧¬M′ (t′¬M∧¬M′ )

CPFFa CPFFb false true 23.03(0.08) 15.03(0.06)
CPFFa IFFd false true 1.22(0.06) 4.79(0.06)
CPFFa CNFFa false true 1.68(0.06) 5.67(0.06)
CPFFa CNFFb true true 8.27(0.06) 6.19(0.06)
CPFFa IFFa false true 20.83(0.06) 1.57(0.06)
CPFFa IFFb false true 15.76(0.06) 8.12(0.17)
CPFFa IFFc false true 6.13(0.06) 4.73(0.07)
CPFFa PFB2a false true 46.10(0.06) 2.79(0.06)
CPFFa PFB2b true true 15.38(0.06) 7.76(0.07)
CPFFa NFB2 true true 11.26(0.07) 5.95(0.16)
CPFFa PFB3a false true 3.51(0.06) 2.10(0.06)
CPFFa PFB3b false true 6.30(0.06) 4.31(0.06)
CPFFa NFB3a false true 1.20(0.06) 2.67(0.06)
CPFFa NFB3b false true 1.68(0.06) 3.63(0.06)
CPFFb IFFd false true 18.43(0.06) 2.05(0.06)
CPFFb CNFFa true true 2.99(0.07) 8.92(0.07)
CPFFb CNFFb true true 1.64(0.06) 5.31(0.06)
CPFFb IFFa false true 7.90(0.06) 2.38(0.06)
CPFFb IFFb false true 21.61(0.06) 10.07(0.17)
CPFFb IFFc false true 16.60(0.07) 2.88(0.06)
CPFFb PFB2a true true 12.41(0.07) 14.59(0.06)
CPFFb PFB2b true true 2.55(0.06) 2.92(0.06)
CPFFb NFB2 true true 7.75(0.07) 8.44(0.06)
CPFFb PFB3a false true 1.28(0.07) 4.04(0.07)
CPFFb PFB3b false true 10.05(0.06) 7.96(0.06)
CPFFb NFB3a false true 1.54(0.17) 8.82(0.06)
CPFFb NFB3b false true 1.58(0.06) 7.94(0.07)
IFFd CNFFa false true 7.20(0.07) 5.12(0.06)
IFFd CNFFb false true 19.10(0.06) 1.69(0.06)
IFFd IFFa false true 15.27(0.06) 2.78(0.06)
IFFd IFFb false true 20.44(0.06) 12.50(0.06)
IFFd IFFc false true 2.37(0.17) 13.35(0.06)
IFFd PFB2a false true 73.76(0.06) 4.64(0.06)
IFFd PFB2b false true 57.58(0.06) 6.35(0.18)
IFFd NFB2 false true 41.37(0.06) 5.04(0.07)
IFFd PFB3a false true 1.20(0.06) 10.03(0.06)
IFFd PFB3b false true 4.72(0.06) 1.69(0.06)
IFFd NFB3a false true 1.60(0.06) 11.54(0.06)
IFFd NFB3b false true 1.68(0.06) 15.61(0.06)
CNFFa CNFFb true true 1.62(0.17) 40.43(0.06)
CNFFa IFFa false true 16.38(0.07) 8.68(0.06)
CNFFa IFFb true true 8.96(0.06) 3.08(0.06)
CNFFa IFFc false true 1.83(0.06) 23.66(0.06)
CNFFa PFB2a true true 6.51(0.18) 49.93(0.06)
CNFFa PFB2b true true 7.41(0.07) 20.18(0.06)
CNFFa NFB2 true true 4.23(0.07) 7.78(0.06)
CNFFa PFB3a false true 3.30(0.06) 1.64(0.07)
CNFFa PFB3b false true 5.01(0.06) 23.97(0.07)
CNFFa NFB3a false true 1.25(0.07) 12.14(0.07)
CNFFa NFB3b false true 1.80(0.07) 13.65(0.06)
CNFFb IFFa false true 22.96(0.06) 9.71(0.07)
CNFFb IFFb false true 7.61(0.06) 1.32(0.17)
CNFFb IFFc false true 14.87(0.06) 4.55(0.06)
CNFFb PFB2a true true 5.97(0.06) 16.44(0.06)
CNFFb PFB2b true true 1.24(0.06) 10.92(0.06)
CNFFb NFB2 true true 22.81(0.07) 30.21(0.06)
CNFFb PFB3a false true 1.26(0.16) 14.22(0.06)
CNFFb PFB3b false true 8.96(0.07) 5.53(0.06)
CNFFb NFB3a false true 1.55(0.06) 4.38(0.06)
CNFFb NFB3b false true 1.63(0.06) 11.00(0.07)

Table 2. Two-motif analysis results for the 4-step sign-sensitive delay prop-
erty of the n = 3 generic network. Columns are labeled as in Table 1.
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Motif1 Motif2 M∧M′ ¬M∧ ¬M′ tM∧M′ (t′M∧M′ ) t¬M∧¬M′ (t′¬M∧¬M′ )

IFFa IFFb false true 14.47(0.07) 3.18(0.07)
IFFa IFFc false true 22.13(0.07) 2.35(0.07)
IFFa PFB2a false true 52.38(0.06) 3.28(0.18)
IFFa PFB2b false true 86.75(0.06) 4.77(0.06)
IFFa NFB2 false true 60.60(0.06) 2.27(0.16)
IFFa PFB3a false true 3.28(0.06) 4.39(0.06)
IFFa PFB3b false true 6.03(0.06) 3.96(0.06)
IFFa NFB3a false true 1.20(0.06) 4.57(0.06)
IFFa NFB3b false true 1.71(0.06) 5.95(0.06)
IFFb IFFc false true 14.03(0.07) 5.32(0.06)
IFFb PFB2a true true 6.22(0.06) 31.67(0.06)
IFFb PFB2b false true 74.77(0.06) 3.73(0.17)
IFFb NFB2 false true 46.74(0.06) 4.27(0.06)
IFFb PFB3a false true 3.89(0.07) 3.64(0.06)
IFFb PFB3b false true 5.86(0.06) 7.34(0.06)
IFFb NFB3a false true 1.21(0.06) 4.89(0.06)
IFFb NFB3b false true 1.93(0.07) 2.01(0.06)
IFFc PFB2a false true 55.88(0.06) 10.78(0.16)
IFFc PFB2b false true 43.51(0.06) 1.36(0.06)
IFFc NFB2 false true 32.93(0.06) 5.36(0.06)
IFFc PFB3a false true 1.20(0.06) 5.38(0.06)
IFFc PFB3b false true 3.80(0.17) 9.08(0.06)
IFFc NFB3a false true 1.52(0.06) 5.78(0.06)
IFFc NFB3b false true 1.67(0.06) 5.67(0.06)
PFB2a PFB2b true false 4.98(0.06) 43.55(0.06)
PFB2a NFB2 true true 1.87(0.07) 8.10(0.06)
PFB2a PFB3a false true 1.18(0.06) 2.75(0.06)
PFB2a PFB3b false true 1.19(0.06) 6.25(0.06)
PFB2a NFB3a false true 1.18(0.06) 10.68(0.06)
PFB2a NFB3b false true 1.19(0.06) 17.16(0.06)
PFB2b NFB2 true true 3.49(0.06) 2.93(0.06)
PFB2b PFB3a false true 1.18(0.06) 6.25(0.06)
PFB2b PFB3b false true 1.19(0.06) 1.46(0.06)
PFB2b NFB3a false true 1.26(0.07) 6.21(0.06)
PFB2b NFB3b false true 1.21(0.06) 4.72(0.06)
NFB2 PFB3a false true 1.21(0.06) 15.05(0.06)
NFB2 PFB3b false true 1.25(0.06) 1.77(0.06)
NFB2 NFB3a false true 1.19(0.06) 2.80(0.07)
NFB2 NFB3b false true 1.20(0.06) 8.99(0.06)
PFB3a PFB3b false true 1.21(0.06) 1.44(0.07)
PFB3a NFB3a false true 1.20(0.06) 1.46(0.06)
PFB3a NFB3b false true 1.20(0.06) 24.67(0.18)
PFB3b NFB3a false true 1.18(0.06) 1.61(0.06)
PFB3b NFB3b false true 1.18(0.06) 5.80(0.07)
NFB3a NFB3b false true 1.19(0.07) 3.26(0.06)

Table 3. Continued from Table 2.
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Motif M ¬M tM (t′M) t¬M (t′¬M)

CPFFa false true 5.86(0.08) 4.40(0.19)
CPFFb true true 3.59(0.07) 3.75(0.06)
IFFd false true 8.21(0.06) 5.50(0.06)
CNFFa false true 6.09(0.06) 1.55(0.07)
CNFFb true true 3.23(0.06) 4.17(0.06)
IFFa true true 0.92(0.06) 1.79(0.06)
IFFb true true 0.90(0.06) 5.96(0.07)
IFFc false true 6.87(0.06) 1.67(0.06)
PFB2a true true 2.50(0.06) 1.71(0.06)
PFB2b true false 2.89(0.07) 11.26(0.06)
NFB2 true true 2.14(0.06) 2.97(0.06)
PFB3a false true 1.50(0.06) 3.49(0.07)
PFB3b false true 2.38(0.06) 6.26(0.06)
NFB3a false true 1.36(0.06) 4.77(0.07)
NFB3b false true 1.81(0.18) 1.73(0.06)

Table 4. Single-motif analysis results for the pulse generation property
(pulse width of 4 steps) of the n = 3 generic network. Columns are labeled
as in Table 1.

Motif M ¬M tM (t′M) t¬M (t′¬M)

CPFFa true true 630.62(19.19) 460.10(18.65)
CPFFb true true 277.47(18.40) 586.21(18.17)
IFFd false true 26.27(19.23) 636.10(19.16)
CNFFa true true 489.93(18.43) 611.28(18.90)
CNFFb true true 537.20(18.28) 493.21(17.90)
IFFa true false 609.35(19.95) 540.18(18.39)
IFFb true true 568.20(19.15) 555.86(17.77)
IFFc false true 515.28(20.74) 619.15(19.11)
PFB2a true false 467.51(18.01) 112.02(18.40)
PFB2b true true 505.46(18.21) 505.40(18.74)
NFB2 false true 25.05(17.91) 640.31(17.72)
PFB3a true false 575.88(17.62) 525.42(19.04)
PFB3b true true 410.93(17.84) 531.24(17.73)
NFB3a false true 25.04(17.73) 572.96(17.65)
NFB3b true true 522.14(18.03) 531.86(17.96)

Table 5. Single motif analysis results for the stem cell network. Columns are
labeled as in Table 1.
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